UAV-Based Multispectral Assessment of Wind-Induced Damage in Norway Spruce Crowns
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tree Pulling and Sampling Design
2.3. UAV Image Acquisition
2.4. Image Processing and Tree Crown Delineation
2.5. Vegetation Indices and Statistical Analysis
3. Results and Discussion
3.1. Simulation of Wind Damage and Differences in Vegetation Indices in Norway Spruce Stands
3.2. Correlation Shifts Between Spectral Indices Reveal Physiological Reorganisation After Mechanical Damage to Norway Spruce Stems
3.3. The Temporal Dynamics of Vegetation Indices as an Effect of Stem Pulling Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Spectral Index | Formula | Reference |
---|---|---|
ACI | Green/NIR | [54] |
ARI | (1/Green) − (1/RedEdge) | [55] |
Carter2 | Red/RedEdge | [56] |
CCI | (Green − Red)/(Green + Red) | [57] |
CI | (NIR/RedEdge) − 1 | [54] |
CRI1 | 1/Blue − 1/Green | [55] |
CRI2 | 1/Blue − 1/RedEdge | [55] |
CRI3 | 1/Blue − 1/Green × RedEdge | [58] |
CRI4 | 1/Blue − 1/RedEdge × RedEdge | [58] |
Datt | (NIR − RedEdge)/(NIR − Red) | [59] |
Datt4 | Red/(Green × RedEdge) | [60] |
Datt6 | NIR/Green × RedEdge | [60] |
DVI | NIR − Red | [61] |
DWSI4 | Green/Red | [62] |
EVI | 2.5 × ((NIR − Red)/(NIR − 6 × Red − 7.5 × Blue + 1)) | [63] |
Gitelson | 1/RedEdge | [58] |
Gitelson2 | (NIR/Red) − 1 | [64] |
GNDVI | (NIR − Green)/(NIR + Green) | [65] |
MACI | NIR/Green | [54] |
MARI | (1/Green) − (1/RedEdge) × NIR | [58] |
MCARI | (RedEdge − Red) − 0.2 × (RedEdge − Green) × (RedEdge/Red) | [66] |
mCARI_1 | 1.2 × ((2.5 × RedEdge − Red) − 1.3 × (RedEdge − Green)) | [46] |
MCARI2 | ((RedEdge − Red) − 0.2 × (RedEdge − Green)) × (RedEdge − Red) | [66] |
MPRI | (Blue − Green)/(Blue + Green) | [67] |
MTVI | 1.2 × (1.2 × (NIR − Green) − 2.5 × (Red − Green)) | [46] |
MTVI_1 | 1.2 × (1.2 × (1.2 × (RedEdge − Green) − 2.5 × (Red − Green))) | [46] |
MTVI_2 | 1.5 × (1.2 × (RedEdge − Green) − 2.5 × (Red − Green))/sqrt ((2 × RedEdge + 1)2 − (6 × RedEdge − 5 × sqrt(Red) − 0.5)) | [46] |
NCPI | (Red − Blue)/(Red + Blue) | [68] |
NDRE | (NIR − RedEdge)/(NIR + RedEdge) | [69] |
NDVI | (NIR − Red)/(NIR + Red) | [61] |
NLI/ | (NIR2 + Red/NIR2 − Red) | [70] |
OSAVI | (1 + 0.16) × (NIR − Red)/(NIR + Red + 0.16) | [71] |
PSRI | (Red − Blue)/RedEdge | [72] |
RARSc | NIR/Blue | [56] |
RDVI | (RedEdge − Red)/sqrt(RedEdge + Red) | [73] |
REGI | (RedEdge − Green)/(RedEdge + Green) | [56] |
RERI/NDV_761 | (RedEdge − Red)/(RedEdge + Red) | [56] |
RGI | Red/Green | [74] |
SAVI | (NIR − Red) × 1.5/(NIR + Red + 0.5) | [61] |
SAVI1 | (1 + 0.5)/(NIR − Red)/(NIR + Red + 0.5) | [75] |
SIPI | (NIR/Blue)/(NIR − Red) | [76] |
SPVI | 0.4 × 3.7 × (NIR − Red) − 1.2 × ((Green − Red) × 2) × 0.5 | [64] |
SR | NIR/Red | [77] |
SR4 | RedEdge/Red | [77] |
SR8 | Blue/Green | [77] |
TCARI | 3 × ((RedEdge − Red) − 0.2 × (RedEdge − Green) × (RedEdge/Red)) | [46] |
TCARI/OSAVI | TCARI/OSAVI | [46] |
TGI | −0.5 × (190 × (Red − Green) − 120 × (Red − Blue)) | [78] |
TVI | 0.5 × (120 × (RedEdge − Green) − 200 × (Red − Green)) | [46] |
References
- Anderegg, W.R.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T.A.; Sadler, J.P.; Seidl, R. A climate risk analysis of Earth’s forests in the 21st century. Science 2022, 377, 1099–1103. [Google Scholar] [CrossRef]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Chang. Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forestland. Nat. Clim. Change 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Schwarzbauer, P.; Rauch, P. Impact on industry and markets—Roundwood prices and procurement risks. In Living with Storm. Damage to Forests—What Science Can Tell Us; Gardiner, B., Schuck, A., Schelhaas, M.J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; p. 130. [Google Scholar]
- Thürig, E.; Hagedorn, F.; Lindroth, A. The Influence of Storm Damage on the Forest Carbon Balance. In Living with Storm Damage to Forests; Gardiner, B., Schuck, A., Schelhaas, M.J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 47–54. [Google Scholar]
