Analyzing Forest Leisure and Recreation Consumption Patterns Using Deep and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Conceptual Workflow of GRDP-Level Classification
2.2. Data Acquisition and Preparation
2.3. Development of GRDP Classification Model
2.3.1. DNN
2.3.2. RF
2.3.3. XGBoost
2.3.4. SVM
2.3.5. LR
2.4. GRDP Classification Models Assessment
2.5. SHAP-Based Feature Importance Analysis
3. Results
3.1. Descriptive Statistics for Top and Mid GRDP
3.2. Machine Learning and Statistical Analysis of Customer Data Derived from Credit Card Sales Data
3.3. Feature Importance of GRDP Models
4. Discussion
4.1. Comparison and Selection of Best-Performing GRDP Classification Models
4.2. Importance Features for Classifying GRDP Level
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Forest Service. National Visitor Use Monitoring Survey Results National Summary Report: Data Collected FY 2018 Through FY 2022; US Forest Service: Washington, DC, USA, 2023.
- Miller, A.; Winter, P.; Sánchez, J.; Peterson, D.; Smith, J.W. Climate Change and Recreation in the Western United States: Effects and Opportunities for Adaptation. J. For. 2022, 120, 453–472. [Google Scholar] [CrossRef]
- Geng, W.; Wan, Q.; Wang, H.; Dai, Y.; Weng, L.; Zhao, M.; Lei, Y.; Duan, Y. Leisure Involvement, Leisure Benefits, and Subjective Well-Being of Bicycle Riders in an Urban Forest Park: The Moderation of Age. Forests 2023, 14, 1676. [Google Scholar] [CrossRef]
- Mitten, D.; Overholt, J.R.; Haynes, F.I.; D’Amore, C.C.; Ady, J.C. Hiking: A Low-Cost, Accessible Intervention to Promote Health Benefits. Am. J. Lifestyle. Med. 2023, 12, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Jiang, B.; Li, H.; Zhao, B. Do All Types of Restorative Environments in the Urban Park Provide the Same Level of Benefits for Young Adults? A Field Experiment in Nanjing, China. Forests 2023, 14, 1400. [Google Scholar] [CrossRef]
- Jang, Y.; Yoo, R.; Lee, J. The Characteristics of Forest Leisure Activities and Demographic Factors Influencing Visitor Preference. J. Korean Soc. For. Sci. 2020, 25, 231–242. [Google Scholar]
- Qiu, Y.; He, D.; Xu, Z.; Shi, X. The Role of the Forest Recreation Industry in China’s National Economy: An Input–Output Analysis. Sustainability 2023, 15, 9690. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005; Volume 5, p. 563. [Google Scholar]
- Bureau of Economic Analysis (BEA). Outdoor Recreation Satellite Account, U.S. and States, 2023; U.S. Department of Commerce: Washington, DC, USA, 2024.
- Rosenberger, R.S.; White, E.M.; Kline, J.D.; Cvitanovich, C. Recreation Economic Values for Estimating Outdoor Recreation Economic Benefits from the National Forest System; General Technical Report PNW-GTR-957; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2017.
