Rural Digital Economy, Forest Ecological Product Value, and Farmers’ Income: Evidence from China
Abstract
1. Introduction
1.1. Studies on RDE and FI
1.2. Studies on VRF and FI
1.3. The Synergistic Mechanism Linking RDE, VRF, and FI
2. Research Hypothesis
2.1. The Mechanisms Through Which RDE Influences FI
2.2. The Intermediary Mechanism of VRF
3. Research Design
3.1. Modeling
3.1.1. Entropy Weight Model (EWM)
3.1.2. Input–Output Model (IOM)
3.1.3. Benchmark Regression Model (BRM)
3.1.4. Mediation Effect Model (MEM)
3.1.5. Kernel Density Model
3.1.6. Quantile Regression Model
3.2. Description of Variables
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Mediating Variable
3.2.4. Control Variables
3.2.5. Instrumental Variable
3.2.6. Description of Data
4. Spatiotemporal Analysis of RDE and FI
4.1. Spatiotemporal Analysis of the Level of RDE
4.2. Spatiotemporal Analysis of FI Levels
5. Analysis of Results
5.1. Baseline Analysis
5.2. Mediating Effect Analysis
5.3. Endogeneity Test and Robustness Test
5.3.1. Two-Stage Least Squares (2SLS) with Instrumental Variables
5.3.2. Replacement of the Dependent Variable
5.3.3. Adjustment of the Study Sample
5.4. Heterogeneity Analysis
5.4.1. Regional Heterogeneity Analysis
5.4.2. Quantile Heterogeneity Analysis
6. Discussion and Policy Implications
6.1. RDE Promotes FI
6.2. The Mediating Role of VRF
6.3. Heterogeneity Across Regions
6.4. Heterogeneity Across Income Quantiles of Farmers
6.5. Policy Implications
7. Conclusions
7.1. Main Conclusion
7.2. Theoretical Implications
7.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RDE | Rural Digital Economy |
VRF | Value Realization of Forest Ecological Products |
FI | Farmers’ Income |
GDP | Gross Domestic Product |
FW | Farmland Wetland Area |
IS | Industrial Structure |
BT | Basic Transportation |
FQ | Forest Resource Quality |
MQ | Ming Dynasty Postal Relay Stations |
PO | Number of Post Offices in 1984 |
EWM | Entropy Weight Model |
BRM | Benchmark Regression Model |
MEM | Mediation Effect Model |
IOM | Input–Output Model |
References
- Wei, H.K.; Zhong, F.N.; Li, S.; Huang, Y.P.; Du, Z.X. Persistently Advancing the Work Related to Agriculture, Rural Areas and Farmers to Foster a New Pattern of Integrated Urban-Rural Development: Expert Interpretation of the 2023 Central Economic Work Conference and the Central Rural Work Conference. China Rural. Econ. 2024, 1, 2–20. [Google Scholar]
- Xu, X.J.; Zhang, T.T. Economic Growth, Income Disparity, and Common Prosperity. Southwest Financ. 2023, 1, 29–42. [Google Scholar]
- Ren, L.J.; Mao, J.N.; Song, Y.; Wang, Z.Y.; Yang, X.J. The Logic and Dilemmas of Forest Ecological Product Value Realization from a Whole-Process Perspective. Issues For. Econ. 2025, 45, 263–274. [Google Scholar]
- Kong, F.B.; Cheng, W.J.; Xu, C.Y. Can the Development of the Digital Economy Improve the Efficiency of Forest Ecological Product Value Transformation? An Empirical Analysis Based on Lishui City, Zhejiang Province. China Rural. Econ. 2023, 5, 163–184. [Google Scholar]
- Hou, F.M.; Li, X.Y.; Xiao, H.; Wu, C. Empowering the Development of Rural Forestry in China through the Digital Economy: Theoretical Mechanism, Effectiveness Analysis, and Policy Implications. World For. Res. 2023, 36, 1–6. [Google Scholar]
- Fan, P.; Watanabe, C. Promoting industrial development through technology policy: Lessons from Japan and China. Technol. Soc. 2006, 28, 303–320. [Google Scholar] [CrossRef]
- Močnik, D.; Širec, K. The determinants of Internet use controlling for income level: Cross-country empirical evidence. Inf. Econ. Policy 2010, 22, 243–256. [Google Scholar] [CrossRef]
- Tiwasing, P.; Clark, B.; Gkartzios, M. How can rural businesses thrive in the digital economy? A UK perspective. Heliyon 2022, 8, e10745. [Google Scholar] [CrossRef] [PubMed]