- Schelhaas, M.J.; Fridman, J.; Hengeveld, G.M.; Henttonen, H.M.; Lehtonen, A.; Kies, U.; Krajnc, N.; Lerink, B.; Dhubhain, A.N.; Polley, H.; et al. Actual European forest management by region, tree species and owner based on 714,000 re-measured trees in national forest inventories. PLoS ONE 2018, 13, e0207151. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Turkulainen, E.; Honkavaara, E.; Näsi, R.; Oliveira, R.A.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Pelto-Arvo, M.; Tuviala, J.; et al. Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sens. 2023, 15, 4928. [Google Scholar] [CrossRef]
- Klimo, E.; Hager, H.; Kulhavý, J. Spruce Monocultures in Central Europe—Problems and Prospects; EFI Proceedings; European Forest Institute: Joensuu, Finland, 2000; p. 33.
- Spiecker, H.; Hansen, J.; Klimo, E.; Skovsgaard, J.P.; Sterba, H.; von Teuffel, K. Norway Spruce Conversion—Options and Consequences; EFI Research Report 18; Brill: Leiden, The Netherlands; Boston, MA, USA; Köln, Germany, 2004; p. 320. [Google Scholar]
- Synek, M.; Janda, P.; Mikoláš, M.; Nagel, T.A.; Schurman, J.S.; Pettit, J.L.; Trotsiuk, V.; Morrissey, R.C.; Bače, R.; Čada, V.; et al. Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. For. Ecol. Manag. 2020, 457, 117734. [Google Scholar] [CrossRef]
- Jansons, Ā.; Bāders, E.; Zeltiņš, P.; Gailis, A.; Šņepsts, G.; Katrevičs, J. Meža selekcijas potenciāls egļu audžu ražības paaugstinašanā. In Vienvecuma Egļu Meži Latvijā; Jansons, J., Ed.; Dauagvpils Universitātes Akadēmiskais Apgāds “Saule”: Daugavpils, Latvia, 2019; pp. 99–118. [Google Scholar]
- Johnstone, D.; Moorea, G.; Tauszband, M.; Nicolas, M. The measurement of plant vitality in landscape trees. Arboric. J. Int. J. Urban For. 2013, 35, 18–27. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Barta, V.; Hanus, J.; Dobrovolny, L.; Homolova, L. Comparison of field survey and remote sensing techniques for detection of bark beetle-infested trees. For. Ecol. Manag. 2022, 506, 119984. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely-sensed vegetation indices and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136. [Google Scholar] [CrossRef]
- Jin, Z.; Prasad, R.; Shriver, J.; Zhuang, Q. Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system. Precis. Agric. 2017, 18, 779–800. [Google Scholar] [CrossRef]
- Magney, T.S.; Eitel, J.U.H.; Vierling, L.A. Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precis. Agric. 2017, 18, 429–451. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Nazeer, M.; Sing Wong, M.; Yu, X.; Yin Tung Kwok, C.; Peng, Q.; Dai, Y. Urban tree health assessment using multifaceted remote sensing datasets: A case study in Hong Kong. Remote Sens. Appl. Soc. Environ. 2024, 36, 101347. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Stern, O.; Paschmionka, B.; Hass, E.; Gattung, T.; Stoffels, J.; Hill, J.; Werner, W. Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings. Int. J. Remote Sens. 2015, 36, 4590–4605. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-part I—A review of spectral traits, processes and remote-sensing characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef]
- Baders, E.; Romāns, E.; Desaine, I.; Krišāns, O.; Seipulis, A.; Donis, J.; Jansons, Ā. An Integration of Linear Model and ‘Random Forest’ Techniques for Prediction of Norway Spruce Vitality: A Case Study of the Hemiboreal Forest, Latvia. Remote Sens. 2022, 14, 2122. [Google Scholar] [CrossRef]
- Desaine, I.; Bāders, E.; Romāns, E.; Krišāns, O.; Seipulis, A.; Jansons, Ā. The Detection of Disturbance Effects of Norway Spruce (Picea abies (L.) KARST.) in UAV Multispectral Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 3, 689–695. [Google Scholar] [CrossRef]
- Detter, A.; Rust, S.; Rust, C.; Maybaum, G. Determining strength limits for standing tree stems from bending tests. In Proceedings of the 18th International Non-Destructive Testing and Evaluation of Wood Symposium, Madison, WI, USA, 24–27 September 2013; Ross, R.J., Wang, X., Eds.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2013; p. 226. [Google Scholar]
- Krisans, O.; Matisons, R.; Rust, S.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of Root Rot Reduces Stability of Norway Spruce (Picea abies): Results of Static Pulling Tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 14 August 2025).
