Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Culture Conditions
2.2. Regeneration of Plantlets
2.2.1. Acquisition of Sterile Leaves
2.2.2. Selection of Basic Culture Media
2.2.3. Treatment of the Method of Incision
2.2.4. Effect of Cytokinin KT Concentration
2.2.5. Effects of Plant Growth Regulator Combinations
2.2.6. Adventitious Shoot Elongation
2.2.7. Adventitious Root Induction
2.2.8. Acclimatization
2.3. Histological Analysis
2.4. Statistical Analysis
3. Results
3.1. Acquisition of Aseptic Leaves
3.2. Effect of Basic Medium on the Induction of Adventitious Shoots
3.3. Effect of KT Concentration on the Induction of Adventitious Shoots
3.4. Effect of the Method of Incision on the Induction of Adventitious Shoots
3.5. Effect of Plant Growth Regulators on Adventitious Shoots Induction from Leaves of Nodal Cuttings from Both Young Stems and Sprouts
3.6. Elongation of Adventitious Shoots
3.7. Root Formation
3.8. Acclimatization
3.9. Histological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhang, L.; Zhang, Y.J.; Wang, H.; Zou, J.W.; Siemann, E. Chinese Tallow Trees (Triadica sebifera) from the Invasive Range Outperform Those from the Native Range with an Active Soil Community or Phosphorus Fertilization. PLoS ONE 2013, 8, e74233. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cao, F.L.; Li, S.X.; Dao, D.W.; Xu, C.P. Establishment of highly efficient regeneration system with different explants of Sapium sebiserum in vitro. Acta Bot. Boreali-Occident. Sin. 2010, 30, 2542–2549. [Google Scholar]
- Liu, M.; Yang, L.Y.; Su, M.M.; Gong, W.; Liu, Y.B.; Yang, J.X.; Huang, Y.; Zhao, C. Modeling the potential distribution of the energy tree species Triadica sebifera in response to climate change in China. Sci. Rep. 2024, 14, 1220. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.H.; Wu, X.K.; Hu, Y.W.; Wu, M.; Liu, W.; Wang, Z.K. The conversion of woody oils into E-octadec-9-enedioic acid and multiple-shape memory polyamides. Ind. Crops Prod. 2023, 191, 115879. [Google Scholar] [CrossRef]
- Su, F.; Peng, C.; Li, G.L.; Xu, L.; Yan, Y.J. Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid. Renew. Energy 2016, 90, 329–335. [Google Scholar] [CrossRef]
- Qie, Y.; Xu, Y.; Li, X.; Tan, C.; Hu, R. In vitro shoot culture and rapid propagation of chinese tallow trees for energy forests. J. Northeast For. Univ. 2019, 37, 8–9. [Google Scholar]
- Liu, Y.; Gao, P.; Yang, Y.; Liu, C.; Zhong, W.; Yin, J.; Reaney, M.J.T. Enzymatically Interesterified Triadica sebifera Oil: A Novel Shortening for Enhanced Nutritional Quality and Sustainability. Foods 2025, 14, 590. [Google Scholar] [CrossRef]
- Li, J.K.; Yang, J.H.; Liu, T.L.; Wang, R.; Zhang, W.Y. Tissue culture and regeneration of wild Sapium sebiferum. J. Fujian For. Sci. Technol. 2010, 33, 164–166. [Google Scholar]
- Li, X.; Cao, K.; Yang, Q.H.; He, X.L.; Zhou, Y.L.; Yao, Q.J. Effects of different medium components on the growth and rooting of Sapium sebiferum (linn.) roxb. J. Anhui Agric. Sci. 2008, 36, 3555–3556. [Google Scholar]
