Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network
Abstract
1. Introduction
- 1.
- The fire detection model based on deep learning is often limited to the local receptive field when facing the complex fire scene dynamics. The model extracts features through a fixed size convolution window, which is limited to relying on the information of adjacent pixels. It is difficult to establish effective associations between remote pixels or capture global semantic features.
- 2.
- The feature fusion model based on dual-branch network usually has the problem of feature distribution difference when dealing with multimodal information. In a bipartite scaffold, the local texture features and global context features extracted from the two branches are often significantly different in feature space distribution and response scale, and direct fusion will easily lead to information redundancy and feature conflict.
- 1.
- In the feature extraction phase, a dual-branch backbone network composed of convolutional neural network (CNN) and Transformer is designed. CNN is responsible for capturing the local texture features of flame and smoke, while Transformer focuses on extracting the global context information and realizes the adaptive extraction of multi-level features;
- 2.
- In order to effectively integrate the feature information of dual branches, a feature correction module (FCM) is proposed. Through the two-stage correction mechanism of space and channel, the feature information of CNN and Transformer branches can guide and learn from each other, thus improving the consistency and complementarity of feature representation;
- 3.
- The Fusion Feature Module (FFM) is further designed. Based on the two-way cross-attention mechanism, the interactive expression of fire feature information is enhanced, information redundancy is avoided and the feature expression ability is improved;
- 4.
- A Multi-Scale Fusion Attention Unit (MSFAU) is proposed. Aiming at the significant differences between flame and smoke at different scales, multi-scale feature fusion and self attention mechanism are used to achieve multi-scale accurate detection of fire targets, significantly improving the detection effect of the model on large, medium and small scale fire targets.
2. Dual-Branch Feature Aggregation Network
2.1. Overall Network Structure
2.2. Backbone Feature Extraction Network
2.3. Feature Correction Module
2.4. Feature Fusion Module
2.5. Multi-Scale Fusion Attention Unit
3. Dataset and Evaluation Indicators
3.1. Experimental Environment and Parameters
3.2. Model Training Details and Evaluation Indicators
4. Experimental Analysis
4.1. Ablation Test
4.2. Analysis Experiment of the Feature Interaction Learning Process in Dual-Branch Networks
4.3. Comparison Experiment
4.4. Evaluation of the Proposed DMAFNet Algorithm Under Environmental Disturbances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Zhang, G.; Chu, R.; Zhang, J.; Yang, Z.; Wu, X.; Xiao, H. Detecting forest fire omission error based on data fusion at subpixel scale. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103737. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Matougui, Z.; Zouidi, M. A temporal perspective on the reliability of wildfire hazard assessment based on machine learning and remote sensing data. Earth Sci. Inform. 2025, 18, 19. [Google Scholar] [CrossRef]
- Ding, F.; Tang, G.; Zhang, T.; Wu, W.; Zhao, B.; Miao, J.; Li, D.; Liu, X.; Wang, J.; Li, C. Spaceborne Lightweight and Compact High-Sensitivity Uncooled Infrared Remote Sensing Camera for Wildfire Detection. Remote Sens. 2025, 17, 1387. [Google Scholar] [CrossRef]
