Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Litter Sampling Design
2.2.2. Laboratory Analyses
Maximum Water Holding Capacity (MWHC)
Determination of Selected Physico-Chemical Properties of Forest Floor Litter
Statistical Analyses
3. Results
3.1. Differences According to Ecological Regions
3.2. Differences According to Litter Types
4. Discussion
4.1. Interpretation of Differences Between Ecological Regions
4.2. Interpretation of Variations in MWHC Based on Litter Type
4.3. Relationships Between Physicochemical Properties and Maximum Water Holding Capacity
4.4. Comparison of Findings with the Literature
4.5. Management and Ecological Recommendations
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MWHC | Maximum Water Holding Capacity |
FFL | Forest Floor Litter |
EC | Electrical Conductivity |
TDSs | Total Dissolved Solids |
SDGs | Sustainable Development Goals |
References
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; The Nature and Properties of Soils: Upper Saddle River, NJ, USA, 1996; ISBN 9780132431897. [Google Scholar]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef]
- Gül, E.; Esen, S. High Desertification Susceptibility in Forest Ecosystems Revealed by the Environmental Sensitivity Area Index (ESAI). Sustainability 2024, 16, 10409. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Pritchett, L.W. Properties and Management of Forest Soils; John Wiley & Sons: New York, NY, USA, 1979; ISBN 9780471037187. [Google Scholar]
- Gee, G.W. Soil in the Environment: Crucible of Terrestrial Life. Vadose Zone J. 2009, 8, 273. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Carbon Input to Terrestrial Ecosystems; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 0387954392. [Google Scholar]
- Özhan, S. Belgrad Ormanı Ortadere Yağış Havzasında Ölü Örtünün Hidrolojik Bakımdan Önemli Özelliklerinin Bazı Yöresel Etkenlere Göre Değişimi. İstanbul Üniversitesi Orman Fakültesi Derg. 1976, 26, 24–48. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Chornobrov, O.; Solomakha, I.; Solomakha, V. Functions of dead wood in forest ecosystem services. Agroèkologičeskij Žurnal 2023, 2, 28–37. [Google Scholar]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Walker, L.R.; DelMoral, R. Primary Succession and Ecosystem Rehabilitation; Cambridge Unversity Press: Cambridge, UK, 2003. [Google Scholar]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef]
- Basche, A.; DeLonge, M. The Impact of Continuous Living Cover on Soil Hydrologic Properties: A Meta-Analysis. Soil Sci. Soc. Am. J. 2017, 81, 1179–1190. [Google Scholar] [CrossRef]
- Lal, R. Enhancing ecosystem services with no-till. Renew. Agric. Food Syst. 2013, 28, 102–114. [Google Scholar] [CrossRef]
- Ilek, A.; Szostek, M.; Mikołajczyk, A.; Rajtar, M. Does mixing tree species affect water storage capacity of the forest floor? Laboratory test of pine-oak and fir-beech litter layers. Forests 2021, 12, 1674. [Google Scholar] [CrossRef]
- Türkeş, M. Impacts of climate change on food security and agricultural production: A scientific review. Aegean Geogr. J. 2020, 29, 125–149. [Google Scholar]
- Wu, Q.; Peñuelas, J.; Yue, K.; Zhou, Z.; Peng, Y.; Heděnec, P.; Zhang, H.; Ji, Y.; Ma, N.; Chang, S.X.; et al. Asymmetric responses of litter decomposition to altered precipitation: Double evidence from field experiments and global synthesis. Innov. Geosci. 2025, 3, 100117. [Google Scholar] [CrossRef]
