Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Methods
2.2.1. Sample Plot Setting and Rainfall Collection
2.2.2. Sample Survey
2.2.3. Stemflow
2.2.4. Atmospheric Precipitation and Throughfall
2.2.5. Litter Interception
2.2.6. Soil Evapotranspiration
2.2.7. Soil Runoff
2.2.8. Soil Water Absorption
2.3. Statistical Analyses
3. Results
3.1. Canopy Precipitation Partitioning Under Different Light-Felling Intensity Levels
3.2. Litter Interception Under Different Light-Felling Intensity Levels
3.3. Soil Precipitation Partitioning Under Different Light-Felling Intensity Levels
3.4. Water Balance Under Different Light-Felling Intensity Levels
3.5. Main Controlling Factors of Hydrological Processes in a Korean Pine Forest Under the PCPBT System
4. Discussion
4.1. Effects of Light-Felling on Canopy Precipitation Partitioning and Monthly Dynamics
4.2. Effects of Light-Felling on Litter Interception and Monthly Dynamics
4.3. Effects of Light-Felling on Soil Precipitation Distribution and Growing Season Dynamics
4.4. Dominant Controllers of Hydrological Processes in Canopy, Litter, and Soil Layers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Date | Precipitation (mm) | Duration | Rainfall Level |
---|---|---|---|
6.10 | 12 | <24 h | Moderate rain |
6.19 | 26.5 | <24 h | Heavy rain |
6.23 | 14.9125 | <24 h | Moderate rain |
6.27 | 12 | <12 h | Moderate rain |
7.2 | 21.125 | <24 h | Moderate rain |
7.13 | 67.5 | <24 h | Torrential rain |
7.21 | 64.75 | <24 h | Torrential rain |
7.27 | 28.025 | <24 h | Heavy rain |
8.1 | 13.125 | <12 h | Moderate rain |
8.8 | 83.75 | <24 h | Torrential rain |
8.15 | 21.5 | <12 h | Heavy rain |
8.26 | 18.225 | <12 h | Heavy rain |
8.29 | 60.25 | <24 h | Torrential rain |
9.25 | 10.525 | >48 h | Light rain |
Appendix B
References
- Liu, S.-R.; Sun, P.-S.; Wen, Y.-G. Comparative analysis of hydrological functions of major forest ecosystems in China. Chin. J. Plant Ecol. 2003, 27, 16. [Google Scholar] [CrossRef]
- Lawrence, D.; Coe, M.; Walker, W.; Verchot, L.; Vandecar, K. The unseen effects of deforestation: Biophysical effects on climate. Front. For. Glob. Chang. 2022, 5, 756115. [Google Scholar] [CrossRef]
- Han, C.; Chen, N.; Sun, S.; Zhao, C.-M. A review on hydrological mediating functions and mechanisms in forest ecosystems. Chin. J. Ecol. 2019, 38, 2191. [Google Scholar]
- Xiao, Q.; McPherson, E.G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 2002, 6, 291–302. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Attarod, P.; Van Stan II, J.T.; Pypker, T.G.; Dunkerley, D. Efficiency of the reformulated Gash’s interception model in semiarid afforestations. Agric. For. Meteorol. 2015, 201, 76–85. [Google Scholar] [CrossRef]
- Gerrits, A.; Pfister, L.; Savenije, H. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 2010, 24, 3011–3025. [Google Scholar] [CrossRef]
- Carlyle-Moses, D. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. J. Arid Environ. 2004, 58, 181–202. [Google Scholar] [CrossRef]
- Ahmadi, M.T.; Attarod, P.; MOHADJER, M.R.; Rahmani, R.; Fathi, J. Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turk. J. Agric. For. 2009, 33, 557–568. [Google Scholar] [CrossRef]