- Playán, E.; Gimeno, Y.; Lorenzo-González, M.; Jiménez, A.; López-Pardo, J.; Oliván, I.; Castillo, R.; Carbonell, X.; Fábregas, M.; Vicente, L.; et al. Irrigation modernization in the Ebro-Aragón region of Spain: Past and future trends. Agric. Water Manag. 2024, 302, 108975. [Google Scholar] [CrossRef]
- Johnson, D. Food security, the agriculture value chain, and digital transformation: The case of Jamaica’s agricultural business information system (ABIS). Technol. Soc. 2024, 77, 102523. [Google Scholar] [CrossRef]
- Odewole, M.M.; Sanusi, M.S.; Sunmonu, M.O.; Yerima, S.; Mobolaji, D.; Olaoye, J.O. Digitalization of rice value chain in Nigeria with circular economy inclusion for improved productivity—A review. Heliyon 2024, 10, e31611. [Google Scholar] [CrossRef] [PubMed]
- Fakhraddine, M.; Zerrad, N.; Berhili, H.; Morchid, M. Digital transformation in Moroccan agriculture: Applications, used technologies, impacts on marketing, limitations, and orientations for future research. Smart Agric. Technol. 2025, 11, 100978. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S. Common prosperity in the era of technological transformation: Digital inclusive finance, technological progress, and the income distribution of migrant workers. Financ. Res. Lett. 2025, 81, 107486. [Google Scholar] [CrossRef]
- Kim, J. Infrastructure of the digital economy: Some empirical findings with the case of Korea. Technol. Forecast. Soc. Chang. 2006, 73, 377–389. [Google Scholar] [CrossRef]
- Burbridge, C.; Maguire, G. Digital Britain interim report: A step in the right direction? Comput. Law Secur. Rev. 2009, 25, 263–269. [Google Scholar] [CrossRef]
- Berdykulova, G.M.K.; Sailov, A.I.U.; Kaliazhdarova, S.Y.K.; Berdykulov, E.B.U. The Emerging Digital Economy: Case of Kazakhstan. Procedia Soc. Behav. Sci. 2014, 109, 1287–1291. [Google Scholar] [CrossRef]
- Erdiaw-Kwasie, M.O.; Alam, K. Towards understanding digital divide in rural partnerships and development: A framework and evidence from rural Australia. J. Rural. Stud. 2016, 43, 214–224. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital Economy, Entrepreneurial Activity, and High-Quality Development: Empirical Evi-dence from Chinese Cities. Manag. World 2020, 36, 65–76. [Google Scholar]
- Fang, Z.; Li, G.C.; Yin, Y.X.; Liu, P.L. Measurement of Rural Digital Economy Development and Its Impact on Agricultural Productivity Growth. J. China Agric. Univ. 2024, 29, 252–268. [Google Scholar]
- Vosti, S.A.; Braz, E.M.; Carpentier, C.L.; D’oliveira, M.V.; Witcover, J. Rights to Forest Products, Deforestation and Smallholder Income: Evidence from the Western Brazilian Amazon. World Dev. 2003, 31, 1889–1901. [Google Scholar] [CrossRef]
- Sikora, A.T.; Nybakk, E. Rural development and forest owner innovativeness in a country in transition: Qualitative and quantitative insights from tourism in Poland. For. Policy Econ. 2012, 15, 3–11. [Google Scholar] [CrossRef]
- Sonntag-Öström, E.; Nordin, M.; Lundell, Y.; Dolling, A.; Wiklund, U.; Karlsson, M.; Carlberg, B.; Järvholm, L.S. Restorative effects of visits to urban and forest environments in patients with exhaustion disorder. Urban For. Urban Green. 2014, 13, 344–354. [Google Scholar] [CrossRef]
- Kerchner, C.D.; Keeton, W.S. California’s regulatory forest carbon market: Viability for northeast landowners. For. Policy Econ. 2015, 50, 70–81. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, S.; Ren, Y.; Ma, X.; Cao, Y. Determinants of engagement in non-timber forest products (NTFPs) business activities: A study on worker households in the forest areas of Daxinganling and Xiaoxinganling Mountains, northeastern China. For. Policy Econ. 2017, 80, 125–132. [Google Scholar] [CrossRef]
- Jonsson, R.; Rinaldi, F.; Pilli, R.; Fiorese, G.; Hurmekoski, E.; Cazzaniga, N.; Robert, N.; Camia, A. Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts. Technol. Forecast. Soc. Chang. 2021, 163, 120478. [Google Scholar] [CrossRef]