- Lu, J.; He, Z. Research on the Planning and Design of Forest Recreation Base Based on GIS and RMP Analysis—Take the Example of Forest Recreation Base Above the Clouds in Heshun County, Shanxi Province. IOP Conf. Ser. Earth Environ. Sci. 2022, 966, 012016. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Buchecker, M.; Degenhardt, B.; Vuletić, D. Evaluating the economic and social benefits of forest recreation and nature tourism. In European Forest Recreation and Tourism; Taylor & Francis: London, UK; New York, NY, USA, 2009; pp. 59–87. [Google Scholar]
- Pratt, S. Economic Linkages and Impacts Across the TALC. Ann. Tour. Res. 2011, 38, 925–945. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Paydar, M.M.; Alizadeh, M.; Triki, C. Ecotourism Supply Chain During the COVID-19 Pandemic: A Real Case Study. Appl. Soft. Comput. 2021, 107, 107919. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zheng, Y.Z.; Lin, H.H.; Yan, X.Q.; Peng, R.; Tsai, I.E.; Tseng, Y.H. Youth well-being and economic vitality: Fostering sustainable development through green leisure sports. Sustainability 2024, 16, 9847. [Google Scholar] [CrossRef]
- Li, S.; Colson, V.; Lejeune, P.; Speybroeck, N.; Vanwambeke, S.O. Agent-based modelling of the spatial pattern of leisure visitation in forests: A case study in Wallonia, south Belgium. Environ. Model. Softw. 2015, 71, 111–125. [Google Scholar] [CrossRef]
- Kim, S.; Chae, J. Analysis of Public Perception and Demand Characteristics for Forest Leisure and Sports: A Comparative Analysis of Linear and Nonlinear Activities. J. Korean Inst. For. Recreat. 2024, 28, 31–42. [Google Scholar] [CrossRef]
- Awosika, T.; Shukla, R.M.; Pranggono, B. Transparency and privacy: The role of explainable AI and federated learning in financial fraud detection. IEEE Access 2024, 12, 64551–64560. [Google Scholar] [CrossRef]
- Kim, C.; Kim, K. Income, environmental quality and willingness to pay for organic food: A regional analysis in South Korea. Humanit. Soc. Sci. Commun. 2024, 11, 973. [Google Scholar] [CrossRef]
- Machado, M.R.; Karray, S. Applying hybrid machine learning algorithms to assess customer risk-adjusted revenue in the financial industry. Electron. Com. Res. Appl. 2022, 56, 101202. [Google Scholar] [CrossRef]
- Ali, M.M.; Paul, B.K.; Ahmed, K.; Bui, F.M.; Quinn, J.M.W.; Moni, M.A. Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Comput. Biol. Med. 2021, 136, 104672. [Google Scholar] [CrossRef] [PubMed]
- Wassouf, W.N.; Alkhatib, R.; Salloum, K.; Balloul, S. Predictive analytics using big data for increased customer loyalty: Syriatel Telecom Company case study. J. Big Data 2020, 7, 29. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, H.; Ryu, S.; Kim, S.; Park, M. Analysis of coffee franchise failure factor using machine learning algorithms. J. Korean Inst. Ind. Eng. 2023, 49, 37–45. [Google Scholar] [CrossRef]
- Lee, S.; Han, D. A study on changes in consumption expenditure patterns before and after COVID-19: Focusing on household typology according to changes in consumption expenditure. J. Consum. Cult. Stud. 2022, 25, 67–91. [Google Scholar]
- Lee, G.-T.; Lee, G.-O. A study on the estimation of consumption expenditure of foodservice customers by machine learning algorithm. Int. J. Tour. Hosp. Res. 2021, 35, 161–173. [Google Scholar] [CrossRef]
- Cheon, S.Y.; Park, O.Y.; Kang, J.Y. Customer segmentation using machine learning classification model based on unmanned study cafe transaction data analysis. J. Korea Serv. Manag. Soc. 2022, 23, 205–231. [Google Scholar] [CrossRef]
- Lee, M.-C.; Yoon, H.-S. A study on detecting fake reviews using machine learning: Focusing on user behavior analysis. J. Knowl. Manag. Res. 2020, 21, 177–195. [Google Scholar]
- Kim, M.-J.; Moon, J.-S. Consumption expenditure patterns of babyboomer households according to income quintile using cluster analysis. J. Consum. Cult. 2017, 20, 71–91. [Google Scholar] [CrossRef]
- Kim, M.-J. Analysis for the consumption expenditure patterns of babyboomer households according to number of persons. Consum. Policy Educ. Res. 2015, 11, 205–230. [Google Scholar] [CrossRef]