- Zhang, L.; Sun, X.; Wu, T.; Zhang, H. An Analysis of Shadow Effects on Spectral Vegetation Indexes Using a Ground-Based Imaging Spectrometer. IEEE Geosci. Remote Sens. Lett. 2015, 12, 11. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2024, R package version 1.10.5-0900001. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 14 August 2025).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Brovkina, O.; Cienciala, E.; Zemek, F.; Lukeš, P.; Fabianek, T.; Russ, R. Composite indicator for monitoring of Norway spruce stand decline. Eur. J. Remote Sens. 2017, 50, 550–563. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef]
- Junttila, S.; Näsi, R.; Koivumäki, N.; Imangholiloo, M.; Saarinen, N.; Raisio, J.; Honkavaara, E. Multispectral imagery provides benefits for mapping spruce tree decline due to bark beetle infestation when acquired late in the season. Remote Sens. 2022, 14, 909. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lukeš, P.; Homolová, L.; Hovi, A.; Pisek, J.; Mõttus, M. Spectral Properties of Coniferous Forests: A Review of In Situ and Laboratory Measurements. Remote Sens. 2018, 10, 207. [Google Scholar] [CrossRef]
- Huo, L.; Lindberg, E.; Bohlin, J.; Persson, H.J. Assessing the detectability of European spruce bark beetle green attack in multispectral drone images with high spatial-and temporal resolutions. Remote Sens. Environ. 2023, 287, 113484. [Google Scholar] [CrossRef]
- Honkavaara, E.; Nasi, R.; Oliveira, R.; Viljanen, N.; Suomalainen, J.; Khoramshahi, E.; Hakala, T.; Nevalainen, O.; Markelin, L.; Vuorinen, M.; et al. Using Multitemporal Hyper- and Multispectral UAV imaging For Detecting Bark Beetle Infestation on Norway Spruce. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 429–434. [Google Scholar] [CrossRef]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; OUP: Oxford, UK, 2010. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Morales, A.; Berjón, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Korpela, I.; Heikkinen, V.; Honkavaara, E.; Rohrbach, F.; Tokola, T. Variation and directional anisotropy of reflectance at the crown scale—Implications for tree species classification in digital aerial images. Remote Sens. Environ. 2011, 115, 2062–2074. [Google Scholar] [CrossRef]
- Minařík, R.; Langhammer, J.; Lendzioch, T. Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests. Remote Sens. 2020, 12, 4081. [Google Scholar] [CrossRef]
- Drechsel, J.; Forkel, M. Remote sensing forest health assessment—A comprehensive literature review on a European level. Cent. Eur. For. J. 2025, 71, 14–39. [Google Scholar] [CrossRef]
- Huo, L.; Matsiakh, I.; Bohlin, J.; Cleary, M. Estimation of Tree Vitality Reduced by Pine Needle Disease Using Multispectral Drone Images. Remote Sens. 2025, 17, 271. [Google Scholar] [CrossRef]
- Waite, O.J.; Coops, N.C.; Grubinger, S.; Isaac-Renton, M.; Degner, J.; King, J.; Liu, A. Responses of spectral indices to heat and drought differ by tree size in Douglas-fir. Sci. Remote Sens. 2025, 11, 100193. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gurlin, D.; Moses, W.J.; Barrow, T. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case2 waters. Environ. Res. Lett. 2009, 4, 045003. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.; Zur, Y.; Stark, R.; Gritz, U. Non-Destructive and Remote Sensing Techniques for Estimation of Vegetation Status. Pap. Nat. Resour. 2001, 3543, 327–335. [Google Scholar]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Peñuelas, J. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Datt, B. Remote sensing of water content in Eucalyptus leaves. Aust. J. Bot. 1999, 47, 909–923. [Google Scholar] [CrossRef]
- Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Lyon, J.G.; Yuan, D.; Lunetta, R.S.; Elvidge, C.D. A change detection experiment using vegetation indices. Photogramm. Eng. Remote Sens. 1998, 64, 143–150. [Google Scholar]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Formulation and assessment of narrow-band vegetation indices from EO-1 Hyperion imagery for discriminating sugarcane disease. In Proceedings of the Spatial Sciences Institute Biennial Conference (SSC 2003): Spatial Knowledge Without Boundaries, Canberra, Australia, 22–27 September 2003. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W.J.D.A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.; Kim, M.; de Colstoun, E.B.; McMurtrey, J. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Yang, Z.; Willis, P.; Mueller, R. Impact of Band-Ratio Enhanced AWIFS Image on Crop Classification Accuracy. 2008. Available online: https://www.asprs.org/a/publications/proceedings/pecora17/0041.pdf (accessed on 30 June 2025).