- Mohammadi, K.; Heidari, G.; Khalesro, S.; Sohrabi, Y. Soil management, microorganisms and organic matter interactions: A review. Afr. J. Biotechnol. 2011, 10, 19840–19849. [Google Scholar] [CrossRef]
- Kalayci Kadak, M.; Ozturk, S.; Mert, A. Predicting climate-based changes of landscape structure for Turkiye via global climate change scenarios: A case study in Bartin river basin with time series analysis for 2050. Nat. Hazards 2024, 120, 13289–13307. [Google Scholar] [CrossRef]
- Floriancic, M.G.; Allen, S.T.; Meier, R.; Truniger, L.; Kirchner, J.W.; Molnar, P. Forest-floor litter and deadwood cycle significant amounts precipitation. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- Sariyildiz, T.; Savaci, G.; Kravkaz, I.S. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. IForest 2016, 9, 165–170. [Google Scholar] [CrossRef]
- Ilek, A.; Błońska, E.; Miszewski, K.; Kasztelan, A.; Zborowska, M. Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves. Forests 2024, 15, 350. [Google Scholar] [CrossRef]
- Köse, N.; Akkemik, ünal; Dalfes, H.N.; Özeren, M.S.; Tolunay, D. Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia. Dendrochronologia 2012, 30, 295–301. [Google Scholar] [CrossRef]
- Hacısalihoğlu, S.; Yücesan, Z.; Oktan, E.; Kezik, U.; Karadağ, H. Modelling Top Soil Erosion Depend on Stand Profile for Anatolian Black Pine (Pinus nigra Arnold. subsp. pallasiana) Plantation in a Semi-Arid Ecosystem in Turkey. Eur. J. For. Eng. 2018, 4, 33–42. [Google Scholar] [CrossRef]
- Ayan, S.; Yücedaǧ, C.; Simovski, B. A major tool for afforestation of semi-aridand anthropogenic steppe areas in Turkey: Pinus nigra J.F. Arnold subsp. pallasiana (Lamb.) Holmboe. J. For. Sci. 2021, 67, 449–463. [Google Scholar] [CrossRef]
- Çömez, A.; Kaptanoğlu, A.S. Effects of pre-commercial thinning on soil respiration and some soil properties in black pine (Pinus nigra Arnold) stands. Tree For. 2023, 4, 27–33. [Google Scholar] [CrossRef]
- Bolat, F. Assessing regional variation of individual-tree diameter increment of Crimean pine and investigating interactive effect of competition and climate on this species. Environ. Monit. Assess. 2025, 197, 24. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci. Plant Nutr. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Şentürk, Ö.; Gülsoy, S.; Negiz, M.G.; Karakaya, F. Determination of model maps for the potential distribution of Anatolian black pine (Pinus nigra Arnold.) in natural forest areas in the Central Black Sea region. Biol. Divers. Conserv. 2023, 16, 85–94. [Google Scholar] [CrossRef]
- Gençay, G.; Birben, Ü. Striving for sustainability: Climate-Smart Forestry measures in Türkiye. Int. For. Rev. 2024, 26, 198–211. [Google Scholar] [CrossRef]
- Wang, G.G.; Lu, D.; Gao, T.; Zhang, J.; Sun, Y.; Teng, D.; Yu, F.; Zhu, J. Climate-Smart Forestry: An AI-Enabled Sustainable Forest Management Solution for Climate Change Adaptation and Mitigation; Springer Nature: Singapore, 2025; Volume 36. [Google Scholar]
- Shi, R.; Li, B.; Liu, S.; Wang, S. Water Holding Characteristics of Litters from Different Ecological Public Welfare Forest Types. In Proceedings of the 2nd International Conference on Green Materials and Environmental Engineering (GMEE 2015), Phuket, Thailand, 20–21 December 2015; pp. 55–59. [Google Scholar]
- Zhang, Y.; Ma, L.; He, J.; Dang, C.; Zou, C.; Cui, Y. Water holding characteristics of litters of typical forest in loess area of Western Shanxi Province, China. Chin. J. Appl. Ecol. 2023, 34, 3177–3183. [Google Scholar] [CrossRef]