- Luo, J.; Ren, W.Y.; Cai, G.H.; Huang, L.Y.; Shen, X.; Li, N.; Nie, C.R.; Li, Y.G.; Wang, N. The chromosome-scale genome sequence of Triadica sebifera provides insight into fatty acids and anthocyanin biosynthesis. Commun. Biol. 2022, 5, 220. [Google Scholar] [CrossRef]
- Punam Joshi, P.J.; Bhanu Priya, B.P.; Manoj Gahlot, M.G. Anti-oxidant, antibacterial and phytochemical studies of leaves extract of Sapium sebiferum. Int. J. Chem. Sci. 2012, 10, 1805–1814. [Google Scholar]
- Fan, S.J.; Zhang, X.Y.; Cheng, Y.; Qiu, Y.X.; Hu, Y.Y.; Yu, T.; Qian, W.Z.; Zhang, D.J.; Gao, S. Extraction Optimization of Phenolic Compounds from Triadica sebifera Leaves: Identification, Characterization and Antioxidant Activity. Molecules 2024, 29, 3266. [Google Scholar] [CrossRef]
- Dolma, S.K.; Reddy, S.G.E. Characterization of Triadica sebifera (L.) Small Extracts, Antifeedant Activities of Extracts, Fractions, Seed Oil and Isolated Compounds against Plutella xylostella (L.) and Their Effect on Detoxification Enzymes. Molecules 2022, 27, 6239. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhang, Y.-L.; Liu, J.-L.; Wang, S.-J.; Zhang, G.-J. Sesquineolignan and neolignan enantiomers from Triadica sebifera. Bioorganic Chem. 2020, 103, 104147. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.E.; Ouyang, S.X.; Huang, F.X.; Cai, H. Study on tissue culture and plantlet regeneration of Sapium sebiferum Roxb. Hubei For. Sci. Technol. 2010, 01, 20–22. [Google Scholar]
- Jiang, Z.P.; Ni, J.D.; Zhang, M.; Dong, X.Y.; Li, Y.Z. In vitro culture and plant regeneration of Sapium sebiferum. J. Jiangsu For. Sci. Technol. 2011, 38, 7–10. [Google Scholar]
- Liu, Y.; Bai, S.L.; Zhu, Y.; Li, G.L.; Jiang, P. Promoting seedling stress resistance through nursery techniques in China. New For. 2012, 43, 639–649. [Google Scholar] [CrossRef]
- Jin, Y.Q.; Li, D.L.; Chen, X.X.; Zhang, L.J. Physiological response of Sapium sebiferum seedlings from different provenances to drought stress. Acta Bot. Boreali-Occident. Sin. 2012, 32, 1395–1402. [Google Scholar]
- Shah, F.A.; Wei, X.; Wang, Q.J.; Liu, W.B.; Wang, D.D.; Yao, Y.Y.; Hu, H.; Chen, X.; Huang, S.W.; Hou, J.Y.; et al. Karrikin Improves Osmotic and Salt Stress Tolerance via the Regulation of the Redox Homeostasis in the Oil Plant Sapium sebiferum. Front. Plant Sci. 2020, 11, 216. [Google Scholar] [CrossRef]
- Pu, G.; Peng, Y.; Yi, H.; Wang, T.; Yuan, D. Effects on Photosynthetic Characterastics of Sapium sebiferum Leaves under Lead Stress. J. Sichuan Agric. Univ. 2025, 43, 375–382. [Google Scholar] [CrossRef]
- Peng, D.; Jiang, Y.Q.; Liu, X.M.; Zhou, B. Molecular characterization of a CONSTANS gene from Sapium sebiferum (L.) Rxob. Gene 2018, 654, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, L.; Tan, X.F.; Yuan, D.Y.; Liu, X.M.; Zhou, B. Increasing seed oil content and altering oil quality of Brassica napus L. by over-expression of diacylglycerol acyltransferase 1 (SsDGAT1) from Sapium sebiferum (L.) Roxb. Mol. Breed. 2016, 36, 1–14. [Google Scholar] [CrossRef]
- Luo, Q.Y. Effect of IBA and PP_(333) on rooting of Sapium sebiferum cuttings. J. Cent. South Univ. For. Technol. 1991, 2, 196–198. [Google Scholar]