- Óskarsdóttir, M.; Bravo, C.; Sarraute, C.; Vanthienen, J.; Baesens, B. The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analytics. Appl. Soft Comput. 2019, 74, 26–39. [Google Scholar] [CrossRef]
- Sobolevsky, S.; Massaro, E.; Bojic, I.; Arias, J.M.; Ratti, C. Predicting regional economic indices using big data of individual bank card transactions. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1313–1318. [Google Scholar]
- Chaubey, G.; Gavhane, P.R.; Bisen, D.; Arjaria, S.K. Customer purchasing behavior prediction using machine learning classification techniques. J. Ambient. Intell. Hum. Comput. 2023, 14, 16133–16157. [Google Scholar] [CrossRef]
- Pande, P.; Kulkarni, A.K.; P, B.; S, B.; Ramalingam, V.; R, R. Big data analytics in e-commerce driving business decisions through customer behavior insights. ITM Web Conf. 2025, 76, 05001. [Google Scholar] [CrossRef]
- César de Lima Araújo, H.; Silva Martins, F.; Tucunduva Philippi Cortese, T.; Locosselli, G.M. Artificial intelligence in urban forestry—A systematic review. Urban. For. Urban. Green. 2021, 66, 127410. [Google Scholar] [CrossRef]
- Firebanks-Quevedo, D.; Planas, J.; Buckingham, K.; Taylor, C.; Silva, D.; Naydenova, G.; Zamora-Cristales, R. Using machine learning to identify incentives in forestry policy: Towards a new paradigm in policy analysis. Forest Policy Econ. 2022, 134, 102624. [Google Scholar] [CrossRef]
- Chen, Z.; Lü, Y.; Liu, Y.; Chen, D.; Peng, B. The impact of forest management inventory factors on the ecological service value of forest water conservation based on machine learning algorithms. Forests 2024, 15, 1431. [Google Scholar] [CrossRef]
- Altameem, A.A.; Hafez, A.M. Behavior analysis using enhanced fuzzy clustering and deep learning. Electronics 2022, 11, 3172. [Google Scholar] [CrossRef]
- Baratzadeh, F.; Hasheminejad, S.M. Customer behavior analysis to improve detection of fraudulent transactions using deep learning. J. AI Data Min. 2022, 10, 87–101. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Generosi, A.; Ceccacci, S.; Mengoni, M. A deep learning-based system to track and analyze customer behavior in retail store. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 2–5 September 2018; pp. 1–6. [Google Scholar]
- Zaghloul, M.; Barakat, S.; Rezk, A. Predicting e-commerce customer satisfaction: Traditional machine learning vs. deep learning approaches. J. Retail. Con. Serv. 2024, 79, 103865. [Google Scholar] [CrossRef]
- Drewe-Boss, P.; Enders, D.; Walker, J.; Ohler, U. Deep learning for prediction of population health costs. BMC Med. Inform. Decis. Mak. 2022, 22, 32. [Google Scholar] [CrossRef] [PubMed]
- Bartol, K.; Bojanić, D.; Petković, T.; Peharec, S.; Pribanić, T. Linear regression vs. deep learning: A simple yet effective baseline for human body measurement. Sensors 2022, 22, 1885. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.H. Predict customer churn using combination deep learning networks model. Neural Comput. Appl. 2024, 36, 4867–4883. [Google Scholar] [CrossRef]
- Lima, M.S.M.; Delen, D. Predicting and explaining corruption across countries: A machine learning approach. Gov. Inf. Q. 2020, 37, 101407. [Google Scholar] [CrossRef]
- Quynh, T.D.; Dung, H.T. Prediction of customer behavior using machine learning: A case study. In Proceedings of the 2nd International Conference on Human-Centered Artificial Intelligence (Computing4Human 2021), CEUR Workshop Proceedings, Da Nang, Vietnam, 27–28 October 2021. [Google Scholar]
- Kim, J.; Kim, I.; Choi, B. Application of a soil erosion susceptibility model using unmanned aerial vehicle photogrammetry in a timber harvesting area, South Korea. Sens. Mater. 2024, 36, 1557–1574. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Liu, M.; Ning, Y.; Yuan, H.; Ong, M.E.H.; Liu, N. Balanced background and explanation data are needed in explaining deep learning models with SHAP: An empirical study on clinical decision making. arXiv 2022, arXiv:2206.04050. [Google Scholar]
- Korea Consumer Agency. 2023 Korea Consumer Life Index; Korea Consumer Agency: Seoul, Republic of Korea, 2023; pp. 1–200.