- Mazza, G.; Amorini, E.; Cutini, A.; Manetti, M.C. The influence of thinning on rainfall interception by Pinus pinea L. in Mediterranean coastal stands (Castel Fusano—Rome). Ann. For. Sci. 2011, 68, 1323–1332. [Google Scholar] [CrossRef]
- Sun, X.; Onda, Y.; Kato, H. Incident rainfall partitioning and canopy interception modeling for an abandoned Japanese cypress stand. J. For. Res. 2014, 19, 317–328. [Google Scholar] [CrossRef]
- Levia, D.F.; Carlyle-Moses, D.; Tanaka, T. Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 216. [Google Scholar]
- Levia, D.F., Jr.; Frost, E.E. Variability of throughfall volume and solute inputs in wooded ecosystems. Prog. Phys. Geogr. 2006, 30, 605–632. [Google Scholar] [CrossRef]
- Dunkerley, D. Measuring interception loss and canopy storage in dryland vegetation: A brief review and evaluation of available research strategies. Hydrol. Process. 2000, 14, 669–678. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience 2006, 13, 324–333. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Hu, R.; Pan, Y.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Crockford, R.; Richardson, D. Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrol. Process. 2000, 14, 2903–2920. [Google Scholar] [CrossRef]
- Gash, J. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Nanko, K.; Hotta, N.; Suzuki, M. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J. Hydrol. 2006, 329, 422–431. [Google Scholar] [CrossRef]
- Deguchi, A.; Hattori, S.; Park, H.-T. The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model. J. Hydrol. 2006, 318, 80–102. [Google Scholar] [CrossRef]
- Saito, T.; Matsuda, H.; Komatsu, M.; Xiang, Y.; Takahashi, A.; Shinohara, Y.; Otsuki, K. Forest canopy interception loss exceeds wet canopy evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations. J. Hydrol. 2013, 507, 287–299. [Google Scholar] [CrossRef]
- Attiwill, P.M.; Leeper, G.W. Forest Soils and Nutrient Cycles; Melbourne University Press: Melbourne, Australia, 1987. [Google Scholar]
- Sato, Y.; Kumagai, T.O.; Kume, A.; Otsuki, K.; Ogawa, S. Experimental analysis of moisture dynamics of litter layers—The effects of rainfall conditions and leaf shapes. Hydrol. Process. 2004, 18, 3007–3018. [Google Scholar] [CrossRef]
- Du, J.; Niu, J.; Gao, Z.; Chen, X.; Zhang, L.; Li, X.; van Doorn, N.S.; Luo, Z.; Zhu, Z. Effects of rainfall intensity and slope on interception and precipitation partitioning by forest litter layer. Catena 2019, 172, 711–718. [Google Scholar] [CrossRef]
- Dunkerley, D. Percolation through leaf litter: What happens during rainfall events of varying intensity? J. Hydrol. 2015, 525, 737–746. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Villegas, J.C.; Breshears, D.D.; Zou, C.B.; Law, D.J. Ecohydrological controls of soil evaporation in deciduous drylands: How the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. J. Arid Environ. 2010, 74, 595–602. [Google Scholar] [CrossRef]
