The Effects of Soil Microbes’ Co-Occurrence on Mangroves’ Resistance Against Spartina alterniflora Invasion
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Content and Isotopic Values of Organic Matter
2.3. The Contribution of S. alterniflora to the Total Soil Organic Matter
Source | δ13C (‰) | C:N | References | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Kandelia candai | −29.50 | 0.90 | 16.49 | 0.86 | This study; [42] |
Aegiceras corniculatum | −29.98 | 1.01 | 15.33 | 2.31 | |
Avicennia marima | −29.87 | 1.04 | 13.31 | 3.36 | |
Bruguiera gymnorrhiza | −29.45 | 0.65 | 21.40 | 4.94 | [43,44,45] |
S. alterniflora | −12.80 | 0.30 | 32.70 | 1.80 | This study; [46] |
Rhizophora Stylosa | −27.94 | 0.40 | 25.20 | 3.25 | [44,45,47] |
Benthic algae | −18.56 | 1.73 | 7.60 | 0.70 | [48,49,50,51,52] |
Aquaculture water | −27.81 | 1.85 | 4.72 | 1.35 | This study; [53] |
Phytoplankton | −20.80 | 1.10 | 6.55 | 1.95 | [54] |
Zooplankton | −26.20 | 5.40 | 4.48 | 1.46 | [55] |
Seawater | −25.05 | 0.15 | 4.05 | 0.81 | This study; [53] |
Fresh water | −26.12 | 1.18 | 4.49 | 2.07 |
2.4. DNA Sampling, Extraction, Amplification and Sequencing
2.5. Construction and Visualization of Microbial Co-Occurrence Networks
2.6. Statistical Analysis
3. Results
3.1. Contents of Soil Organic Matter
3.2. The Indicators of the Underground Biomass of S. alterniflora
3.3. Benthic Bacterial Community
3.4. Microbial Co-Occurrence Networks
4. Discussion
4.1. Early Warnings of S. alterniflora Regeneration
4.2. The Causal Link Between Microbial Diversity and S. alterniflora Invasion/Regeneration
4.3. Higher Soil Microbial Co-Occurrence Enhances Mangroves’ Resistance to S. alterniflora
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Soil organic matter |
S. alterniflora | Spartina alterniflora |
ZJE | Zhangjiang Estuary |
QZB | Quanzhou Bay |
References
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.; Murray, B.; Baldera, A. Estimating global ‘‘blue carbon’’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, 43542. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Taillardat, P.; Clendenning, J.N.; Cameron, C.; Friess, D.A.; Murdiyarso, D.; Hutley, B. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Change Biol. 2019, 25, 4291–4302. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Chu, T.; Li, D.; Shih, Y.-J.; Guo, Y.; Liu, K.; Ji, F.; Li, J.; Yin, Y.; Chen, R. 2Coupling use of stable isotopes and functional genes as indicators for the impacts of artificial restoration on the carbon storage of a coastal wetland invaded by Spartina alterniflora, southeastern China. Front. Mar. Sci. 2024, 11, 1364412. [Google Scholar] [CrossRef]
- Lin, K.; Zhang, Q.; Jian, S.; Wang, R.; Shen, W.; Chen, H.; Ren, H.; Xu, F. Mangrove resource and sustainable development at Zhanjiang. Ecol. Sci. 2006, 23, 23–29. [Google Scholar] [CrossRef]
- Zhang, J.; She, Z.; Lin, J.; Chen, G. 2A study on growth of artificial mangrove forest and plant diseases and insect pests. Ecol. Sci. 2006, 25, 367–370, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Cui, L.; Berger, U.; Cao, M.; Zhang, Y.; He, J.; Pan, L.; Jiang, J. Conservation and restoration of mangroves in response to invasion of Spartina alterniflora based on the MaxEnt Model: A case study in China. Forests 2023, 14, 1220. [Google Scholar] [CrossRef]
- Feng, J.; Huang, Q.; Qi, F.; Guo, J.; Lin, G. Utilization of exotic Spartina alterniflora by fish community in the mangrove ecosystem of Zhangjiang Estuary: Evidence from stable isotope analyses. Biol. Invasions 2015, 17, 2113–2121. [Google Scholar] [CrossRef]