- Jeju Research Institute. Big-Data Analysis of Credit Card Sales: Tourist Spending in Jeju Based on Credit Card Data (2014–2022); Jeju Research Institute: Jeju, Republic of Korea, 2023. [Google Scholar]
- Rimal, Y.; Sharma, N.; Alsadoon, A. The accuracy of machine learning models relies on hyperparameter tuning: Student result classification using random forest, randomized search, grid search, bayesian, genetic, and Optuna algorithms. Multimedia Tool. Appl. 2024, 83, 74349–74364. [Google Scholar] [CrossRef]
- Rezashoar, S.; Kashi, E.; Saeidi, S. A hybrid algorithm based on machine learning (LightGBM-Optuna) for road accident severity classification (case study: United States from 2016 to 2020). Innov. Infrastruct. Solut. 2024, 9, 319. [Google Scholar] [CrossRef]
- Lai, L.H.; Lin, Y.L.; Liu, Y.H.; Lai, J.P.; Yang, W.C.; Hou, H.P.; Pai, P.F. The use of machine learning models with Optuna in disease prediction. Electronics 2024, 13, 4775. [Google Scholar] [CrossRef]
- Chaudhuri, N.; Gupta, G.; Vamsi, V.; Bose, I. On the platform but will they buy? Predicting customers’ purchase behavior using deep learning. Decis. Support. Syst. 2021, 149, 113622. [Google Scholar] [CrossRef]
- Kim, K.; Jo, M.; Ra, I.; Park, S. RFMVDA: An enhanced deep learning approach for customer behavior classification in e-commerce environments. IEEE Access 2025, 13, 12527–12541. [Google Scholar] [CrossRef]
- Guan, Z.; Chen, L.; Zhao, W.; Zheng, Y.; Tan, S.; Cai, D. Weakly supervised deep learning for customer review sentiment classification. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA, 9–15 July 2016; Volume 16, pp. 3719–3725. [Google Scholar]
- GhorbanTanhaei, H.; Boozary, P.; Sheykhan, S.; Rabiee, M.; Rahmani, F.; Hosseini, I. Predictive analytics in customer behavior: Anticipating trends and preferences. Results Control Optim. 2024, 17, 100462. [Google Scholar] [CrossRef]
- Deniz, E.; Bülbül, S.Ç. Predicting customer purchase behavior using machine learning models. Inf. Technol. Econ. Bus. 2024, 1, 1–6. [Google Scholar] [CrossRef]
- Kumar, B.; Roy, S.; Sinha, A.; Iwendi, C.; Strážovská, Ľ. E-commerce website usability analysis using the association rule mining and machine learning algorithm. Mathematics 2022, 11, 25. [Google Scholar] [CrossRef]
- Liu, D.; Huang, H.; Zhang, H.; Luo, X.; Fan, Z. Enhancing customer behavior prediction in e-commerce: A comparative analysis of machine learning and deep learning models. Appl. Comp. Eng. 2024, 55, 190–204. [Google Scholar] [CrossRef]
- Stubseid, S.; Arandjelovic, O. Machine learning based prediction of consumer purchasing decisions: The evidence and its significance. In Proceedings of the AAAI Workshops, New Orleans, LA, USA, 2–3 February 2018; pp. 100–106. [Google Scholar]
- Ballestar, M.T.; Grau-Carles, P.; Sainz, J. Predicting customer quality in e-commerce social networks: A machine learning approach. Rev. Manag. Sci. 2019, 13, 589–603. [Google Scholar] [CrossRef]
- Lee, J.; Jung, O.; Lee, Y.; Kim, O.; Park, C. A comparison and interpretation of machine learning algorithm for the prediction of online purchase conversion. J. Theor. Appl. Electron. Com. Res. 2021, 16, 1472–1491. [Google Scholar] [CrossRef]
- Al-Otaibi, Y.D. Enhancing e-commerce strategies: A deep learning framework for customer behavior prediction. Eng. Technol. Appl. Sci. Res. 2024, 14, 15656–15664. [Google Scholar] [CrossRef]
- Esmeli, R.; Gokce, A. An analysis of consumer purchase behavior following cart addition in e-commerce utilizing explainable artificial intelligence. J. Theor. Appl. Electron. Com. Res. 2025, 20, 28. [Google Scholar] [CrossRef]
- Nwafor, C.N.; Nwafor, O.Z. Determinants of non-performing loans: An explainable ensemble and deep neural network approach. Fin. Res. Lett. 2023, 56, 104084. [Google Scholar] [CrossRef]