- Deng, W.; Zheng, X.; Xiao, S.; Chen, Q.; Gao, Y.; Zhang, L.; Huang, J.; Bai, T.; Xie, S.; Liu, Y. Effects of leaf type, litter mass and rainfall characteristics on the interception storage capacity of leaf litter based on process simulation. J. Hydrol. 2023, 624, 129943. [Google Scholar] [CrossRef]
- Van Dijk, A.I.; Keenan, R.J. Planted forests and water in perspective. For. Ecol. Manag. 2007, 251, 1–9. [Google Scholar] [CrossRef]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Gómez-Plaza, A.; Martınez-Mena, M.; Albaladejo, J.; Castillo, V. Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol. 2001, 253, 211–226. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Nicolau, J.M.; Merino-Martín, L.; Wilcox, B.P. Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Neris, J.; Tejedor, M.; Rodríguez, M.; Fuentes, J.; Jiménez, C. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain). Catena 2013, 108, 50–57. [Google Scholar] [CrossRef]
- Li, X.; Xiao, Q.; Niu, J.; Dymond, S.; McPherson, E.G.; van Doorn, N.; Yu, X.; Xie, B.; Zhang, K.; Li, J. Rainfall interception by tree crown and leaf litter: An interactive process. Hydrol. Process. 2017, 31, 3533–3542. [Google Scholar] [CrossRef]
- Martín-Benito, D.; Del Río, M.; Heinrich, I.; Helle, G.; Cañellas, I. Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For. Ecol. Manag. 2010, 259, 967–975. [Google Scholar] [CrossRef]
- Chase, C.W.; Kimsey, M.J.; Shaw, T.M.; Coleman, M.D. The response of light, water, and nutrient availability to pre-commercial thinning in dry inland Douglas-fir forests. For. Ecol. Manag. 2016, 363, 98–109. [Google Scholar] [CrossRef]
- Whitehead, D.; Kelliher, F. A canopy water balance model for a Pinus radiata stand before and after thinning. Agric. For. Meteorol. 1991, 55, 109–126. [Google Scholar] [CrossRef]
- del Campo, A.D.; González-Sanchis, M.; Lidón, A.; Ceacero, C.J.; García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 2018, 565, 74–86. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Y.; Shao, M. Comparative modeling of the effect of thinning on canopy interception loss in a semiarid black locust (Robinia pseudoacacia) plantation in Northwest China. J. Hydrol. 2020, 590, 125234. [Google Scholar] [CrossRef]
- Sun, X.; Onda, Y.; Kato, H.; Gomi, T.; Komatsu, H. Effect of strip thinning on rainfall interception in a Japanese cypress plantation. J. Hydrol. 2015, 525, 607–618. [Google Scholar] [CrossRef]
- Ruprecht, J.; Schofield, N.; Crombie, D.; Vertessy, R.A.; Stoneman, G. Early hydrological response to intense forest thinning in southwestern Australia. J. Hydrol. 1991, 127, 261–277. [Google Scholar] [CrossRef]
- Bréda, N.; Granier, A.; Aussenac, G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 1995, 15, 295–306. [Google Scholar] [CrossRef]
- Molina, A.J.; del Campo, A.D. The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. For. Ecol. Manag. 2012, 269, 206–213. [Google Scholar] [CrossRef]
- Aussenac, G.; Granier, A. Effects of thinning on water stress and growth in Douglas-fir. Can. J. For. Res. 1988, 18, 100–105. [Google Scholar] [CrossRef]