- Zheng, X.; Javed, Z.; Liu, B.; Zhong, S.; Cheng, Z.; Rehman, A.; Du, D.; Li, J. Impact of Spartina alterniflora invasion in coastal wetlands of China: Boon or bane? Biology 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, W.; Shen, L.; Yang, Y.; Xu, J.; Tian, M.; Liu, X.; Yang, W.; Jin, J.; Wu, H. Response of methanotrophic activity and community structure to plant invasion in China’s coastal wetlands. Geoderma 2021, 407, 115569. [Google Scholar] [CrossRef]
- Qi, X.; Chmura, G. Invasive Spartina alterniflora marshes in China: A blue carbon sink at the expense of other ecosystem services. Front. Ecol. Environ. 2023, 21, 182–190. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, J.; Wang, L.; Cui, X.; Ning, C.; Wu, H.; Zhu, X.; Lin, G. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere 2017, 184, 774–783. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. Bioscience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Gavier-Pizarro, G.I.; Kuemmerle, T.; Hoyos, L.E.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S.; Radeloff, V.C. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sens. Environ. 2012, 122, 134–145. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, L. A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China. Ecol. Eng. 2007, 29, 164–172. [Google Scholar] [CrossRef]
- Wang, A.; Chen, J.; Jing, C.; Ye, G.; Wu, J. Monitoring the invasion of Spartina alterniflora from 1993 to 2014 with Landsat TM and SPOT 6 Satellite Data in Yueqing Bay, China. PLoS ONE 2015, 10, e0135538. [Google Scholar] [CrossRef]
- Phillips, D.L.; Gregg, J.W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 2003, 136, 261–269. [Google Scholar] [CrossRef]
- Philp, P. The emergence of stable isotopes in environmental and forensic geochemistry studies. Environ. Chem. Lett. 2007, 5, 57–66. [Google Scholar] [CrossRef]
- Xia, S.; Song, Z.; Li, Q.; Guo, L.; Yu, C.; Singh, B.P.; Fu, X.; Chen, C.; Wang, Y.; Wang, H. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N and lignin biomarker. Glob. Change Biol. 2021, 27, 417–434. [Google Scholar] [CrossRef]
- Wang, A.; Chen, J.; Li, D. Impact of Spartina alterniflora on sedimentary environment of coastal wetlands of the Quanzhou Bay. Ocean. Eng. 2008, 26, 60–69. [Google Scholar] [CrossRef]
- Yang, J.; Gao, J.; Liu, B.; Wei, Z. Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, southern China. Estuar. Coast. Shelf Sci. 2014, 136, 3–10. [Google Scholar] [CrossRef]
- Yin, M.; Feng, J.; Huang, X.; Cai, Z.; Lin, G.; Zhou, J. Soil microbial community structure in natural and transplanted mangrove (Kandelia obovata) forests. Acta Ecol. Sin. 2017, 36, 1–10. [Google Scholar] [CrossRef]
- Bhaduri, D.; Pal, S.; Purakayastha, T.J.; Chakraborty, K.; Akhtar, M.S. Soil quality and plant-microbe interactions in the Rhizosphere. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 17, pp. 307–335. [Google Scholar] [CrossRef]
- Lynn, T.; Ge, T.; Yuan, H.; Wei, X.; Wu, X.; Xiao, K.; Kumaresan, D.; Yu, S.; Wu, J.; Whiteley, A.S. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb. Ecol. 2017, 73, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Sathya, A.; Vijayabharathi, R.; Gopalakrishnan, S. Soil Microbes: The invisible managers of soil fertility. In Microbial Inoculants in Sustainable; Singh, D., Singh, H., Prabha, R., Eds.; Springer: New Delhi, India, 2016; Volume 2, pp. 1–16. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.; Li, D.; Singh, M.; Rajput, V.D.; Malviya, M.K.; Minkina, T.; Singh, R.K.; Singh, P.; Li, Y. Interactive role of silicon and plantrhizobacteria mitigating abiotic stresses: A new approach for sustainable agriculture and climate change. Plants 2020, 9, 1055. [Google Scholar] [CrossRef]