- Titu, M.F.S.; Pavel, M.A.; Michael, G.K.O.; Babar, H.; Aman, U.; Khan, R. Real-Time Fire Detection: Integrating Lightweight Deep Learning Models on Drones with Edge Computing. Drones 2024, 8, 483. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Sun, Q.; Yu, S. Forest fire image detection method based on improved CenterNet. In Proceedings of the Second International Symposium on Computer Applications and Information Systems (ISCAIS 2023), Chengdu, China, 24–26 March 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12721, pp. 380–385. [Google Scholar]
- Li, Z.; Mihaylova, L.S.; Isupova, O.; Rossi, L. Autonomous flame detection in videos with a Dirichlet process Gaussian mixture color model. IEEE Trans. Ind. Inform. 2017, 14, 1146–1154. [Google Scholar] [CrossRef]
- Liao, Z.; Hu, K.; Meng, Y.; Shen, S. An advanced three stage lightweight model for underwater human detection. Sci. Rep. 2025, 15, 18137. [Google Scholar] [CrossRef]
- Vipin, V. Image processing based forest fire detection. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 87–95. [Google Scholar]
- Khondaker, A.; Khandaker, A.; Uddin, J. Computer vision-based early fire detection using enhanced chromatic segmentation and optical flow analysis technique. Int. Arab J. Inf. Technol. 2020, 17, 947–953. [Google Scholar] [CrossRef]
- Liau, H.; Yamini, N.; Wong, Y. Fire SSD: Wide fire modules based single shot detector on edge device. arXiv 2018, arXiv:1806.05363. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, Y.; Zhu, D.; Hu, W.; Tang, Z. Study on the situational awareness system of mine fire rescue using faster Ross Girshick-convolutional neural network. IEEE Intell. Syst. 2019, 35, 54–61. [Google Scholar] [CrossRef]
- Chaoxia, C.; Shang, W.; Zhang, F. Information-guided flame detection based on faster R-CNN. IEEE Access 2020, 8, 58923–58932. [Google Scholar] [CrossRef]
- Park, M.J.; Ko, B.C. Two-Step Real-Time Night-Time Fire Detection in an Urban Environment Using Static ELASTIC-YOLOv3 and Temporal Fire-Tube. Sensors 2020, 20, 2202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, H.; Yadav, D.; Ansari, I.A.; Verma, O.P. YOLOv4 algorithm for the real-time detection of fire and personal protective equipments at construction sites. Multimed. Tools Appl. 2022, 81, 22163–22183. [Google Scholar] [CrossRef]
- Mukhiddinov, M.; Abdusalomov, A.B.; Cho, J. Automatic fire detection and notification system based on improved YOLOv4 for the blind and visually impaired. Sensors 2022, 22, 3307. [Google Scholar] [CrossRef]
- Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A forest fire detection system based on ensemble learning. Forests 2021, 12, 217. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, S. Improved YOLOX fire scenario detection method. Wirel. Commun. Mob. Comput. 2022, 2022, 9666265. [Google Scholar] [CrossRef]
- Talaat, F.M.; ZainEldin, H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Appl. 2023, 35, 20939–20954. [Google Scholar] [CrossRef]
- Maurício, J.; Domingues, I.; Bernardino, J. Comparing vision transformers and convolutional neural networks for image classification: A literature review. Appl. Sci. 2023, 13, 5521. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5999–6009. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 22–31. [Google Scholar]
- Yuan, S.; Li, X.; Yinxia, S.; Qing, X.; Deng, J.D. Improved quantum image weighted average filtering algorithm. Quantum Inf. Process. 2025, 24, 125. [Google Scholar] [CrossRef]
- Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 213–228. [Google Scholar]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H.Y. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv 2022, arXiv:2203.03605. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv 2020, arXiv:2203.03605. [Google Scholar]