- Simonin, K.; Kolb, T.; Montes-Helu, M.; Koch, G. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric. For. Meteorol. 2007, 143, 266–276. [Google Scholar] [CrossRef]
- Baker, M.B., Jr. Effects of ponderosa pine treatments on water yield in Arizona. Water Resour. Res. 1986, 22, 67–73. [Google Scholar] [CrossRef]
- Komatsu, H.; Kume, T.; Otsuki, K. The effect of converting a native broad-leaved forest to a coniferous plantation forest on annual water yield: A paired-catchment study in northern Japan. For. Ecol. Manag. 2008, 255, 880–886. [Google Scholar] [CrossRef]
- Yang, H.; Choi, H.T.; Lim, H. Effects of forest thinning on the long-term runoff changes of coniferous forest plantation. Water 2019, 11, 2301. [Google Scholar] [CrossRef]
- Roig, S.; del Río, M.; Cañellas, I.; Montero, G. Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. For. Ecol. Manag. 2005, 206, 179–190. [Google Scholar] [CrossRef]
- Pereira, L.C.; Balbinot, L.; Lima, M.T.; Bramorski, J.; Tonello, K.C. Aspects of forest restoration and hydrology: The hydrological function of litter. J. For. Res. 2022, 33, 543–552. [Google Scholar] [CrossRef]
- Ares, A.; Neill, A.R.; Puettmann, K.J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. For. Ecol. Manag. 2010, 260, 1104–1113. [Google Scholar] [CrossRef]
- Slodicak, M.; Novak, J.; Dusek, D. Canopy reduction as a possible measure for adaptation of young Scots pine stand to insufficient precipitation in Central Europe. For. Ecol. Manag. 2011, 262, 1913–1918. [Google Scholar] [CrossRef]
- Bäumler, R.; Zech, W. Atmospheric deposition and impact of forest thinning on the throughfall of mountain forest ecosystems in the Bavarian Alps. For. Ecol. Manag. 1997, 95, 243–251. [Google Scholar] [CrossRef]
- Wang, Y. Broadleaved Korean Pine Forests; Northeast Forestry University Press: Harbin, China, 1995. [Google Scholar]
- Chen, D.; Zhou, X.; Ding, B.; Hu, Z. Research on natural secondary forest in Heilongjiang Province (II)—Dynamic management system. J. Northeast. For. Coll. 1985, 13, 1–18. [Google Scholar]
- Han, Y.; Mu, C.; Zhuang, C.; Zhang, L.; Tong, J. Effects of light-felling on carbon budget of mid-term Korean pine forests by planting coni-fer and reserving broad-leaved tree in Changbai Mountains of China. Chin. J. Ecol. 2014, 33, 2296–2307. [Google Scholar] [CrossRef]
- Zhang, X.; Mu, C.; Zhang, X.; Han, Y. Effect of liberation cutting on the soil carbon storage of a Korean pine forest restored by planting conifers and reserving broad-leaved trees in Changbai Mountains of China. J. Beijing For. Univ. 2015, 37, 22–30. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, C.; Yang, Z.; Liu, T.; Li, X. Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxingan Mountains of northeastern China. J. Beijing For. Univ. 2021, 43, 54–64. [Google Scholar]
- Fang, J.; Wang, X.; Shen, Z.; Tang, Z.; He, J.; Yu, D.; Jiang, Y.; Wang, Z.; Zheng, C.; Zhu, J.; et al. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533–548. [Google Scholar] [CrossRef]
- Fries, J. Growth Models for Tree and Stand Simulation; Skogshögskolan: Umea, Sweden, 1974. [Google Scholar]
- Meng, X. Tree Surveying; China Forestry Publishing House: Beijing, China, 2009. [Google Scholar]