- Rao, L.; Zhu, J. Hydrological effects of forest litter and soil in the Simianshan Mountains in Chonging, China. Front. For. China 2007, 2, 157–162. [Google Scholar] [CrossRef]
- Xie, G.; Liu, S.; Chang, T.; Zhu, N. Forest Adaptation to Climate Change: Altitudinal Response and Wood Variation in Natural-Growth Cunninghamia lanceolata in the Context of Climate Change. Forests 2024, 15, 411. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, W.; Tao, F.; Shi, X.; Fu, B. A Global Synthesis of Multi-Factors Affecting Water Storage Capacity in Forest Canopy, Litter and Soil Layers. Geophys. Res. Lett. 2023, 50, e2022GL099888. [Google Scholar] [CrossRef]
- Chertov, O.G.; Nadporozhskaya, M.A. Humus Forms in Forest Soils: Concepts and Classifications. Eurasian Soil Sci. 2018, 51, 1142–1153. [Google Scholar] [CrossRef]
- Malinina, M.S.; Karavanova, E.I.; Belyanina, L.A.; Ivanilova, S.V. Comparative analysis of the composition of water extracts and soil solutions from peat gleyic podzolic soils of the Central Forest State Biosphere Reserve. Eurasian Soil Sci. 2007, 40, 390–398. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Koptsik, G.N.; Koptsik, S.V.; Lofts, S. Migration of nickel and copper in forest litters under the effect of simulated rainfall. Mosc. Univ. Soil Sci. Bull. 2007, 62, 133–139. [Google Scholar] [CrossRef]
- Zagyvai-Kiss, K.A.; Kalicz, P.; Szilágyi, J.; Gribovszki, Z. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agric. For. Meteorol. 2019, 278, 107656. [Google Scholar] [CrossRef]
- Atalay, İ.; Efe, R. Ecology of the Anatolian Black Pine [Pinus nigra Arnold subsp. pallasiana (Lamb.) Holmboe] and its Dividing Into Regions in terms of Seed Transfer; Ministry of Environment and Forestry: Ankara, Turkey, 2010; ISBN 9786053930662. [Google Scholar]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; 4th ed. International Union of Soil Sciences: Vienna, Austria, 2022; Volume 3, ISBN 979-8-9862451-1-9. [Google Scholar]
- Ivanova, N. Global Overview of the Application of the Braun-Blanquet Approach in Research. Forests 2024, 15, 937. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–638. [Google Scholar]
- Atalay, İ. Ecoregions of Turkey; Meta Basım: İzmir, Turkey, 2014. [Google Scholar]
- Sensoy, S.; Demircan, M.; Ulupinar, Y.; Balta, I. Climate of Turkey. Turk. State Meteorol. Serv. 2008, 401, 1–13. [Google Scholar]
- Türkeş, M.; Öztaş, T.; Tercan, E.; Erpul, G.; Karagöz, A.; Dengiz, O.; Doğan, O.; Şahin, K.; Avcıoğlu, B. Desertification vulnerability and risk assessment for Turkey via an analytical hierarchy process model. Land Degrad. Dev. 2020, 31, 205–214. [Google Scholar] [CrossRef]
- Sutherland, W.J. Predicting the ecological consequences of environmental change: A review of the methods. J. Appl. Ecol. 2006, 43, 599–616. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Green, R.N.; Trowbridge, R.L.; Klinka, K. Towards a Taxonomic Classification of Humus Forms. For. Sci. Monogr. 1993, 39, a0001–z0002. [Google Scholar] [CrossRef]
- Abdalmoula, M.M.; Makineci, E.; Özturna, A.G.; Pehlivan, S.; Şahin, A.; Tolunay, D. Soil organic carbon accumulation and several physicochemical soil properties under stone pine and maritime pine plantations in coastal dune, Durusu-Istanbul. Environ. Monit. Assess. 2019, 191, 312. [Google Scholar] [CrossRef]