- Chen, J.Y.; LI, B.Y.; Zhou, J.X.; Huang, Y.L. Sapium sebiferum stem section inducement tissue culture and fast propagation technology. J. Fujian For. Sci. Technol. 2009, 36, 259–262. [Google Scholar] [CrossRef]
- Zhang, T.Z.; Yang, M.L.; Wu, Y.; Jin, S.; Hou, J.Y.; Mao, Y.J.; Liu, W.B.; Shen, Y.C.; Wu, L.F. Flower Bud Transcriptome Analysis of Sapium sebiferum (Linn.) Roxb. and Primary Investigation of Drought Induced Flowering: Pathway Construction and G-Quadruplex Prediction Based on Transcriptome. PLoS ONE 2015, 10, e0118479. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.Y.; Chen, L.G.; Rong, J.D.; He, T.Y.; Zhang, Y.S. Research on Fast in vitro Propagation and Regeneration Technology of Sapium sebiferum. J. Southwest For. Univ. 2013, 33, 99–102. [Google Scholar] [CrossRef]
- Gu, M.; Li, Y.L.; Jiang, H.E.; Zhang, S.H.; Que, Q.M.; Chen, X.Y.; Zhou, W. Efficient In Vitro Sterilization and Propagation from Stem Segment Explants of Cnidoscolus aconitifolius (Mill.) I.M. Johnst, a Multipurpose Woody Plant. Plants 2022, 11, 1937. [Google Scholar] [CrossRef]
- Kotwal, M.M.; Gupta, P.K.; Mascarenhas, A.F. Rapaid multiplication of Sapium Sebiferum Roxb by tissue culture. Plant Cell Tissue Organ Cult. 1983, 2, 133–139. [Google Scholar]
- Hou, J.Y.; Mao, Y.Y.; Su, P.F.; Wang, D.C.; Chen, X.; Huang, S.W.; Ni, J.; Zhao, W.W.; Wu, L.F. A high throughput plant regeneration system from shoot stems of Sapium sebiferum Roxb., a potential multipurpose bioenergy tree. Ind. Crops Prod. 2020, 154, 112653. [Google Scholar] [CrossRef]
- Hou, J.Y.; Su, P.F.; Wang, D.C.; Chen, X.; Zhao, W.W.; Wu, L.F. Efficient plant regeneration from in vitro leaves and petioles via shoot organogenesis in Sapium sebiferum Roxb. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 142, 143–156. [Google Scholar] [CrossRef]
- Siril, E.A.; Dhar, U. A highly efficient in vitro regeneration methodology for mature Chinese tallow tree (Sapium sebiferum Roxb). Plant Cell Rep. 1996, 16, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Siril, E.A.; Dhar, U. Micropropagation of mature Chinese tallow tree (Sapium sebiferum Roxb). Plant Cell Rep. 1997, 16, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.Y.; Wu, Y.; Shen, Y.C.; Mao, Y.J.; Liu, W.B.; Zhao, W.W.; Mu, Y.; Li, M.H.; Yang, M.L.; Wu, L.F. Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos of Sapium sebiferum Roxb. Sci. Hortic. 2015, 197, 218–225. [Google Scholar] [CrossRef]
- Tian, L.; Ke, Y.; Gan, S.; Chen, Y.; Chen, Y.; Yang, Z.; Wang, X. Triploid plant regeneration from mature endosperms of Sapium sebiferum. Plant Growth Regul. 2012, 68, 319–324. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Manokari, M.; Latha, R.; Priyadharshini, S.; Shekhawat, M.S. Effect of activated charcoal and phytohormones to improve in vitro regeneration in Vanda tessellata (Roxb.) Hook. ex G. Don. Vegetos 2021, 34, 383–389. [Google Scholar] [CrossRef]
- Sivanesan, I.; Song, J.Y.; Hwang, S.J.; Jeong, B.R. Micropropagation of Cotoneaster wilsonii Nakai—A rare endemic ornamental plant. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 105, 55–63. [Google Scholar] [CrossRef]