- Kumar, P.S.; Rangasamy, G.; Gayathri, K.V.; Parthasarathy, V. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environ. Res. 2023, 220, 115200. [Google Scholar] [CrossRef]
- Montoya, J.; Pimm, S.; Solé, R. Ecological networks and their fragility. Nature 2006, 442, 259–264. [Google Scholar] [CrossRef]
- Newman, M. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577. [Google Scholar] [CrossRef]
- Berry, D.; Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014, 5, 219. [Google Scholar] [CrossRef]
- Pržulj, N.; Malod-Dognin, N. Network analytics in the age of big data. Science 2016, 353, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Landi, P.; Minoarivelo, H.; Brännström, Å.; Hui, C.; Dieckmann, U. Complexity and stability of ecological networks: A review of the theory. Popul. Ecol. 2018, 60, 319–345. [Google Scholar] [CrossRef]
- Okuyama, T.; Holland, J. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 2008, 11, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Peng, R.; Yang, Y.; He, L.; Wang, W.; Zheng, T.; Lin, G. Mariculture pond influence on mangrove areas in South China: Ignificantly larger nitrogen and phosphorus loadings from sediment wash-out than from tidal water exchange. Aquaculture 2014, 426–427, 204–212. [Google Scholar] [CrossRef]
- Li, D.; Yan, J.; Lu, Z.; Chu, T.; Li, J.; Chu, T.-J. Use of δ13C and δ15N as indicators to evaluate the influence of sewage on organic natter in the Zhangjiang mangrove–estuary ecosystem, southeastern China. Water 2023, 15, 3660. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, K.; Santos, I.R.; Lu, Z.; Tamborski, J.; Wang, Y.; Yan, R.; Chen, N. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone. J. Hydrol. 2022, 606, 127401. [Google Scholar] [CrossRef]
- Moore, J.; Semmens, B.; Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 2022, 11, 470–480. [Google Scholar] [CrossRef]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef]
- Xue, B.; Yan, C.; Lu, H.; Bai, Y. Mangrove-derived organic carbon in sediment from Zhangjiang Estuary (China) Mangrove wetland. J. Coastal. Res. 2009, 25, 949–956. [Google Scholar] [CrossRef]
- Fan, Y.; Pan, Y.; Chen, Z.; Lin, H.; Xu, R.; Wu, C.; Hong, T. C:N:P stoichiometry in roots, stems, and leaves of four mangrove species. Chin. J. Ecol. 2019, 38, 1041. [Google Scholar] [CrossRef]
- Huang, J.; Lin, G.; Han, X. Comparative study on water use efficiency of mangrove plants in different habitats. Chin. J. Plant Ecol. 2005, 29, 530–536, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, G.; Guan, D.; Peart, M.R.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. Forest Ecol. Manag. 2013, 310, 539–546. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, J.; Luo, Y.; Henderson, R.; An, S.; Zhang, Q.; Chen, J.; Li, B. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 2008, 145, 177–184. [Google Scholar] [CrossRef]
- Murukesh, N.; Chandramohanakumar, N. Nutrients and isotopic composition in Rhizophoraceae mangroves of Kochi, South west coast of India. J. Plant. Res. 2021, 37, 331–344. [Google Scholar] [CrossRef]
- Gao, Y. Studies on Dstribution Patterns of and Controlling Factors for Soil Carbon Pools of Selected Mangrove Wetlands in China. Ph.D. Thesis, Tsinghua University, Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Choy, E.J.; Richard, P.; Kim, K.; Kang, C. Quantifying the trophic base for benthic secondary production in the Nakdong River estuary of Korea using stable C and N isotopes. J. Exp. Mar. Biol. Ecol. 2009, 382, 18–26. [Google Scholar] [CrossRef]