- Hu, K.; Xu, K.; Xia, Q.; Li, M.; Song, Z.; Song, L.; Sun, N. An overview: Attention mechanisms in multi-agent reinforcement learning. Neurocomputing 2024, 598, 128015. [Google Scholar] [CrossRef]
- Hu, K.; Li, M.; Song, Z.; Xu, K.; Xia, Q.; Sun, N.; Zhou, P.; Xia, M. A review of research on reinforcement learning algorithms for multi-agents. Neurocomputing 2024, 599, 128068. [Google Scholar] [CrossRef]
Combination | Backbone Network | Auxiliary Module | mAP/% | Time/ms | GFLOPs | Parameters/ | |||
---|---|---|---|---|---|---|---|---|---|
CNN | Transformer | FCM | FFM | MSFAU | MB | ||||
(a) | ✔ | × | × | × | × | 86.59 | 10.68 | 11.21 | 10.54 |
(b) | × | ✔ | × | × | × | 85.35 | 11.46 | 13.45 | 12.22 |
(c) | ✔ | ✔ | × | × | × | 88.71 | 13.21 | 20.24 | 20.41 |
(d) | ✔ | ✔ | ✔ | × | × | 90.07 | 14.82 | 23.52 | 22.05 |
(e) | ✔ | ✔ | ✔ | ✔ | × | 91.24 | 16.09 | 25.33 | 24.26 |
(f) | ✔ | ✔ | ✔ | ✔ | ✔ | 92.49 | 17.01 | 27.61 | 26.93 |
Combination | Recall | Precision | mAP | AP | |
---|---|---|---|---|---|
Fire | Smoke | ||||
(a) | 81.79 | 86.47 | 86.59 | 84.94 | 88.24 |
(b) | 82.26 | 87.31 | 85.35 | 83.97 | 86.73 |
(c) | 82.77 | 87.62 | 88.71 | 87.31 | 90.11 |
(d) | 83.84 | 88.89 | 90.07 | 89.27 | 90.87 |
(e) | 84.28 | 89.17 | 91.24 | 90.19 | 92.29 |
(f) | 84.65 | 89.74 | 92.49 | 91.75 | 93.23 |
Method | mAP/% | Recall/% | Precision/% | F1/% | IoU/% | Kappa | Time/ms | M FLOPs/ | Parameters/ MB |
---|---|---|---|---|---|---|---|---|---|
RetinaNet | 71.57 | 72.43 | 71.45 | 71.44 | 68.22 | 0.65 | 114.12 | 77.54 | 30.04 |
YOLOV3 | 75.32 | 68.27 | 72.81 | 70.53 | 72.15 | 0.70 | 18.23 | 65.60 | 61.57 |
EfficientDet | 76.21 | 74.62 | 74.25 | 74.43 | 74.02 | 0.72 | 17.47 | 4.63 | 3.83 |
YOLOV4 | 80.72 | 72.04 | 82.81 | 77.56 | 78.11 | 0.76 | 17.21 | 59.77 | 63.98 |
Faster R-CNN | 85.12 | 88.52 | 68.12 | 76.57 | 79.98 | 0.81 | 146.54 | 369.74 | 28.36 |
CenterNet | 86.34 | 85.59 | 87.95 | 86.26 | 84.77 | 0.83 | 20.01 | 69.94 | 32.66 |
Fire SSD | 85.27 | 82.46 | 86.38 | 84.42 | 84.92 | 0.79 | 18.62 | 32.69 | 49.54 |
Elastic-YOLOv3 | 85.39 | 82.29 | 86.53 | 84.79 | 85.14 | 0.80 | 14.07 | 67.24 | 6.73 |
YOLOX | 87.24 | 83.71 | 88.46 | 85.57 | 86.14 | 0.85 | 14.44 | 15.12 | 10.59 |
T-YOLOX | 88.11 | 83.07 | 87.27 | 85.56 | 87.00 | 0.87 | 16.15 | 18.53 | 15.21 |
DINO | 89.14 | 85.90 | 86.70 | 87.80 | 88.14 | 0.89 | 37.50 | 64.00 | 89.73 |
Improved YOLOX | 88.54 | 82.96 | 87.43 | 85.87 | 87.52 | 0.88 | 15.74 | 24.82 | 19.57 |
DETR | 91.30 | 88.50 | 89.11 | 88.00 | 90.10 | 0.90 | 31.12 | 53.23 | 75.12 |
Ours | 92.49 | 84.57 | 89.43 | 86.52 | 91.23 | 0.92 | 17.01 | 27.61 | 26.93 |
Interference Type | mAP (%) | Recall (%) | Precision (%) | F1 (%) | IoU (%) | Kappa |
---|---|---|---|---|---|---|
No Interference | 92.49 | 84.57 | 89.43 | 86.52 | 91.23 | 0.92 |
Random Noise | 90.56 | 83.10 | 87.92 | 85.35 | 89.11 | 0.90 |
Lighting Variation | 89.62 | 82.47 | 86.73 | 84.77 | 88.93 | 0.89 |
Partial Occlusion | 88.71 | 81.85 | 85.12 | 83.26 | 87.85 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Wei, C.; Sun, N.; Xiong, X.; Xia, Q.; Zhou, J.; Feng, X. Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network. Forests 2025, 16, 1248. https://doi.org/10.3390/f16081248
Wu Q, Wei C, Sun N, Xiong X, Xia Q, Zhou J, Feng X. Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network. Forests. 2025; 16(8):1248. https://doi.org/10.3390/f16081248
Chicago/Turabian StyleWu, Qinggan, Chen Wei, Ning Sun, Xiong Xiong, Qingfeng Xia, Jianmeng Zhou, and Xingyu Feng. 2025. "Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network" Forests 16, no. 8: 1248. https://doi.org/10.3390/f16081248
APA StyleWu, Q., Wei, C., Sun, N., Xiong, X., Xia, Q., Zhou, J., & Feng, X. (2025). Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network. Forests, 16(8), 1248. https://doi.org/10.3390/f16081248