- Zeng, Q.Q.; Han, Z.Q.; Kang, X.Y. Adventitious shoot regeneration from leaf, petiole and root explants in triploid (Populus alba × P. glandulosa)× P. tomentosa. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 138, 121–130. [Google Scholar] [CrossRef]
- Kakimzhanova, A.; Dyussembekova, D.; Nurtaza, A.; Yessimseitova, A.; Shevtsov, A.; Lutsay, V.; Ramankulov, Y.; Kabieva, S. An Efficient Micropropagation System for the Vulnerable Wild Apple Species, Malus sieversii, and Confirmation of Its Genetic Homogeneity. Erwerbs-Obstbau 2022, 65, 621–632. [Google Scholar] [CrossRef]
- Liang, H.Z.; Xiong, Y.P.; Guo, B.Y.; Yan, H.F.; Jian, S.G.; Ren, H.; Zhang, X.H.; Li, Y.; Zeng, S.J.; Wu, K.L.; et al. Shoot organogenesis and somatic embryogenesis from leaf and root explants of Scaevola sericea. Sci. Rep. 2020, 10, 11343. [Google Scholar] [CrossRef]
- Köhler, C.; Tran, S.; Ison, M.; Ferreira Dias, N.C.; Ortega, M.A.; Chen, Y.-F.S.; Peper, A.; Hu, L.X.; Xu, D.W.; Mozaffari, K.; et al. Endogenous salicylic acid suppresses de novo root regeneration from leaf explants. PLOS Genet. 2023, 19, e1010636. [Google Scholar] [CrossRef]
- Zhou, H.J.; Sun, J.L.; Zheng, K.Y.; Zhang, X.Y.; Yao, Y.; Zhu, M.L. Efficient Plantlet Regeneration from Branches in Mangifera indica L. Plants 2024, 13, 2595. [Google Scholar] [CrossRef]
- Yan, X.T.; Zheng, K.Y.; Li, P.; Zhong, X.; Zhu, Z.W.; Zhou, H.J.; Zhu, M.L. An efficient organogenesis protocol for the endangered relic tree species and genetic fidelity assessment using DNA markers. Front. Plant Sci. 2024, 15, 1259925. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Sharma, M.K.; Joshi, P.; Malhotra, E.V.; Latha, M.; Malik, S.K. An efficient direct organogenesis protocol for in vitro clonal propagation of Rubia cordifolia L. Ind. Crops Prod. 2024, 208, 117856. [Google Scholar] [CrossRef]
- Mao, W.M.; Song, H.Y.; Li, Y.; Wang, Y.Y.; Lin, H.J.; Yao, C.; Zhou, W.; Yang, B.; Chen, X.Y.; Li, P. Efficient plant regeneration and genetic transformation system of the precious fast-growing tree Toona ciliata. Ind. Crops Prod. 2021, 172, 114015. [Google Scholar] [CrossRef]
- Fatima, N.; Anis, M. Role of growth regulators on in vitro regeneration and histological analysis in Indian ginseng (Withania somnifera L.) Dunal. Physiol. Mol. Biol. Plants 2011, 18, 59–67. [Google Scholar] [CrossRef]
- Sorokin, A.; Kovalchuk, I. Development of efficient and scalable regeneration tissue culture method for Cannabis sativa. Plant Sci. 2025, 350, 112296. [Google Scholar] [CrossRef]
- Su, Y.H.; Liu, Y.B.; Zhang, X.S. Auxin-Cytokinin Interaction Regulates Meristem Development. Mol. Plant 2011, 4, 616–625. [Google Scholar] [CrossRef]
- Gemmell, A.R. Regeneration from the Leaf of Atrichum undulatum (Hedw.) P. Beauv. Trans. Br. Bryol. Soc. 1953, 2, 203–213. [Google Scholar] [CrossRef]
- Niederwieser, J.G.; Vcelar, B.M. Regeneration of Lachenalia Species from Leaf Explants. Hortscience 1990, 25, 684–687. [Google Scholar] [CrossRef]
- Xu, Y.W.; Zeng, J.W.; Zou, Y.T.; Husaini, A.M.; Yao, R.Y.; Wu, D.G.; Wu, W. Combined effect of dark and wounding on regeneration potential of Houttuynia cordata Thunb. leaves. Indian J. Exp. Biol. 2011, 49, 540–546. [Google Scholar]