- Gao, J.; Yu, K.; Xu, S.; Huang, X.; Chen, B.; Wang, Y. Content and source analysis of organic carbon in the outer slope sediments of the Yongle Atoll, Xisha Islands. J. Trop. Oceanogr. 2024, 43, 131–145, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Quan, W. Food Wed Analysis of Salt Marshes of the Yangtze River Estuary by Using Stable Isotopes. Ph.D. Thesis, Fudan University, Shanghai, China, 2007. (In Chinese with English Abstract). [Google Scholar]
- Yokoyama, H.; Sakami, T.; Ishihi, Y. Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariake Sound, southern Japan, determined by stable isotopes. Estuar. Coast. Shelf Sci. 2009, 82, 243–253. [Google Scholar] [CrossRef]
- Wu, G. Organic Carbon Sources and Microbial Carbon Assimilation in Mangrove Ecosystems. Ph.D. Thesis, Xiamen University, Fujian, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Kang, C.; Kim, J.; Lee, K.; Kim, J.B.; Lee, P.; Hong, J. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: Dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser. 2003, 259, 79–92. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, K.; Guo, Y.; Xu, J. Reconstruction of consumer dietary sources based on stable isotopes. Acta Hydrobiol. Sin. 2022, 46, 767–777. [Google Scholar] [CrossRef]
- Castañeda-Moya, E.; Twilley, R.R.; Rivera-Monroy, V.H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest. Ecol. Manag. 2013, 307, 226–241. [Google Scholar] [CrossRef]
- Hemminga, M.; Huiskes, A.; Steegstra, M.; Soelen, J.V. Assessment of carbon allocation and biomass production in a natural stand of the salt marsh plant Spartina anglica using 13C. Mar. Ecol. Prog. Ser. 1996, 130, 169–178. [Google Scholar] [CrossRef]
- Faith, D. Conservation Evaluation and Phylogenetic Diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Feng, J.; Guo, J.; Huang, Q.; Jiang, J.; Huang, G.; Yang, Z.; Lin, G. Changes in the community structure and diet of benthic macrofauna in invasive Spartina alterniflora wetlands following restoration with native mangroves. Wetlands 2014, 34, 673–683. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Osanai, Y.; Lai, K.; Anderson, I.C.; Bange, M.P.; Tissue, D.T.; Singh, B.K. Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: Flooding or prolonged-drought. Soil Biol. Biochem. 2018, 118, 227–236. [Google Scholar] [CrossRef]
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef]
- Yang, W.; Cai, A.; Wang, J.; Luo, Y.; Cheng, X.; An, S. Exotic Spartina alterniflora Loisel. invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 2020, 449, 97–115. [Google Scholar] [CrossRef]
- Dauwe, B.; Middelburg, J. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr. 1998, 43, 782–798. [Google Scholar] [CrossRef]
- Jílková, V.; Straková, P.; Frouz, J. Foliage C:N ratio, stage of organic matter decomposition and interaction with soil affect microbial respiration and its response to C and N addition more than C:N changes during decomposition. Appl. Soil. Ecol. 2020, 152, 103568. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef]
- Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 1982, 38, 210–221. [Google Scholar] [CrossRef]
- Gast, C.J.V.D.; Walker, A.W.; Stressmann, F.A.; Rogers, G.B.; Scott, P.; Daniels, T.W.; Carroll, M.P.; Parkhill, J.; Bruce, K.D. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 2011, 5, 780–791. [Google Scholar] [CrossRef]