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Yu, Q. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index. Sensors 2008, 8, 3744–3766. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 32, 221–230. [Google Scholar]
- Ehammer, A.; Fritsch, S.; Conrad, C.; Lamers, J.; Dech, S. Statistical derivation of fPAR and LAI for irrigated cotton and rice in arid Uzbekistan by combining multi-temporal RapidEye data and ground measurements. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XII; SPIE: Toulouse, France, 2010; Volume 7824, pp. 66–75. [Google Scholar]
- Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef]
Site | The Month of the Pulling Test | H *, m | DBH *, cm | Tree Crown Area, m2 | Bent Tree | Healthy Trees | Crown-Damaged Trees | Dead Trees | Stand Area, ha |
---|---|---|---|---|---|---|---|---|---|
Stand 1 | 2020 01 | 24.0 ± 1.23 | 22.0 ± 1.82 | 8.11 ± 3.68 | 10 | 11 | - | - | 4.40 |
Stand 2 | 2020 01 | 24.7 ± 1.51 | 24.2 ± 2.58 | 11.51 ± 9.80 | 11 | 10 | - | - | 1.97 |
Stand 3 | 2020 01 | 24.2 ± 1.83 | 24.7 ± 2.14 | 11.44 ± 6.13 | 9 | 10 | - | - | 1.23 |
Stand 4 | 2023 08, 2024 05–07 | 20.28 ± 2.07 | 20.64 ± 4.42 | 7.46 ± 5.43 | 65 | 460 | - | 2 | 2.97 |
Stand 5 | 2023 08 | 18 ± 3.06 | 17.71 ± 4.12 | 4.94 ± 2.50 | 5 | 39 | 91 | 7 | 1.74 |
Stand 6 | 2023 08 | 22.23 ± 3.61 | 26.26 ± 7.38 | 7.72 ± 3.98 | 5 | 12 | 55 | 18 | 2.98 |
Stand 7 | 2023 09 | 26.51 ± 3.43 | 24.32 ± 4.45 | 6.79 ± 3.04 | 5 | 102 | 6 | 3 | 0.82 |
Stand 8 | 2023 08 | 22.97 ± 3.35 | 27.24 ± 7.71 | 11.65 ± 6.48 | 5 | 24 | 72 | 24 | 1.83 |
Stand 9 | 2023 08 | 20.85 ± 5.78 | 21.64 ± 8.03 | 6.26 ± 4.05 | 5 | 88 | 5 | 20 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bāders, E.; Seipulis, A.; Kaupe, D.; Champion, J.J.-C.; Krišāns, O.; Elferts, D. UAV-Based Multispectral Assessment of Wind-Induced Damage in Norway Spruce Crowns. Forests 2025, 16, 1348. https://doi.org/10.3390/f16081348
Bāders E, Seipulis A, Kaupe D, Champion JJ-C, Krišāns O, Elferts D. UAV-Based Multispectral Assessment of Wind-Induced Damage in Norway Spruce Crowns. Forests. 2025; 16(8):1348. https://doi.org/10.3390/f16081348
Chicago/Turabian StyleBāders, Endijs, Andris Seipulis, Dārta Kaupe, Jordane Jean-Claude Champion, Oskars Krišāns, and Didzis Elferts. 2025. "UAV-Based Multispectral Assessment of Wind-Induced Damage in Norway Spruce Crowns" Forests 16, no. 8: 1348. https://doi.org/10.3390/f16081348
APA StyleBāders, E., Seipulis, A., Kaupe, D., Champion, J. J.-C., Krišāns, O., & Elferts, D. (2025). UAV-Based Multispectral Assessment of Wind-Induced Damage in Norway Spruce Crowns. Forests, 16(8), 1348. https://doi.org/10.3390/f16081348