- Bhatia, P.; Ashwath, N.; Midmore, D.J. Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 457–464. [Google Scholar] [CrossRef]
- Matosevich, R.; Cohen, I.; Gil-Yarom, N.; Modrego, A.; Friedlander-Shani, L.; Verna, C.; Scarpella, E.; Efroni, I. Author Correction: Local auxin biosynthesis is required for root regeneration after wounding. Nat. Plants 2022, 8, 857. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, W.; Gu, Z.W.; Wu, S.S.; E, Y.L.; Zhou, W.K.; Lin, J.X.; Xu, L.; Zhu, Z.Q. Roles of the wound hormone jasmonate in plant regeneration. J. Exp. Bot. 2023, 74, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Dewir, Y.H.; Nurmansyah; Naidoo, Y.; Teixeira da Silva, J.A. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, P.; Geijskes, R.J.; Wang, L.F.; Elliott, A.; Grof, C.P.L.; Berding, N.; Smith, G.R. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. 2006, 25, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Vijay Anand, K.G.; Reddy, M.P. Plant regeneration of non-toxic Jatropha curcas—Impacts of plant growth regulators, source and type of explants. J. Plant Biochem. Biotechnol. 2011, 20, 125–133. [Google Scholar] [CrossRef]
- Fufa, H.; Tesema, M.; Daksa, J. In vitro regeneration protocol through direct organogenesis for Jatropha curcas L. (Euphorbiaceae) accessions in Ethiopia. Afr. J. Biotechnol. 2019, 18, 991–1003. [Google Scholar]
- Atta, R.; Laurens, L.; Boucheron-Dubuisson, E.; Guivarc’h, A.; Carnero, E.; Giraudat-Pautot, V.; Rech, P.; Chriqui, D. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 2009, 57, 626–644. [Google Scholar] [CrossRef]
- Zhang, T.-Q.; Lian, H.; Tang, H.; Dolezal, K.; Zhou, C.-M.; Yu, S.; Chen, J.-H.; Chen, Q.; Liu, H.; Ljung, K.; et al. An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants. Plant Cell 2015, 27, 349–360. [Google Scholar] [CrossRef]
- Su, Y.H.; Zhang, X.S. The hormonal control of regeneration in plants. Curr. Top. Dev. Biol. 2014, 108, 35–69. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Chen, Y.L.; Lü, J.F.; Teixeira da Silva, J.A.; Zhang, X.H.; Ma, G.H. Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia W. T. Wang. Sci. Rep. 2016, 6, 24662. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.N.; Gao, R.M.; Zhang, Y.Q.; Feng, Y.M. In vitro regeneration and its histological characteristics of Dioscorea nipponica Makino. Sci. Rep. 2022, 12, 18436. [Google Scholar] [CrossRef]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Jogam, P.; Sandhya, D.; Shekhawat, M.S.; Alok, A.; Manokari, M.; Abbagani, S.; Allini, V.R. Genetic stability analysis using DNA barcoding and molecular markers and foliar micro-morphological analysis of in vitro regenerated and in vivo grown plants of Artemisia vulgaris L. Ind. Crops Prod. 2020, 151, 112476. [Google Scholar] [CrossRef]