- Wu, Z.; Cha, S.; Wang, C.; Qu, T.; Zou, Z. Salmon consumption behavior prediction based on Bayesian optimization and explainable artificial intelligence. Foods 2025, 14, 429. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, N.; Qian, Z.; Zhang, G. What makes an online review more helpful: An interpretation framework using XGBoost and SHAP values. J. Theor. Appl. Electron. Com. Res. 2020, 16, 466–490. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Wen, Z.; Lin, W. How explainable machine learning enhances intelligence in explaining consumer purchase behavior: A random forest model with anchoring effects. Systems 2023, 11, 312. [Google Scholar] [CrossRef]
- Kostopoulos, N.; Kalogeras, D.; Pantazatos, D.; Grammatikou, M.; Maglaris, V. SHAP interpretations of tree and neural network DNS classifiers for analyzing DGA family characteristics. IEEE Access 2023, 11, 61144–61160. [Google Scholar] [CrossRef]
- Adamu, S.; Iorliam, A.; Asilkan, Ö. Exploring explainability in multi-category electronic markets: A comparison of machine learning and deep learning approaches. J. Fut. Artif. Intell. Tech. 2025, 1, 440–454. [Google Scholar] [CrossRef]
- Alomari, Y.; Andó, M. SHAP-based insights for aerospace PHM: Temporal feature importance, dependencies, robustness, and interaction analysis. Results Eng. 2024, 21, 101834. [Google Scholar] [CrossRef]
Total Dataset | ForestLeisure and Recreation-Related Expense | ||||
---|---|---|---|---|---|
Division | Top GRDP (n) | Mid GRDP (n) | Top GRDP (n) | Mid GRDP (n) | |
Gender | Male | 68,117 | 40,920 | 11,508 | 5900 |
Female | 65,454 | 32,994 | 12,041 | 5384 | |
Age | 10s | 5187 | 2161 | 937 | 329 |
20s | 22,528 | 14,500 | 4023 | 2166 | |
30s | 25,374 | 13,193 | 4942 | 2239 | |
40s | 25,129 | 13,834 | 4808 | 2196 | |
50s | 23,586 | 14,341 | 3710 | 2023 | |
Over 60s | 31,767 | 15,885 | 5129 | 2331 | |
Forest leisure and recreation industries | Tourism and accommodation | - | - | 2518 | 608 |
Education | - | - | 3009 | 1164 | |
Cultural shopping | - | - | 9859 | 3850 | |
Food and beverages | - | - | 6383 | 5092 | |
Leisure service | - | - | 1780 | 570 | |
Monthly spending amount | Mean | 2,632,996 | 2,324,204 | 1,799,540 | 1,788,422 |
Std | 9,640,675 | 14,592,324 | 4,139,138 | 5,709,750 | |
Min | 600 | 550 | 4600 | 1800 | |
25% | 185,505 | 152,853 | 168,660 | 176,253 | |
50% | 617,200 | 432,265 | 460,500 | 470,000 | |
75% | 2,038,845 | 1,331,211 | 1,372,000 | 1,332,078 | |
Max | 338,627,655 | 591,602,094 | 50,583,050 | 104,947,940 | |
Number of transactions | Mean | 81 | 63 | 54 | 47 |
Std | 249 | 321 | 113 | 145 | |
Min | 3 | 3 | 3 | 3 | |
25% | 7 | 6 | 6 | 6 | |
50% | 16 | 13 | 15 | 13 | |
75% | 53 | 35 | 44 | 33 | |
Max | 5958 | 11,918 | 1188 | 2549 | |
Number of members | Mean | 25 | 21 | 22 | 20 |
Std | 38 | 56 | 32 | 49 | |
Min | 3 | 3 | 3 | 3 | |
25% | 5 | 4 | 4 | 4 | |
50% | 10 | 7 | 9 | 7 | |
75% | 27 | 15 | 23 | 16 | |
Max | 441 | 1172 | 270 | 698 |
Model | OA | F1 Score | AUC |
---|---|---|---|
DNN | 0.73 | 0.73 | 0.82 |
RF | 0.73 | 0.73 | 0.81 |
XGBoost | 0.72 | 0.72 | 0.81 |
SVM | 0.72 | 0.70 | 0.80 |
LR | 0.58 | 0.61 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Chae, J.; Kim, S. Analyzing Forest Leisure and Recreation Consumption Patterns Using Deep and Machine Learning. Forests 2025, 16, 1180. https://doi.org/10.3390/f16071180
Kim J, Chae J, Kim S. Analyzing Forest Leisure and Recreation Consumption Patterns Using Deep and Machine Learning. Forests. 2025; 16(7):1180. https://doi.org/10.3390/f16071180
Chicago/Turabian StyleKim, Jeongjae, Jinhae Chae, and Seonghak Kim. 2025. "Analyzing Forest Leisure and Recreation Consumption Patterns Using Deep and Machine Learning" Forests 16, no. 7: 1180. https://doi.org/10.3390/f16071180
APA StyleKim, J., Chae, J., & Kim, S. (2025). Analyzing Forest Leisure and Recreation Consumption Patterns Using Deep and Machine Learning. Forests, 16(7), 1180. https://doi.org/10.3390/f16071180