- Sun, J.; Yu, X.; Wang, H.; Jia, G.; Zhao, Y.; Tu, Z.; Deng, W.; Jia, J.; Chen, J. Effects of forest structure on hydrological processes in China. J. Hydrol. 2018, 561, 187–199. [Google Scholar] [CrossRef]
- Zagyvainé Kiss, K.A.; Kalicz, P.; Csáfordi, P.; Gribovszki, Z. Forest Litter Interception Model for a Sessile Oak Forest. Acta Silv. Lign. Hung. 2014, 10, 91–101. [Google Scholar] [CrossRef]
- Yang, J.; Wang, A.; Shen, L.; Dai, G.; Liu, Y.; Zhang, Y.; Fei, W.; Wu, J. The Impact of Canopy on Nutrient Fluxes through Rainfall Partitioning in a Mixed Broadleaf and Coniferous Forest. Forests 2024, 15, 623. [Google Scholar] [CrossRef]
- Levia, D.F.; Germer, S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Holder, C.D. Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology 2013, 6, 483–490. [Google Scholar] [CrossRef]
- Roberts, J. The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrol. Process. 2000, 14, 2885–2901. [Google Scholar] [CrossRef]
- Richardson, A.D.; O’Keefe, J. Phenological differences between understory and overstory: A case study using the long-term Harvard Forest records. In Phenology of Ecosystem Processes; Noormets, A., Ed.; Springer: New York, NY, USA, 2009; pp. 87–117. [Google Scholar] [CrossRef]
- Zagyvai-Kiss, K.A.; Kalicz, P.; Szilágyi, J.; Gribovszki, Z. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agric. For. Meteorol. 2019, 278, 107656. [Google Scholar] [CrossRef]
- Zhou, Q.; Keith, D.M.; Zhou, X.; Cai, M.; Cui, X.; Wei, X.; Luo, Y. Comparing the water-holding characteristics of broadleaved, coniferous, and mixed forest litter layers in a Karst Region. Mt. Res. Dev. 2018, 38, 220–229. [Google Scholar] [CrossRef]
- Lousier, J.; Parkinson, D. Litter decomposition in a cool temperate deciduous forest. Can. J. Bot. 1976, 54, 419–436. [Google Scholar] [CrossRef]
- Marin, C.T.; Bouten, I.; Dekker, S. Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia. J. Hydrol. 2000, 237, 169–183. [Google Scholar] [CrossRef]
- Zhao, L.; Meng, P.; Zhang, J.; Zhang, J.; Sun, S.; He, C. Effect of slopes on rainfall interception by leaf litter under simulated rainfall conditions. Hydrol. Process. 2022, 36, e14659. [Google Scholar] [CrossRef]
- Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 1997, 79, 439–449. [Google Scholar] [CrossRef]
- Cornejo, F.H.; Varela, A.; Wright, S.J. Tropical forest litter decomposition under seasonal drought: Nutrient release, fungi and bacteria. Oikos 1994, 70, 183–190. [Google Scholar] [CrossRef]
- Misson, L.; Tang, J.; Xu, M.; McKay, M.; Goldstein, A. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation. Agric. For. Meteorol. 2005, 130, 207–222. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Chandler, K.; Stevens, C.; Binley, A.; Keith, A. Influence of tree species and forest land use on soil hydraulic conductivity and implications for surface runoff generation. Geoderma 2018, 310, 120–127. [Google Scholar] [CrossRef]