- Clesceri, L.; Greenberg, A. Standard Methods for the Examination of Water and Wastewater; 20th ed. American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Al-Fahham, A.A. Development of New LSD Formula when Numbers of Observations Are Unequal. Open J. Stat. 2018, 08, 258–263. [Google Scholar] [CrossRef]
- Floriancic, M.G.; Allen, S.T.; Meier, R.; Truniger, L.; Kirchner, J.W.; Molnar, P. Potential for significant precipitation cycling by forest-floor litter and deadwood. Ecohydrology 2023, 16, e2493. [Google Scholar] [CrossRef]
- Wang, D.; Hao, K.; Lıang, X.; Fang, X.; Tang, J.; Lıan, Z.; Zhao, Y.; Shen, H. Litter characteristics and water holding capacity in Pinus sylvestris var mongolica sandy-fixation plantations with disturbances. J. Zhejiang A F Univ. 2019, 36, 1125–1133. [Google Scholar] [CrossRef]
- Gao, W.Q.; Lei, X.D.; Fu, L.Y. Impacts of climate change on the potential forest productivity based on a climate-driven biophysical model in northeastern China. J. For. Res. 2020, 31, 2273–2286. [Google Scholar] [CrossRef]
- Tang, X.Y.; Xu, M.; Wang, X.D.; Zhang, J. Tree species composition affects litter eco-hydrological function in Pinus massoniana conifer-broadleaf mixed forest stands in southwest China. Hydrol. Process. 2024, 38, e15104. [Google Scholar] [CrossRef]
- Almansouri, E.H.; Aydın, M.; Şen Güneş, S. Determination of Soil, Litter Properties and Carbon Stock Capacities of Different Stand Types in Western Black Sea Region. Int. J. Sci. Technol. Res. 2020, 6, 51–63. [Google Scholar] [CrossRef]
- Nijzink, R.; Hutton, C.; Pechlivanidis, I.; Capell, R.; Arheimer, B.; Freer, J.; Han, D.; Wagener, T.; McGuire, K.; Savenije, H.; et al. The evolution of root-zone moisture capacities after deforestation: A step towards hydrological predictions under change? Hydrol. Earth Syst. Sci. 2016, 20, 4775–4799. [Google Scholar] [CrossRef]
- Kolb, M.; Cruz-Cano, R.; Reyes-Ronquillo, I.; Chávez- Vergara, B.; Jasso-Flores, I.; Rodríguez-Bustos, L.A.; Solís, E.; Galicia, L. Is there a forest-water-nexus for Mexican temperate forests? Ecohydrol. Hydrobiol. 2022, 22, 1–11. [Google Scholar] [CrossRef]
- Shi, X.; Du, C.; Guo, X.; Shi, W. Heterogeneity of water-retention capacity of forest and its influencing factors based on meta-analysis in the Beijing-Tianjin-Hebei region. J. Geogr. Sci. 2021, 31, 69–90. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.; Lee, J.; Kim, H.S.; Park, J.; Im, S. Water Retention Capacity of Leaf Litter According to Field Lysimetry. Forests 2023, 14, 478. [Google Scholar] [CrossRef]
- Adeyemo, T.; Kramer, I.; Levy, G.J.; Mau, Y. Salinity and sodicity can cause hysteresis in soil hydraulic conductivity. Geoderma 2022, 413, 115765. [Google Scholar] [CrossRef]
- Debnath, P.; Deb, P.; Sen, D.; Pattanaaik, S.K.; Sah, D.; Ghosh, S.K. Physico-chemical properties and its relationship with water holding capacity of cultivated soils along altitudinal gradient in Sikkim. Int. J. Agric. Environ. Biotechnol. 2012, 5, 161–166. [Google Scholar]
- Deb, P.; Debnath, P.; Pattanaaik, S.K. Physico-chemical properties and water holding capacity of cultivated soils along altitudinal gradient in South Sikkim, India. Indian J. Agric. Res. 2014, 48, 120–126. [Google Scholar] [CrossRef]
- Yi, C.; Zhao, X.; Feng, Y.; Zhang, Q.; Zhang, W.; Gan, X.; Njoroge, B.; Liu, X. Regional climax forest has a better water conservation function than pine plantation: A comparative study in humid subtropical China. Catena 2024, 239, 107935. [Google Scholar] [CrossRef]
