Histological Analysis of Dothistroma septosporum Infection on Different Provenances of Pinus sylvestris
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Inoculation
2.2. Spore Germination, Fungal Colonization, and Histological Assessment of Tissue Degradation
2.3. Severity Assessment
2.4. Statistical Analyses
2.4.1. Spore Germination, Fungal Colonization, and Histological Assessment of Tissue Degradation
2.4.2. Severity Assessment
3. Results
3.1. Light Microscopy Observations and Tissue Degradation
3.2. Disease Severity Assessment
3.3. Spore Germination and Fungal Coverage of Needle Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, I.; Crous, P.W.; Wingfield, B.D.; Wingfield, M.J. Multigene phylogenies reveal that red band needle blight is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud. Mycol. 2004, 50, 551–565. [Google Scholar]
- Barnes, I.; Kirisits, T.; Akulov, A.; Chhetri, D.B.; Wingfield, B.D.; Bulgakov, T.S.; Wingfield, M.J. New host and country records of the Dothistroma needle blight pathogens from Europe and Asia. For. Pathol. 2008, 38, 178–195. [Google Scholar] [CrossRef]
- Drenkhan, R.; Tomešová-Haataja, V.; Fraser, S.; Bradshaw, R.E.; Vahalík, P.; Mullett, M.S.; Martín-García, J.; Bulman, L.S.; Wingfield, M.J.; Kirisits, T.; et al. Global geographic distribution and host range of Dothistroma species: A comprehensive review. For. Pathol. 2016, 46, 408–442. [Google Scholar] [CrossRef]
- Markovskaja, S.; Raitelaitytė, K.; Kačergius, A.; Kolmakov, P.; Vasilevich, V. Occurrence of Dothistroma needle blight in Lithuania and Belarus: The risk posed to native Scots Pine forests. For. Pathol. 2020, 50, e12626. [Google Scholar] [CrossRef]
- Watt, M.S.; Kriticos, D.J.; Alcaraz, S.; Brown, A.V.; Leriche, A. The hosts and potential geographic range of Dothistroma needle blight. For. Ecol. Manag. 2009, 257, 1505–1519. [Google Scholar] [CrossRef]
- Fabre, B.; Ioos, R.; Piou, D.; Marcais, B. Is the emergence of Dothistroma needle blight of pine in France caused by the cryptic species Dothistroma pini? Phytopathology 2012, 102, 47–54. [Google Scholar] [CrossRef]
- Adamson, K.; Mullett, M.S.; Solheim, H.; Barnes, I.; Müller, M.M.; Hantula, J.; Vuorinen, M.; Kačergius, A.; Markovskaja, S.; Musolin, D.L.; et al. Looking for relationships between the populations of Dothistroma septosporum in northern Europe and Asia. Fungal Genet. Biol. 2018, 110, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Davydenko, K.; Baturkyn, D.; Hnoievyi, I.; Shcherbak, O. New Data on Host Range and Geographical Distribution of Dothistroma Needle Blight in Ukraine. Environ. Sci. Proc. 2021, 3, 89. [Google Scholar] [CrossRef]
- Mullett, M.S.; Adamson, K.; Bragança, H.; Bulgakov, T.S.; Georgieva, M.; Henriques, J.; Jurisoo, L.; Laas, M.; Drenkhan, R. New country and regional records of the pine needle blight pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. For. Pathol. 2018, 48, e12440. [Google Scholar] [CrossRef]
- Ortíz de Urbina, E.; Mesanza, N.; Aragonés, A.; Raposo, R.; Elvira-Recuenco, M.; Boqué, R.; Patten, C.; Aitken, J.; Iturritxa, E. Emerging Needle Blight Diseases in Atlantic Pinus Ecosystems of Spain. Forests 2017, 8, 18. [Google Scholar] [CrossRef]
- Wartalska, P.; Oszako, T.; Bakier, S.; Belbahri, L.; Malewski, T.; Hsiang, T.; Popowska-Nowak, E.; Nowakowska, J. Dothistroma septosporum not detected in Pinus sylvestris seed trees from investigated stands in Southern Poland. Forests 2021, 12, 1323. [Google Scholar] [CrossRef]
- Evans, H.C. The Genus Mycosphaerella and Its Anamorphs Cercoseptoria, Dothistroma and Lecanosticta on Pines; CABI: Wallingford, UK, 1984; 102p. [Google Scholar]
- Ivory, M.H. Records of foliage pathogens of Pinus species in tropical countries. Plant Pathol. 1994, 43, 511–518. [Google Scholar] [CrossRef]
- Gibson, I.A.S. Impact and control of Dothistroma blight of pines. Eur. J. For. Pathol. 1974, 4, 89–100. [Google Scholar] [CrossRef]
- Mullett, M.S.; Drenkhan, R.; Adamson, K.; Boroń, P.; Lenart-Boroń, A.; Barnes, I.; Tomšovský, M.; Jánošíková, Z.; Adamčíková, K.; Ondrušková, E.; et al. Worldwide genetic structure elucidates the Eurasian origin and invasion pathways of Dothistroma septosporum, causal agent of Dothistroma needle blight. J. Fungi 2021, 7, 111. [Google Scholar] [CrossRef]
- Brown, A.; Webber, J. Red Band Needle Blight of Conifers in Britain; Edinburgh, Research Note—Forestry Commission, Bulletin (No. 002); Forestry Commission: Bristol, UK, 2008. [Google Scholar]