- Agnoletti, M.; Piras, F.; Venturi, M.; Santoro, A. Cultural values and forest dynamics: The Italian forests in the last 150 years. For. Ecol. Manag. 2022, 503, 119655. [Google Scholar] [CrossRef]
- Jaung, W. Digital forest recreation in the metaverse: Opportunities and challenges. Technol. Forecast. Soc. Chang. 2022, 185, 122090. [Google Scholar] [CrossRef]
- Kacprzak, M.J.; Ellis, A.; Fijałkowski, K.; Kupich, I.; Gryszpanowicz, P.; Greenfield, E.; Nowak, D. Urban forest species selection for improvement of ecological benefits in Polish cities—The actual and forecast potential. J. Environ. Manag. 2024, 366, 121732. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-Y.; Huang, G.; Zi, P.; Li, T.; Liang, Q. Implementation of ecological risk scenario simulation and driving mechanisms in typical rocky desertification regions in China: A coupling multi-model ecological assessment framework. Ecol. Indic. 2025, 174, 113464. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Xu, Z.; Li, C.; Bai, Z.; Yang, C. Optimal selection of tree species for ecological protection forests on the riverbank side of the lower Yellow River flood control dikes. Ecol. Indic. 2025, 177, 113691. [Google Scholar] [CrossRef]
- Isely, E.S.; Isely, P.; Seedang, S.; Mulder, K.; Thompson, K.; Steinman, A.D. Addressing the information gaps associated with valuing green infrastructure in west Michigan: INtegrated Valuation of Ecosystem Services Tool (INVEST). J. Great Lakes Res. 2010, 36, 448–457. [Google Scholar] [CrossRef]
- Galli, A. On the rationale and policy usefulness of Ecological Footprint Accounting: The case of Morocco. Environ. Sci. Policy 2015, 48, 210–224. [Google Scholar] [CrossRef]
- Pohjola, J.; Laturi, J.; Lintunen, J.; Uusivuori, J. Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners. J. For. Econ. 2018, 32, 94–105. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Nguyen, B.Q. Environmental foe or friend: The influence of the shadow economy on forest land. Land Use Policy 2022, 124, 106456. [Google Scholar] [CrossRef]
- Zhan, L.L.; Yang, J.Z. Study on the Efficiency of Forest Ecological Product Value Realization in China: Based on an Input–Output Analysis Framework. Econ. Issues 2024, 8, 34–42. [Google Scholar]
- Lou, J.; Yang, G.-L.; Song, L.; Liu, K.-D. From resources to capital: Investigating the efficiency of forest ecosystem products value realization in China. Socio-Econ. Plan. Sci. 2024, 96, 102052. [Google Scholar] [CrossRef]
- Song, X.C.; Liu, C.; Zhang, C.C. Ecospatial network of forest carbon stocks in three parallel rivers region based on complex network theory. For. Ecol. Manag. 2025, 586, 122694. [Google Scholar] [CrossRef]
- Xia, J. Linking ICTs to rural development: China’s rural information policy. Gov. Inf. Q. 2010, 27, 187–195. [Google Scholar] [CrossRef]
- Cawley, A.; Preston, P. Broadband and digital ‘content’ in the EU-25: Recent trends and challenges. Telemat. Inform. 2007, 24, 259–271. [Google Scholar] [CrossRef]
- LaRose, R.; Strover, S.; Gregg, J.L.; Straubhaar, J. The impact of rural broadband development: Lessons from a natural field experiment. Gov. Inf. Q. 2011, 28, 91–100. [Google Scholar] [CrossRef]
- Velaga, N.R.; Beecroft, M.; Nelson, J.D.; Corsar, D.; Edwards, P. Transport poverty meets the digital divide: Accessibility and connectivity in rural communities. J. Transp. Geogr. 2012, 21, 102–112. [Google Scholar] [CrossRef]
- Kalai, M.; Helali, K. Technical Change and Total Factor Productivity Growth in the Tunisian Manufacturing Industry: A Malmquist Index Approach. Afr. Dev. Rev. 2016, 28, 344–356. [Google Scholar] [CrossRef]
- Wang, S.; Peng, T.; Du, A.M.; Lin, X. The impact of the digital economy on rural industrial revitalization. Res. Int. Bus. Financ. 2025, 76, 102878. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, X. The dynamic relationship among digital inclusive finance, integration of industries in rural areas, and rural revitalization. Financ. Res. Lett. 2025, 85, 107848. [Google Scholar] [CrossRef]