- Vafakhah, M.; Karamizad, F.; Sadeghi, S.; Noor, H. Spatial variations of runoff generation at watershed scale. Int. J. Environ. Sci. Technol. 2019, 16, 3745–3760. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. 1963, 89, 15–41. [Google Scholar] [CrossRef]
- Cheng, X.; Bai, Y.; Zhu, J.; Han, H. Effects of forest thinning on interception and surface runoff in Larix principis-rupprechtii plantation during the growing season. J. Arid Environ. 2020, 181, 104222. [Google Scholar] [CrossRef]
- Gartner, T.B.; Cardon, Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
C | L | M | H | Cc | |
---|---|---|---|---|---|
Plot quantity | 3 | 3 | 3 | 3 | 3 |
Average slope (°) | 7.8 | 7.6 | 8.2 | 7.4 | 7.5 |
Slope direction | SE | SE | SE | SE | SE |
Altitude (m) | 798 | 802 | 799 | 801 | 800 |
Canopy density (%) | 71.52 ± 1.67 ab | 72.65 ± 1.19 a | 71.58 ± 1.36 ab | 69.56 ± 2.52 b | 68.75 ± 1.02 c |
Leaf area index | 1.67 ± 0.11 ab | 1.74 ± 0.12 a | 1.66 ± 0.12 ab | 1.56 ± 0.22 b | 1.39 ± 0.12 c |
Litter thickness (cm) | 2.22 ± 0.50 a | 2.58 ± 0.69 a | 2.33 ± 0.78 a | 2.07 ± 0.46 a | 2.73 ± 0.66 a |
Soil temperature (°C) | 17.73 ± 2.66 a | 16.41 ± 2.52 a | 17.48 ± 2.66 a | 17.18 ± 2.56 a | 15.79 ± 2.36 a |
Volumes (m3/ha) | 296.8 | 274.1 | 277.2 | 237.1 | 261.6 |
Basal area of Korean pine (m2/ha) | 3.82 | 7.4 | 8.01 | 20.24 | 29.5 |
Basal area of broadleaved trees (m2/ha) | 31.85 | 24.26 | 21.27 | 13.13 | 7.03 |
DDK (trees/ha) | 489 | 356 | 511 | 222 | 489 |
DAK (trees/ha) | 1978 | 1867 | 2222 | 2044 | 1689 |
DPK (trees/ha) | 333 | 400 | 578 | 267 | 378 |
DB (trees/ha) | 2867 | 2556 | 1711 | 1222 | 1267 |
DBHD (cm) | 12.2 | 18.4 | 21.3 | 23.9 | 32.7 |
DBHA (cm) | 6.6 | 8.8 | 8.9 | 12.9 | 19.7 |
DBHP (cm) | 2.8 | 3.8 | 3.5 | 5.1 | 7.8 |
DBHB (cm) | 17.2 | 14.8 | 17.4 | 16.0 | 13.4 |
Tree Shannon–Wiener index | 0.81 ± 0.24 b | 1.04 ± 0.1 b | 1.38 ± 0.33 a | 1.34 ± 0.27 a | 0.68 ± 0.35 b |
Tree Simpson index | 0.40 ± 0.12 a | 0.55 ± 0.05 a | 0.66 ± 0.13 a | 0.64 ± 0.12 a | 0.39 ± 0.21 a |
Shrub Shannon–Wiener index | 0.56 ± 0.56 ab | 0.93 ± 0.52 a | 0.46 ± 0.55 ab | 0.90 ± 0.60 a | 0.17 ± 0.31 b |
Shrub Simpson index | 0.30 ± 0.28 ab | 0.52 ± 0.23 a | 0.27 ± 0.27 ab | 0.49 ± 0.25 a | 0.12 ± 0.22 b |
Herb Shannon–Wiener index | 1.32 ± 0.82 ab | 1.05 ± 0.87 ab | 1.36 ± 0.58 ab | 0.89 ± 0.64 b | 1.70 ± 0.43 a |
Herb Simpson index | 0.60 ± 0.35 a | 0.48 ± 0.30 a | 0.61 ± 0.25 a | 0.43 ± 0.30 a | 0.70 ± 0.17 a |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 8.04 ± 0.60 Bb | 12.01 ± 1.57 Ab | 5.65 ± 0.12 Cc | 12.38 ± 0.94 Ac | 10.51 ± 1.50 Ab |
7 | 33.35 ± 3.89 Ba | 52.87 ± 1.89 Aa | 30.09 ± 3.59 Ba | 42.88 ± 0.23 Aa | 32.37 ± 2.29 Ba |
8 | 34.78 ± 2.16 Ba | 55.14 ± 6.09 Aa | 24.50 ± 1.37 Cb | 34.15 ± 1.96 Bb | 35.25 ± 2.65 Ba |
9 | 2.49 ± 0.40 Cc | 3.46 ± 0.23 Bc | 2.23 ± 0.01 Cc | 4.11 ± 0.15 Ad | 4.21 ± 0.25 Ac |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 43.91 ± 1.97 ABb | 40.56 ± 0.57 BCb | 46.73 ± 1.44 Ac | 40.02 ± 2.09 Cc | 41.90 ± 2.67 BCb |
7 | 154.61 ± 1.98 Aa | 137.13 ± 5.03 Ca | 157.64 ± 1.11 Ab | 147.24 ± 3.00 Bb | 156.22 ± 1.93 Aa |
8 | 154.78 ± 3.08 Ba | 137.78 ± 6.82 Ca | 167.95 ± 2.34 Aa | 158.63 ± 2.89 Ba | 155.42 ± 3.00 Ba |