- Hu, J.B.; Liu, J.; Yan, H.B.; Xie, C.H. Histological observations of morphogenesis in petiole derived callus of Amorphophallus rivieri Durieu in vitro. Plant Cell Rep. 2005, 24, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Schuchovski, C.; Sant’Anna-Santos, B.F.; Marra, R.C.; Biasi, L.A. Morphological and anatomical insights into de novo shoot organogenesis of in vitro ‘Delite’ rabbiteye blueberries. Heliyon 2020, 6, e05468. [Google Scholar] [CrossRef]
- Akhtar, R.; Shahzad, A. Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L. J. For. Res. 2018, 30, 1179–1189. [Google Scholar] [CrossRef]
- de Almeida, M.; de Almeida, C.V.; Graner, E.M.; Brondani, G.E.; de Abreu-Tarazi, M.F. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: A histological study. Plant Cell Rep. 2012, 31, 1495–1515. [Google Scholar] [CrossRef]
Order | Basal Medium | Leaf Explants from Suckers-Derived Nodal Cutting | Leaf Explants from Young Stem-Derived Nodal Cutting | ||
---|---|---|---|---|---|
Shoot Regeneration Frequency (%) | Shoots Per Explant | Shoot Regeneration Frequency (%) | Shoots Per Explant | ||
1 | WPM | 80.00 ± 1.00 b | 25.00 ± 1.00 b | 55.17 ± 0.76 a | 13.33 ± 0.58 b |
2 | MS | 81.83 ± 0.29 a | 27.50 ± 0.50 a | 56.50 ± 0.87 a | 21.83 ± 0.77 a |
3 | DCR | 74.83 ± 0.76 c | 15.50 ± 0.87 c | 51.93 ± 0.90 b | 11.17 ± 0.29 c |
Order | The Concentration of KT | Leaf Explants from Suckers-Derived Nodal Cutting | Leaf Explants from Young Stem-Derived Nodal Cutting | ||
---|---|---|---|---|---|
Shoot Regeneration Frequency (%) | Shoots Per Explant | Shoot Regeneration Frequency (%) | Shoots Per Explant | ||
1 | KT 0:BA 1.0:NAA 0.1 | 76.00 ± 1.00 e | 15.67 ± 0.58 d | 54.17 ± 0.76 e | 12.17 ± 1.04 e |
2 | KT 0.1:BA 1.0:NAA 0.1 | 79.50 ± 0.50 d | 24.00 ± 1.00 c | 55.83 ± 0.76 d | 15.50 ± 0.50 d |
3 | KT 0.2:BA 1.0:NAA 0.1 | 80.83 ± 0.29 c | 27.50 ± 0.50 b | 57.50 ± 0.50 c | 19.17 ± 0.76 b |
4 | KT 0.3:BA 1.0:NAA 0.1 | 83.67 ± 0.58 b | 29.67 ± 0.58 a | 59.67 ± 0.58 b | 22.83 ± 0.76 a |
5 | KT 0.4:BA 1.0:NAA 0.1 | 86.50 ± 0.50 a | 28.50 ± 0.50 ab | 61.17 ± 0.29 a | 20.00 ± 1.00 b |
6 | KT 0.5:BA 1.0:NAA 0.1 | 87.00 ± 1.00 a | 24.83 ± 0.76 c | 61.33 ± 0.58 a | 17.67 ± 0.58 c |
Explant Type | Leaf Explants from Suckers-Derived Nodal Cutting | Leaf Explants from Young Stem-Derived Nodal Cutting | ||
---|---|---|---|---|
Shoot Regeneration Frequency (%) | Shoots Per Explant | Shoot Regeneration Frequency (%) | Shoots Per Explant | |
Whole leaf | 53.33 ± 1.92 c | 23.75 ± 1.25 c | 38.89 ± 1.11 c | 20.42 ± 1.76 c |
Transected midvein blades | 98.89 ± 1.11 a | 71.75 ± 1.64 a | 84.44 ± 1.11 a | 64.00 ± 1.50 a |
Leaf without margin | 85.56 ± 1.11 b | 51.92 ± 1.38 b | 70.00 ± 1.92 b | 45.08 ± 1.63 b |
Order | Plant Growth Regulators (mg/L) | Leaf Explants from Suckers-Derived Nodal Cutting | Leaf Explants from Young Stem-Derived Nodal Cutting | ||
---|---|---|---|---|---|
Shoot Regeneration Frequency (%) | Shoots Per Explant | Shoot Regeneration Frequency (%) | Shoots Per Explant | ||
1 | 6-BA 0:NAA 0:KT0.3 | 0.00 ± 0.00 g | 0.00 ± 0.00 m | 0.00 ± 0.00 j | 0.00 ± 0.00 l |
2 | 6-BA 1.0:NAA 0:KT0.3 | 87.78 ± 1.92 b | 35.08 ± 0.14 g | 66.67 ± 3.33 ef | 28.25 ± 0.25 f |
3 | 6-BA 1.0:NAA 0.1:KT0.3 | 90.00 ± 3.33 b | 40.33 ± 0.14 e | 71.11 ± 1.92 cd | 33.5 ± 0.25 d |