- Agyekumhene, C.; de Vries, J.R.; van Paassen, A.; Macnaghten, P.; Schut, M.; Bregt, A. Digital platforms for smallholder credit access: The mediation of trust for cooperation in maize value chain financing. NJAS Wagening. J. Life Sci. 2018, 86–87, 77–88. [Google Scholar] [CrossRef]
- Lajoie-O’MAlley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Zhao, J.; Tan, L.Y. Operational Models and Development Strategies of Livestream E-commerce Embedded in Agricultural Product Supply Chains under the Digital Economy. Commer. Econ. Res. 2022, 22, 107–110. [Google Scholar]
- Zheng, M. Digital finance, e-commerce development, and regional trade development. Financ. Res. Lett. 2025, 81, 107532. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Blomsma, F.; Mikalef, P.; Li, J. The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. J. Bus. Res. 2020, 120, 241–261. [Google Scholar] [CrossRef]
- Rani, T.; Wang, F.; Rehman, S.A.U.; Amjad, M.A. Shaping sustainable futures in BRICS-T economies: The role of digitalization with moderating effects of green technology innovation and financial inclusion. Technol. Soc. 2025, 82, 102879. [Google Scholar] [CrossRef]
- Singh, K.; Chaudhuri, R.; Chatterjee, S. Assessing the impact of digital transformation on green supply chain for achieving carbon neutrality and accelerating circular economy initiatives. Comput. Ind. Eng. 2025, 201, 110943. [Google Scholar] [CrossRef]
- Alvi, S.; Ahmad, I.; Nawaz, S.M.N.; Connell, W.; Anser, M.K.; Hassan, M.U. The role of green finance, energy transition, and digitalization in OECD greenhouse gas emissions. J. Clean. Prod. 2025, 518, 145865. [Google Scholar] [CrossRef]
- Yang, C.; Ji, X.; Cheng, C.; Liao, S.; Obuobi, B.; Zhang, Y. Digital economy empowers sustainable agriculture: Implications for farmers’ adoption of ecological agricultural technologies. Ecol. Indic. 2024, 159, 111723. [Google Scholar] [CrossRef]
- Saurabh, T.; Denis, J.; Bhupendra, S. Exploring the role of digital technologies in promoting circular economy practices in the Indian agriculture sector. Manish Kumar and Vivek Agarwal and Rachel Louise Gomes and Durga Prasad Panday. In Water Sustainability and Hydrological Extremes; Elsevier: Amsterdam, The Netherlands, 2025; pp. 333–357. [Google Scholar] [CrossRef]
- Yang, L.; Ma, Z.; Xu, Y. How does the digital economy affect ecological well-being performance? Evidence from three major urban agglomerations in China. Ecol. Indic. 2023, 157, 111261. [Google Scholar] [CrossRef]
- Wan, G.; Yang, L.; Hao, Y.; Geng, Y. Assessing the impacts of digital economy on urban green development efficiency. Sustain. Futur. 2025, 10, 100910. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, D. Can agricultural digital transformation help farmers increase income? An empirical study based on thousands of farmers in Hubei Province. Environ. Dev. Sustain. 2023, 26, 14405–14431. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, F.; Zeng, S.J. Digital Economy, Rural Revitalization, and High-Quality Employment for Farmers. Survey World 2023, 10, 3–11. [Google Scholar]
- Huang, C.; Du, A.M.; Lin, B. How does the digital economy affect the green transition: The role of industrial intelligence and E-commerce. Res. Int. Bus. Financ. 2024, 73, 102541. [Google Scholar] [CrossRef]
- Hajjar, R.; Newton, P.; Ihalainen, M.; Agrawal, A.; Alix-Garcia, J.; Castle, S.E.; Erbaugh, J.T.; Gabay, M.; Hughes, K.; Mawutor, S.; et al. Levers for alleviating poverty in forests. For. Policy Econ. 2021, 132, 102589. [Google Scholar] [CrossRef]
- Ding, K.K.; Ma, Z.B.; Wang, T. Study on the Impact of Rural Digital Economy on Farmers’ Income and Its Spatial Hetero-geneity. Resour. Environ. Arid Areas. 2024, 38, 90–99. [Google Scholar]