- Chen, J.; Zhaı, C.; Bao, G.; Liu, T.; Sha, Y. Litter accumulation and hydrological effects of common tree species in urban forest of Northeast China. Chin. J. Ecol. 2023, 42, 1339–1347. [Google Scholar]
- Wei, Q.; Ling, L.; Zhang, G.; Yan, P.B.; Tao, J.X.; Chai, C.S.; Xue, R. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China. Chin. J. Appl. Ecol. 2011, 22, 2589–2598. [Google Scholar]
- Quer, E.; Pereira, S.; Michel, T.; Santonja, M.; Gauquelin, T.; Simioni, G.; Ourcival, J.M.; Joffre, R.; Limousin, J.M.; Aupic-Samain, A.; et al. Amplified Drought Alters Leaf Litter Metabolome, Slows Down Litter Decomposition, and Modifies Home Field (Dis)Advantage in Three Mediterranean Forests. Plants 2022, 11, 2582. [Google Scholar] [CrossRef]
- Janssen, E.; Kint, V.; Bontemps, J.D.; Özkan, K.; Mert, A.; Köse, N.; Icel, B.; Muys, B. Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean. For. Ecol. Manag. 2018, 412, 21–28. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, M. Water Conserving Function of Pinus tabulaeformis Litters in Three Regions of Beijing City. Bull. Soil Water Conserv. 2014, 34, 311–314. [Google Scholar] [CrossRef]
- Xing, X.; Shen, H.; Ma, W.; Wang, H.; Jia, Z. Hydrological Effects of Larix principis-rupprechtii and Betula platyphylla Forest Litters in Northwest Mountain of Hebei Province. Bull. Soil Water Conserv. 2016, 36, 126–130. [Google Scholar] [CrossRef]
- Tu, Z.; Chen, S.; Chen, Z.; Ruan, D.; Zhang, W.; Han, Y.; Han, L.; Wang, K.; Huang, Y.; Chen, J. Hydrological Properties of Soil and Litter Layers of Four Forest Types Restored in the Gully Erosion Area of Latosol in South China. Forests 2023, 14, 360. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Guo, X.; Zeng, Z.; Wang, Y.; Zhang, P.; Gao, D.; Deng, G.; Sun, G.; Yang, Y.; et al. Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential. Microb. Ecol. 2024, 87, 177. [Google Scholar] [CrossRef]
- Spiteri, K.; Sacco, A.T. Estimating the electrical conductivity of a saturated soil paste extract (ECe) from 1:1(EC1:1), 1:2(EC1:2) and 1:5(EC1:5) soil:water suspension ratios, in calcareous soils from the Mediterranean Islands of Malta. Commun. Soil Sci. Plant Anal. 2024, 55, 1302–1312. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Gliksman, D. Litter Decomposition in Mediterranean Pine Forests Subjected to Climate Change. In Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin; Ne’eman, G., Osem, Y., Eds.; Springer: Cham, Switzerland, 2021; pp. 325–342. ISBN 9783030636258. [Google Scholar]
- Santonja, M.; Pereira, S.; Gauquelin, T.; Quer, E.; Simioni, G.; Limousin, J.M.; Ourcival, J.M.; Reiter, I.M.; Fernandez, C.; Baldy, V. Experimental Precipitation Reduction Slows Down Litter Decomposition but Exhibits Weak to No Effect on Soil Organic Carbon and Nitrogen Stocks in Three Mediterranean Forests of Southern France. Forests 2022, 13, 1485. [Google Scholar] [CrossRef]
- Castagnolli, L.; Boggiani, F.S.; Lima, J.A.d.; Lima, M.T.; Tonello, K.C. Hydrological Properties of Litter in Different Vegetation Types: Implications for Ecosystem Functioning. Hydrology 2023, 10, 165. [Google Scholar] [CrossRef]
- François, M.; de Aguiar, T.R.; Mielke, M.S.; Rousseau, A.N.; Faria, D.; Mariano-Neto, E. Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water 2024, 16, 3350. [Google Scholar] [CrossRef]
- St-Hilaire, A. Forest Hydrology. In Routledge Handbook of Forest Ecology; Peh, K.S.-H., Corlett, R.T., Bergeron, Y., Eds.; Routledge Taylor 6 Francis Group: London, UK; New York, NY, USA, 2024; ISBN 9781003324072. [Google Scholar]