4 | 6-BA 1.0:NAA 0.2:KT 0.3 | 91.11 ± 1.92 b | 45.00 ± 0.25 d | 83.33 ± 3.33 a | 33.42 ± 0.14 d |
5 | 6-BA 1.0:NAA 0.3:KT0.3 | 80.00 ± 3.33 c | 30.83 ± 0.14 h | 63.33 ± 3.33 f | 23.75 ± 0.25 h |
6 | 6-BA 2.0:NAA 0:KT0.3 | 96.67 ± 3.33 a | 49.83 ± 0.14 c | 72.22 ± 1.92 c | 40.00 ± 0.25 c |
7 | 6-BA 2.0:NAA 0.1:KT0.3 | 97.78 ± 1.92 a | 60.08 ± 0.14 b | 77.78 ± 1.92 b | 51.92 ± 0.14 b |
8 | 6-BA 2.0:NAA 0.2:KT0.3 | 98.89 ± 1.92 a | 72.00 ± 0.00 a | 84.44 ± 1.92 a | 64.00 ± 0.00 a |
9 | 6-BA 2.0:NAA 0.3:KT0.3 | 91.11 ± 1.92 b | 37.67 ± 0.14 f | 67.78 ± 1.92 de | 29.50 ± 0.25 e |
10 | 6-BA 3.0:NAA 0:KT0.3 | 53.33 ± 3.33 e | 23.75 ± 0.25 k | 38.89 ± 1.92 i | 20.25 ± 0.25 j |
11 | 6-BA 3.0:NAA 0.1:KT0.3 | 65.56 ± 1.92 d | 26.75 ± 0.00 j | 44.44 ± 1.92 h | 22.58 ± 0.14 i |
12 | 6-BA 3.0:NAA 0.2:KT0.3 | 67.78 ± 1.92 d | 30.25 ± 0.25 i | 53.33 ± 3.33 g | 25.00 ± 0 g |
13 | 6-BA 3.0:NAA 0.3:KT0.3 | 48.89 ± 1.92 f | 20.75 ± 0.25 l | 35.56 ± 1.92 i | 17.00 ± 0.25 k |
Plant Growth Regulators with/Without AC (mg∙L−1) | Average Shoot Length (cm) | Rate of Elongation (%) | |
---|---|---|---|
6-BA | NAA | ||
0.1 | 0.01 | 4.68 ± 0.05 f | 66.67 ± 0.58 f |
+AC | 4.87 ± 0.05 e | 76.67 ± 0.58 e | |
0.2 | 0.02 | 5.16 ± 0.05 d | 85.57 ± 0.33 d |
+AC | 5.50 ± 0.04 c | 91.10 ± 0.33 c | |
0.3 | 0.03 | 5.80 ± 0.04 b | 95.57 ± 0.33 b |
+AC | 6.05 ± 0.06 a | 100.00 ± 0.00 a | |
0.4 | 0.04 | 4.65 ± 0.04 f | 65.57 ± 0.33 f |
+AC | 4.88 ± 0.05 e | 74.43 ± 0.33 e | |
0.5 | 0.05 | 3.67 ± 0.06 h | 55.57 ± 0.33 h |
+AC | 3.94 ± 0.05 g | 61.10 ± 0.33 g |
Plant Growth Regulators (mg/L) | Adventitious Root Induction Percentage (%) | Rooting Start Time (d) | No. of Roots Per Shoot | |||
---|---|---|---|---|---|---|
WPM | MS | WPM | MS | WPM | MS | |
0 | 16.67 ± 3.34 e | 20.00 ± 3.34 e | 16.33 ± 0.58 a | 13.33 ± 0.58 a | 3.33 ± 0.58 e | 4.00 ± 1.00 e |
0.1 | 67.78 ± 1.92 c | 81.11 ± 1.92 c | 11.00 ± 1.00 cd | 7.33 ± 0.58 c | 8.67 ± 0.58 c | 9.33 ± 0.58 c |
0.2 | 76.67 ± 3.33 b | 88.89 ± 1.92 b | 10.00 ± 1.00 de | 6.00 ± 1.00 d | 10.00 ± 1.00 b | 11.33 ± 0.58 b |
0.3 | 84.44 ± 1.92 a | 98.89 ± 1.92 a | 9.00 ± 1.00 e | 4.67 ± 0.58 e | 11.67 ± 0.58 a | 14.00 ± 1.00 a |
0.4 | 65.56 ± 1.92 c | 78.89 ± 1.92 c | 12.00 ± 1.00 c | 8.33 ± 0.58 c | 7.67 ± 0.58 c | 8.67 ± 0.58 c |
0.5 | 61.11 ± 1.92 d | 73.33 ± 3.34 d | 13.67 ± 0.58 b | 10.67 ± 0.58 b | 6.33 ± 0.58 d | 7.00 ± 1.00 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xie, Y.; Zheng, K.; Fan, Y.; Zhou, H.; Zhu, M. Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera. Forests 2025, 16, 992. https://doi.org/10.3390/f16060992
Chen Y, Xie Y, Zheng K, Fan Y, Zhou H, Zhu M. Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera. Forests. 2025; 16(6):992. https://doi.org/10.3390/f16060992
Chicago/Turabian StyleChen, Yuan, Yumei Xie, Keyuan Zheng, Yanru Fan, Huijing Zhou, and Mulan Zhu. 2025. "Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera" Forests 16, no. 6: 992. https://doi.org/10.3390/f16060992
APA StyleChen, Y., Xie, Y., Zheng, K., Fan, Y., Zhou, H., & Zhu, M. (2025). Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera. Forests, 16(6), 992. https://doi.org/10.3390/f16060992