- Xu, Q.; Zhong, M. The impact of income inequity on energy consumption: The moderating role of digitalization. J. Environ. Manag. 2022, 325, 116464. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shen, S. Does the digital economy development improve or exacerbate income inequality? International evidence. Manag. Decis. Econ. 2024, 45, 4012–4038. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; De Petris, S.; Sarvia, F.; Momo, E.J.; Sussio, F.; Pari, P. Adoption of Digital Aerial Photogrammetry in Forest Planning: A Case Study of Canavese Forestry Consortium, NW Italy with Technical and Economic Issues. Land 2022, 11, 1350. [Google Scholar] [CrossRef]
- Chang, H.; Xiong, K.; Zhu, D.; Zhang, Z.; Zhang, W. Ecosystem Services Value Realization and Ecological Industry Design in Scenic Areas of Karst in South China. Forests 2024, 15, 363. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.; Luo, Q. Measurement of the Development Level and Evolution of China’s Digital Economy. J. Quant. Tech. Econ. 2021, 38, 26–42. [Google Scholar]
- Kong, F.B.; Cheng, W.J.; Xu, C.Y. Conversion Efficiency of Forest Ecological Capital to Economic Value and Its Influ-encing Factors in National Pilot Areas. Sci. Silvae Sin. 2023, 59, 1–11. [Google Scholar]
- Lü, X.Y.; Wu, J.J. Digital Economy, Rural Industrial Revitalization, and Common Prosperity for Farmers. Stat. Decis. 2024, 40, 11–15. [Google Scholar]
- Li, Y.; Chen, H.L.; Tian, M.Z. Statistical Measurement and Spatiotemporal Evolution of the New Quality Productive Forces. Stat. Decis. 2024, 40, 11–17. [Google Scholar]
- Bassett, G.; Koenker, R. Asymptotic Theory of Least Absolute Error Regression. J. Am. Stat. Assoc. 1978, 73, 618–622. [Google Scholar] [CrossRef]
- Nie, R.; Yang, D.; Shen, D.J. An Empirical Study on the Impact of Rural Income Classes on Household Consumption Structure in China: Micro Evidence Based on CFPS Data. J. Northeast. Univ. 2020, 22, 29–37. [Google Scholar]
- Li, G.C.; Li, Y.Y.; Zhou, X.S. Agricultural Mechanization, Labor Transfer, and Farmers’ Income Growth: Cause or Effect? China Rural. Econ. 2018, 11, 112–127. [Google Scholar]
- Cao, X.L.; Ren, Y.H. Forest Resource Abundance, Ecological Product Value Realization, and Rural Household Income. J. China Agric. Univ. 2024, 29, 34–49. [Google Scholar]
- Chen, X.M.; Yu, K. The Impact of Rural Industrial Integration on Rural Household Income: An Empirical Analysis Based on the Spatial Durbin Model. J. Xiangtan Univ. 2022, 46, 66–73. [Google Scholar]
- Zhao, X.D.; Li, L.C.; Yang, W.T.; Cheng, B.D.; Liu, J.L. Analysis of Socioeconomic Factors Influencing Forest Transition at the County Level in Fujian Province. Sci. Silvae Sin. 2019, 55, 147–156. [Google Scholar]
- Wang, X.H.; Li, X.T.; Zhang, S.P. Does a Polycentric Spatial Structure Promote High-Quality Urban Development? Empirical Evidence from Prefecture-Level Cities in China. China Popul. Resour. Environ. 2022, 32, 57–67. [Google Scholar]
- Bai, P.W.; Yu, L. Digital Economy Development and Corporate Price Markups: Theoretical Mechanisms and Empirical Evidence. China Ind. Econ. 2021, 11, 59–77. [Google Scholar]
- He, E.; Wang, M.C.; Li, Y.C. Is Digitalization of Inclusive Finance a “Digital Dividend”? From the Perspective of Rural Household Income Growth. South. Financ. 2020, 12, 71–84. [Google Scholar]
- Wang, P. “Rural-to-Urban Conversion,” Returns to Human Capital, and Income Inequality: A Quantile Regression Decompo-sition Approach. Shehui 2017, 37, 217–241. [Google Scholar]
- Tao, J.; Wang, Z.; Xu, Y.; Zhao, B.; Liu, J. Can the digital economy boost rural residents’ income? Evidence from China based on the spatial Durbin model. Econ. Anal. Policy 2024, 81, 856–872. [Google Scholar] [CrossRef]