- Liu, M.; Ma, Z. A dataset of water holding capacity of ground covers and soils in a typical forest-shrub ecotone on the eastern Qinghai-Tibet Plateau. China Sci. Data 2021, 34, 2–13. [Google Scholar] [CrossRef]
- Wei, G.; Hu, T.; Wang, J.; Ran, H. Water Holding Characteristics of Litter Layer after Natural Evergreen Broadleaved Forest Artificial Regeneration in Southern Sichuan Province. J. Soil Water Conserv. 2006, 20, 51–55. [Google Scholar]
- Klamerus-Iwan, A.; Lasota, J.; Błońska, E. Interspecific variability of water storage capacity and absorbability of deadwood. Forests 2020, 11, 575. [Google Scholar] [CrossRef]
- Kumar, N.; Khamzina, A.; Knöfel, P.; Lamers, J.P.A.; Tischbein, B. Afforestation of degraded croplands as a water-saving option in irrigated region of the aral sea basin. Water 2021, 13, 1433. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Liang, B.; Shi, L.; Wu, L.; Cao, J. Will large-scale forestation lead to a soil water deficit crisis in China’s drylands? Sci. Bull. 2024, 69, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Zhang, M.; Xu, Y.; Zhang, S.; Meng, Z.; Hou, Y. The development and application of a gis-based tool to assess forest landscape restoration effects on water conservation capacity. Forests 2021, 12, 1291. [Google Scholar] [CrossRef]
- Buechel, M.; Dadson, S.; Slater, L.; Berthou, S. High resolution regional climate model points to a wetter UK with widespread afforestation. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023; Volume 2080, pp. 23–24. [Google Scholar]
Ecological Region | Stand Development Stage | Number of Plots | Number of Subsamples |
---|---|---|---|
Muğla | a, b, c, d | ≥40 | ≥120 |
Kütahya | a, b, c, d | ≥40 | ≥120 |
Kastamonu | a, b, c, d | ≥40 | ≥120 |
Total | 12 combinations | ≥120 | ≥360 |
Region | Variables | Min | Max | Mean | Std Dev | Median | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|---|---|
Mugla | MWHC (%) | 88.7 | 3496.7 | 376.8 | 219.7 | 362.2 | 8.1 | 110.6 | 58.3 |
pH | 3.1 | 9.8 | 5.0 | 0.8 | 5.1 | 0.5 | 2.1 | 16.1 | |
EC (µs/cm) | 5.3 | 435.0 | 135.0 | 97.7 | 96.9 | 0.9 | −0.1 | 72.3 | |
TDS (‰) | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.9 | −0.1 | 75.5 | |
Kütahya | MWHC (%) | 44.4 | 7582.2 | 467.4 | 657.1 | 324.7 | 8.6 | 87.4 | 140.6 |
pH | 4.5 | 7.7 | 5.8 | 0.7 | 5.7 | 0.2 | −0.8 | 11.6 | |
EC (µs/cm) | 8.3 | 457.0 | 112.4 | 82.6 | 115.7 | 1.1 | 2.0 | 73.5 | |
TDS (‰) | 0.0 | 0.2 | 0.1 | 0.0 | 0.1 | 1.2 | 2.6 | 75.8 | |
Kastamonu | MWHC (%) | 190.8 | 1976.9 | 402.5 | 188.8 | 370.3 | 3.8 | 25.6 | 46.9 |
pH | 3.9 | 7.6 | 5.3 | 0.9 | 5.0 | 0.7 | −0.5 | 16.9 | |
EC (µs/cm) | 5.3 | 672.0 | 135.3 | 128.5 | 99.9 | 1.3 | 1.3 | 95.0 | |
TDS (‰) | 0.0 | 0.4 | 0.1 | 0.1 | 0.1 | 1.4 | 1.8 | 99.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ediş, S. Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye. Forests 2025, 16, 1337. https://doi.org/10.3390/f16081337
Ediş S. Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye. Forests. 2025; 16(8):1337. https://doi.org/10.3390/f16081337
Chicago/Turabian StyleEdiş, Semih. 2025. "Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye" Forests 16, no. 8: 1337. https://doi.org/10.3390/f16081337
APA StyleEdiş, S. (2025). Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye. Forests, 16(8), 1337. https://doi.org/10.3390/f16081337