9 | 7.96 ± 0.58 Ac | 7.04 ± 0.43 Bc | 8.26 ± 0.21 Ad | 6.38 ± 0.33 Bd | 6.29 ± 0.32 Bc |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 1.47 ± 0.02 Ac | 0.83 ± 0.07 Cc | 1.04 ± 0.04 Bc | 1.01 ± 0.05 Bc | 1.00 ± 0.03 Bc |
7 | 5.44 ± 0.12 Ab | 3.40 ± 0.22 Cb | 5.68 ± 0.37 Aa | 3.28 ± 0.25 Cb | 4.81 ± 0.06 Bb |
8 | 7.28 ± 0.23 Aa | 3.92 ± 0.30 Ca | 4.41 ± 0.26 Cb | 4.07 ± 0.11 Ca | 6.18 ± 0.43 Ba |
9 | 0.08 ± 0.01 Ad | 0.02 ± 0.01 Cd | 0.04 ± 0.01 Bd | 0.04 ± 0.003 BCd | 0.02 ± 0.003 Cd |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 0.899 ± 0.213 ABa | 0.788 ± 0.212 ABab | 0.496 ± 0.093 Bb | 0.702 ± 0.215 ABab | 1.159 ± 0.421 Aa |
7 | 0.768 ± 0.019 Aab | 0.549 ± 0.124 ABb | 0.503 ± 0.119 Bb | 0.555 ± 0.006 ABbc | 0.603 ± 0.243 ABb |
8 | 0.572 ± 0.023 Ab | 0.742 ± 0.115 Aab | 0.671 ± 0.137 Ab | 0.329 ± 0.085 Bc | 0.646 ± 0.023 Ab |
9 | 0.964 ± 0.115 Aa | 1.029 ± 0.130 Aa | 1.019 ± 0.290 Aa | 0.908 ± 0.070 Aa | 0.987 ± 0.046 Aab |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 13.27 ± 1.61 ABb | 13.95 ± 4.46 Ab | 11.85 ± 4.26 Bb | 12.68 ± 1.92 ABb | 13.47 ± 2.67 ABb |
7 | 34.92 ± 3.24 ABa | 32.14 ± 0.14 Da | 36.50 ± 0.64 Aa | 32.92 ± 1.66 CDa | 34.04 ± 1.72 BCa |
8 | 36.17 ± 0.48 Aa | 31.79 ± 1.76 Ba | 36.20 ± 1.77 Aa | 31.99 ± 3.51 Ba | 33.55 ± 2.40 Ba |
9 | 2.56 ± 0.58 Ac | 2.21 ± 0.76 Ac | 2.74 ± 0.83 Ac | 2.03 ± 0.77 Ac | 1.95 ± 0.68 Ac |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 4.73 ± 0.68 Bb | 0.40 ± 0.20 Eb | 11.59 ± 0.20 Ab | 2.12 ± 0.10 Cb | 1.42 ± 0.04 Db |
7 | 40.42 ± 1.05 Ba | 21.22 ± 0.40 Da | 43.95 ± 1.33 Aa | 35.06 ± 2.12 Ca | 39.63 ± 0.81 Ba |
8 | 41.23 ± 1.28 Ba | 21.87 ± 1.18 Da | 44.02 ± 1.31 Aa | 35.35 ± 0.89 Ca | 39.75 ± 1.27 Ba |
9 | 0.10 ± 0.01 Ac | 0.08 ± 0.05 ABb | 0.05 ± 0.01 ABc | 0.04 ± 0.01 Bb | 0.07 ± 0.02 ABb |
Month | C | L | M | H | Cc |
---|---|---|---|---|---|
6 | 26.47 ± 1.521 Ab | 26.34 ± 2.20 Ab | 23.83 ± 1.07 Bb | 25.53 ± 1.542 ABb | 26.85 ± 1.95 Ab |
7 | 83.94 ± 1.557 Ca | 86.62 ± 3.81 Ba | 87.35 ± 1.48 ABa | 88.98 ± 2.767 Aa | 86.76 ± 1.70 Ba |
8 | 84.09 ± 1.256 Ba | 87.22 ± 2.55 Aa | 86.4 ± 3.46 Aa | 88.02 ± 1.578 Aa | 87.65 ± 1.20 Aa |
9 | 4.42 ± 0.45 Ac | 3.76 ± 0.37 Ac | 4.49 ± 0.49 Ac | 3.44 ± 0.539 Ac | 3.31 ± 0.20 Ac |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Zhou, Z.; Li, X.; Hao, X.; Cui, Y.; Sun, Z.; Ma, H.; Lin, J.; Mu, C. Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China. Forests 2025, 16, 1050. https://doi.org/10.3390/f16071050
Liu Q, Zhou Z, Li X, Hao X, Cui Y, Sun Z, Ma H, Lin J, Mu C. Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China. Forests. 2025; 16(7):1050. https://doi.org/10.3390/f16071050
Chicago/Turabian StyleLiu, Qian, Zhenzhao Zhou, Xiaoyang Li, Xinhai Hao, Yaru Cui, Ziqi Sun, Haoyu Ma, Jiawei Lin, and Changcheng Mu. 2025. "Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China" Forests 16, no. 7: 1050. https://doi.org/10.3390/f16071050
APA StyleLiu, Q., Zhou, Z., Li, X., Hao, X., Cui, Y., Sun, Z., Ma, H., Lin, J., & Mu, C. (2025). Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China. Forests, 16(7), 1050. https://doi.org/10.3390/f16071050