- Yang, R.; Li, Y.; Li, Y. The spatial effects of digital inclusive finance and traditional finance on the income of the migrant population: A comparative analysis of 243 cities in China. Int. Rev. Financ. Anal. 2025, 102, 104054. [Google Scholar] [CrossRef]
- Grishchenko, N. Spatial-temporal evolution of digital skills in the EU countries. Telemat. Inform. 2024, 94, 102185. [Google Scholar] [CrossRef]
- Hu, M.; Zheng, Y.; Chen, G.; Li, Z. Spatio-temporal synergies of digital economy and green finance: Catalyzing green low-carbon transition in the Yangtze River Delta Region. J. Environ. Manag. 2025, 390, 126199. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, J.; Zhang, W. Digital Adoption levels and income generation in rural households in China. Heliyon 2023, 9, e21045. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Wu, X.; Shi, L.; Wan, Y.; Hao, Z.; Ding, J.; Wen, Q. How does the digital economy affect the urban–rural income gap? Evidence from Chinese cities. Habitat Int. 2025, 157, 103327. [Google Scholar] [CrossRef]
- Xia, H.; Yu, H.; Wang, S.; Yang, H. Digital economy and the urban–rural income gap: Impact, mechanisms, and spatial heterogeneity. J. Innov. Knowl. 2024, 9, 100505. [Google Scholar] [CrossRef]
- de Moraes, C.O.; Roquete, R.M.; Gawryszewski, G. Who needs cash? Digital finance and income inequality. Q. Rev. Econ. Financ. 2023, 91, 84–93. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, J.; Zhu, Y. Quantifying change: The impact of digital financial inclusion across income quantiles in China. China Econ. Rev. 2025, 91, 102399. [Google Scholar] [CrossRef]
Reserch Topic | Representative Literature | Content Summary |
---|---|---|
RDE and FI | Fan et al. (2006) [6], Močnik et al. (2010) [7], Tiwasing et al. (2022) [8], Playán et al. (2024) [9], Johnson (2024) [10], Odewole et al. (2024) [11], Fakhraddine et al. (2025) [12], Zhou et al. (2025) [13], Kim (2006) [14], Burbridge et al. (2009) [15], Berdykulova et al. (2014) [16], Erdiaw-Kwasie et al. (2016) [17], Zhao et al. (2020) [18], Fang et al. (2024) [19] | A comprehensive review of both domestic and international literature confirms the significant positive impact of the digital economy on FI, thereby establishing a robust theoretical basis for this study. Furthermore, the diverse approaches adopted by various countries to assess and quantify the digital economy offer important methodological references for developing a scientifically rigorous and well-structured indicator system. Building on these existing studies, this research is further inspired to explore novel pathways and perspectives through which the digital economy can enhance FI. |
VRF and FI | Vosti et al. (2003) [20], Sikora et al. (2012) [21], Sonntag-Öströmet et al. (2014) [22], and Kerchner et al. (2015) [23], Zhu et al. (2017) [24], Jonsson et al. (2021) [25], Agnoletti et al. (2022) [26], Jaung et al. (2022) [27], Kacprzak et al. (2024) [28], Wang et al. (2025) [29], Zhang et al. (2025) [30], Isely et al. (2010) [31], Galli (2015) [32], Pohjola et al. (2018) [33], Nguyen et al. (2022) [34], Zhan et al. (2024) [35], Lou et al. (2024) [36], Song et al. (2025) [37] | The critical role of VRF in enhancing FI has been well recognized. This study details the mechanisms by which forest ecological products contribute value across economic, social, ecological, and cultural spheres, underscoring the importance of this research area. Additionally, the various valuation methods developed by scholars offer a strong theoretical basis and methodological support in this work for building the indicator framework and computing a comprehensive index. |