- Liu, G.; Verdegem, M.; Ye, Z.; Liu, Y.; Zhao, J.; Zhu, S. Co-occurrence patterns in biofloc microbial communities revealed by network analysis and their impact on the host. Aquaculture 2023, 577, 739964. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 2021, 97, 255. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Navarro, A.; Hiraldo, F.; Tella, J.; Blanco, G. Network structure embracing mutualism-antagonism continuums increases community robustness. Nat. Ecol. Evol. 2017, 1, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.R.G.; Reed, S.C.; Oliveira, R.S.; Nardoto, G.B. Isotopic evidence that nitrogen enrichment intensifies nitrogen losses to the atmosphere from subtropical mangroves. Ecosystems 2019, 22, 1126–1144. [Google Scholar] [CrossRef]
- Queiroz, H.M.; Ferreira, T.O.; Taniguchi, C.A.K.; Barcellos, D.; Nascimento, J.C.D.; Nóbrega, G.N.; Otero, X.L.; Artur, A.G. Nitrogen mineralization and eutrophication risks in mangroves receiving shrimp farming effluents. Environ. Sci. Pollut. Res. 2020, 27, 34941–34950. [Google Scholar] [CrossRef]
- Saini, R.; Kapoor, R.; Kumar, R.; Siddiqi, T.O.; Kumar, A. CO2 utilizing microbes—A comprehensive review. Biotechnol. Adv. 2011, 29, 949–960. [Google Scholar] [CrossRef]
- Fan, H.B.; Huang, Y.Z. Ecophysiological mechanism underlying the impacts of nitrogen saturation in terrestrial ecosystems on plants. J. Plant Physiol. Mol. Biol. 2006, 32, 395–402. [Google Scholar] [PubMed]
- Li, D.; Mo, J.; Fang, Y.; Peng, S.; Per, G. Impact of nitrogen deposition on forest plants. Acta Ecol. Sin. 2003, 23, 9. [Google Scholar] [CrossRef]
- Schulze, E.D. Air pollution and forest decline in a spruce (Picea abies) forest. Science 1989, 244, 776–783. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, X.; Qi, L.; Li, L.; Guo, J.; Zhong, H.; Liu, J.; Huang, J. Nitrogen and phosphorus fertilizer increases the uptake of soil heavy metal pollutants by plant community. Bull. Environ. Contam. Toxicol. 2022, 109, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. Resource Competition and Community Structure; Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 1982; Volume 17, pp. 1–296. [Google Scholar] [PubMed]
Parameters | Quanzhou Bay Mangrove Forest | Zhangjiang Estuary Mangrove Forest |
---|---|---|
Number of nodes | 1573 | 1633 |
Number of edges | 11,835 | 37,645 |
Average degree | 15.05 | 46.11 |
Connections | 0.01 | 0.03 |
Network density | 0.01 | 0.03 |
Modularity | 0.76 | 0.41 |
Parameters | Quanzhou Bay Mangrove Forest | Zhangjiang Estuary Mangrove Forest |
---|---|---|
Number of nodes | 857 | 912 |
Number of edges | 1860 | 6042 |
Average degree | 4.34 | 13.25 |
Connections | 0.005 | 0.015 |
Network density | 0.005 | 0.015 |
Modularity | 0.98 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; He, S.; Zhang, L.; Huang, D.; Cai, X.; Lu, Z.; Li, D. The Effects of Soil Microbes’ Co-Occurrence on Mangroves’ Resistance Against Spartina alterniflora Invasion. Forests 2025, 16, 1378. https://doi.org/10.3390/f16091378
Liu G, He S, Zhang L, Huang D, Cai X, Lu Z, Li D. The Effects of Soil Microbes’ Co-Occurrence on Mangroves’ Resistance Against Spartina alterniflora Invasion. Forests. 2025; 16(9):1378. https://doi.org/10.3390/f16091378
Chicago/Turabian StyleLiu, Gang, Shuang He, Lijuan Zhang, Danqing Huang, Xinyi Cai, Zhiqiang Lu, and Danyang Li. 2025. "The Effects of Soil Microbes’ Co-Occurrence on Mangroves’ Resistance Against Spartina alterniflora Invasion" Forests 16, no. 9: 1378. https://doi.org/10.3390/f16091378
APA StyleLiu, G., He, S., Zhang, L., Huang, D., Cai, X., Lu, Z., & Li, D. (2025). The Effects of Soil Microbes’ Co-Occurrence on Mangroves’ Resistance Against Spartina alterniflora Invasion. Forests, 16(9), 1378. https://doi.org/10.3390/f16091378