The Synergistic Mechanism Linking RDE, VRF, and FI | Xia (2010) [38], Cawley et al. (2007) [39], LaRose, R et al. (2011) [40], Velaga et al. (2012) [41], Kalai et al. (2016) [42], Wang et al. (2025) [43], Zeng et al. (2025) [44], Agyekumhene et al. (2018) [45], Lajoie-O’MAlley et al. (2020) [46], Zhao et al. (2022) [47], Zheng et al. (2025) [48], Kristoffersen et al. (2020) [49], Rani Zheng et al. (2025) [50], Singh et al. (2025) [51], Alvi et al. (2025) [52], Yang et al. (2024) [53], Saurabh et al. (2025) [54], Yang et al. (2023) [55], Wan et al. (2025) [56] | A comprehensive review of domestic and international literature indicates that research on the digital economy’s role in boosting FI predominantly emphasizes the enhancement of digital infrastructure, the integration of rural industries, the expansion of digital financial services, the diversification of agricultural product marketing channels, and the optimization of rural employment patterns. Meanwhile, studies focusing on green and sustainable development mainly address improvements in energy efficiency, reductions in carbon emissions, the advancement of sustainable agricultural practices, and the enhancement of ecological well-being. These insights offer valuable theoretical foundations and references for incorporating VRF as a mediating mechanism by which the digital economy fosters increases in FI. |
Hypothesis | Hypothesis Statement | Hypothesis Objective | Research Method | Test Results | Main Conclusions |
---|---|---|---|---|---|
Hypothesis 1 | The RDE has a significant positive effect on FI. | To verify whether the RDE has a positive and significant impact on FI. | Fixed Effects Regression Model | p < 0.01 | The hypothesis is confirmed. The RDE has a significant positive effect on FI. |
Hypothesis 2 | The effect of RDE on FI varies by location. | To explore whether the impact of the RDE on FI varies across different locations. | Regional Heterogeneity Analysis | Eastern, Central, and Western regions: p < 0.01; Northeast region: p > 0.1 | The hypothesis is confirmed. The effect of the RDE on FI varies by location. |
Hypothesis 3 | The RDE has the capacity to reduce income disparities among famers, to a certain degree. | To examine whether the RDE helps reduce income disparities among farmers. | Quantile Heterogeneity Analysis | p < 0.01 | The hypothesis is confirmed. The RDE exerts different effects on farmers with varying income levels and can reduce income disparities among farmers, to some extent. |
Hypothesis 4 | VRF serves as a critical link between FI and RDE. | To explore whether VRF serves as a mediating factor between the RDE and FI. | Mediating Effect Analysis | p < 0.1 | The hypothesis is confirmed. VRF serves as a critical link between FI and the RDE. |
Primary Indicators | Secondary Indicators | Specific Indicators | Units | Attributes |
---|---|---|---|---|
Rural digital economy | Rural digital infrastructure | Rural households with broadband access/total rural households | % | positive |
Rural households with mobile phone/100 rural households | set | positive | ||
Rural households with computer/100 rural households | set | positive | ||
Industrial digitalization | Peking University Digital Inclusive Finance Index | positive | ||
Rural delivery line length/provincial area | km/ten thousand km2 | positive | ||
Number of Taobao villages/total number of administrative villages | % | positive |
Indicator Type | Primary Indicators | Secondary Indicators | Tertiary Indicators | Units |
---|---|---|---|---|
Input index | Forest ecological capital | Forest resources | Forest area | 10,000 ha |
Forestry land resources | Forestry land area | 10,000 ha | ||
Main forest products | Timber harvesting | 10,000 m3 | ||
Forestry social capital | Forestry labor resources | Forestry practitioners | 10,000 people | |
Forestry capital investment | Forestry fixed assets | 100,000,000 CNY | ||
Output index | Forestry economic output value | Total value of forestry industry | Total output value of the three forestry industries | 100,000,000 CNY |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
341 | 9.401 | 0.416 | 8.361 | 10.559 | |
341 | 0.356 | 0.132 | 0.012 | 0.653 | |
341 | 0.907 | 0.951 | 0.156 | 9.945 | |
341 | 10.819 | 0.452 | 9.682 | 12.142 | |
341 | 10.542 | 1.224 | 6.832 | 12.226 | |
341 | 0.405 | 0.080 | 0.160 | 0.620 | |
341 | 0.927 | 0.525 | 0.052 | 2.234 | |
341 | 3.878 | 0.550 | 2.359 | 5.035 |
OLS | FE | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
2.583 *** (69.717) | 0.680 *** (8.475) | 2.579 *** (69.444) | 0.622 *** (7.344) | |
0.816 *** (26.743) | 0.841 *** (26.205) | |||
0.040 ** (2.160) | 0.105 (1.338) | |||
−0.547 *** (−5.219) | −0.608 *** (−5.499) | |||
−0.080 *** (−2.767) | −0.110 *** (−2.977) | |||
0.055 ** (2.060) | 0.060 * (1.686) | |||
Constant | 8.481 *** (237.647) | −0.005 (−0.014) | 8.482 *** (613.286) | −0.913 (−1.087) |
Control variable | NO | YES | NO | YES |
R-squared | 0.940 | 0.982 | ||
Observations | 341 | 341 | 341 | 341 |
(1) Total Effect | (2) Direct Effect | (3) Indirect Effect | |
---|---|---|---|
0.622 *** (7.344) | 4.689 ** (2.567) | 0.602 *** (7.046) | |
0.004 * (1.656) | |||
0.841 *** (26.205) | −1.517 ** (−2.192) | 0.848 *** (26.281) | |
0.105 (1.338) | −1.832 (−1.081) | 0.113 (1.441) | |
−0.608 *** (−5.499) | 2.684 (1.126) | −0.620 *** (−5.610) | |
−0.110 *** (−2.977) | 0.301 (0.379) | −0.111 *** (−3.021) | |
0.060 * (1.686) | −0.439 (−0.575) | 0.062 * (1.745) | |
Constant | −0.913 (−1.087) | 35.288 * (1.949) | −1.069 (−1.268) |
Control variable | YES | YES | YES |
R-squared | 0.982 | 0.028 | 0.982 |
Observations | 341 | 341 | 341 |
Ming Dynasty Postal Relay Stations | Number of Post Offices in 1984 | Replace Explained Variable | Reject Part of the Sample | |||
---|---|---|---|---|---|---|
First Stage | Second Stage | First Stage | Second Stage | |||
(1) | (2) | (3) | (4) | (5) | (6) | |
0.001 *** (6.919) | ||||||
0.053 *** (8.816) | ||||||
0.683 *** (3.054) | 1.437 *** (6.060) | 0.736 *** (9.487) | 0.606 *** (6.334) | |||
Constant | −2.292 (−18.498) | 1.555 *** (2.665) | −2.072 *** (−16.034) | 3.321 *** (6.190) | 3.198 *** (4.157) | −2.072 ** (−2.341) |
Control variable | YES | YES | YES | YES | YES | YES |
R2 | 0.751 | 0.912 | 0.769 | 0.916 | 0.975 | 0.982 |
Observations | 341 | 341 | 341 | 341 | 341 | 297 |
Eastern Region | Central Region | Western Region | Northeast Region | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
0.611 *** (4.479) | 0.781 *** (4.063) | 0.520 *** (2.974) | −0.152 (−0.883) | |
Constant | 2.713 *** (2.827) | −8.843 ** (−2.214) | −3.383 ** (−2.476) | −4.095 (−0.563) |
Control variable | YES | YES | YES | YES |
R-squared | 0.989 | 0.993 | 0.986 | 0.997 |
Observations | 110 | 66 | 132 | 33 |
Quantile Point | |||||
---|---|---|---|---|---|
0.10 | 0.25 | 0.50 | 0.75 | 0.90 | |
2.956 *** | 2.806 *** | 2.600 *** | 2.781 *** | 3.089 *** | |
(23.546) | (32.834) | (27.911) | (22.870) | (21.579) | |
Constant | 8.135 *** | 8.278 *** | 8.468 *** | 8.517 *** | 8.565 *** |
(146.662) | (239.667) | (246.484) | (245.540) | (145.996) | |
R-squared | 0.547 | 0.570 | 0.555 | 0.512 | 0.495 |
Observations | 341 | 341 | 341 | 341 | 341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Zhang, S.; Zhang, J. Rural Digital Economy, Forest Ecological Product Value, and Farmers’ Income: Evidence from China. Forests 2025, 16, 1172. https://doi.org/10.3390/f16071172
Ma G, Zhang S, Zhang J. Rural Digital Economy, Forest Ecological Product Value, and Farmers’ Income: Evidence from China. Forests. 2025; 16(7):1172. https://doi.org/10.3390/f16071172
Chicago/Turabian StyleMa, Guoyong, Shixue Zhang, and Jie Zhang. 2025. "Rural Digital Economy, Forest Ecological Product Value, and Farmers’ Income: Evidence from China" Forests 16, no. 7: 1172. https://doi.org/10.3390/f16071172
APA StyleMa, G., Zhang, S., & Zhang, J. (2025). Rural Digital Economy, Forest Ecological Product Value, and Farmers’ Income: Evidence from China. Forests, 16(7), 1172. https://doi.org/10.3390/f16071172