- Rodas, C.A.; Wingfield, M.J.; Granados, G.M.; Barnes, I. Dothistroma needle blight: An emerging epidemic caused by Dothistroma septosporum in Colombia. Plant Pathol. 2016, 65, 53–63. [Google Scholar] [CrossRef]
- Fraser, S.; Woodward, S.; Brown, A.V. Inter- and intraspecific variation in susceptibility to Dothistroma needle blight in Britain. How susceptible are Pinus sylvestris and Pinus contorta? For. Pathol. 2016, 46, 534–546. [Google Scholar] [CrossRef]
- Perry, A.; Brown, A.V.; Cavers, S.; Cottrell, J.E.; Ennos, R.A. Has Scots pine (Pinus sylvestris) co-evolved with Dothistroma septosporum in Scotland? Evidence for spatial heterogeneity in the susceptibility of native provenances. Evol. Appl. 2016, 9, 982–993. [Google Scholar] [CrossRef]
- Gibson, I.A.S. Diseases of Forest Trees Widely Planted as Exotics in the Tropics and Southern Hemisphere. Part II. The Genus Pinus; Commonwealth Mycological Institute/Commonwealth Forestry Institute: Kew, UK, 1979. [Google Scholar]
- Peterson, G.W. Dothistroma needle blight of Austria and ponderosa pines: Epidemiology and control. Phytopathology 1967, 57, 437–441. [Google Scholar]
- Gilmour, J.W. Distribution and significance of the needle blight of pines caused by Dothistroma pini in New Zealand. Plant Dis. Rep. 1967, 51, 727–730. [Google Scholar]
- Lang, K.J. Dothistroma pini on young spruces (Picea, Abies). Eur. J. For. Pathol. 1987, 17, 316–317. [Google Scholar] [CrossRef]
- Jacobs, J.J.; Burnes, T.A.; David, A.J.; Blanchette, R.A. Histopathology of primary needles and mortality associated with white pine blister rust in resistant and susceptible Pinus strobus. For. Pathol. 2009, 39, 361–376. [Google Scholar] [CrossRef]
- Karadzic, D. The mechanism of some fungal infections of the needles of Austrian pine and scotch pine. Zast. Bilja 1989, 40, 35–46. [Google Scholar]
- Fraser, S.; Brown, A.V.; Woodward, S. Intraspecific variation in susceptibility to Dothistroma needle blight within native Scottish Pinus sylvestris. Plant Pathol. 2015, 64, 864–870. [Google Scholar] [CrossRef]
- Ivory, M.H. Reaction of pines in Kenya to attack by Dothistroma pini var. keniensis. East Afr. Agric. For. J. 1968, 33, 236–244. [Google Scholar] [CrossRef]
- Peterson, G.W. Infection of Austrian and ponderosa pines by Dothistroma pini in Eastern Nebraska. Phytopathology 1973, 63, 1060–1063. [Google Scholar] [CrossRef]
- Woods, A.J.; Coates, K.D.; Haman, A. Is an unprecedented Dothistroma needle blight epidemic related to climate change? Bioscience 2005, 55, 761–769. [Google Scholar] [CrossRef]
- Woods, A.J.; Martín-García, J.; Bulman, L.; Vasconcelos, M.W.; Boberg, J.; La Porta, N.; Peredo, H.; Vergara, G.; Ahumada, R.; Brown, A.; et al. Dothistroma needle blight, weather and possible climatic triggers for the disease’s recent emergence. For. Pathol. 2016, 46, 443–452. [Google Scholar] [CrossRef]
- Hoff, R.J. Susceptibility of Lodgepole Pine to the Needle Cast Fungus Lophodermella concolor; Intermountain Forest and Range Experiment Station, US Department of Agriculture, Forest Service: Ogden, UT, USA, 1985; Volume 349, pp. 1–5. [Google Scholar]
- Ondrušková, E.; Ostrovský, R.; Jánošíková, Z.; Adamčíková, K.; Kobza, M. Selected climatic variables in Slovakia are favourable to the development of Dothistroma needle blight. Folia Oecologica 2020, 47, 144–152. [Google Scholar] [CrossRef]
- Kabir, M.S.; Ganley, R.J.; Bradshaw, R.E. Dothistromin toxin is a virulence factor in Dothistroma needle blight of pines. Plant Pathol. 2014, 64, 225–234. [Google Scholar] [CrossRef]
- Peterson, R.L.; Enstone, D.E.; Basu, C. Histological techniques for plant pathology research. Can. J. Bot. 2011, 89, 122–131. [Google Scholar]
- Peterson, G.W.; Walla, J.A. Development of Dothistroma pini upon and within needles of Austrian and ponderosa pines in eastern Nebraska. Phytopathology 1978, 68, 1422–1430. [Google Scholar] [CrossRef]
- Bradshaw, R.E. Dothistroma (red-band) needle blight of pines and the dothistromin toxin: A review. For. Pathol. 2004, 34, 163–185. [Google Scholar] [CrossRef]
- Bulman, L.S.; Bradshaw, R.E.; Fraser, S.; Martín-García, J.; Barnes, I.; Musolin, D.L.; La Porta, N.; Woods, A.J.; Diez, J.J.; Koltay, A.; et al. A worldwide perspective on the management and control of Dothistroma needle blight. For. Pathol. 2016, 46, 472–488. [Google Scholar] [CrossRef]
- Fraser, S.; Mullett, M.S.; Woodward, S.; Brown, A.V. Between-site and -year variation in the relative susceptibility of native Scottish Pinus sylvestris populations to Dothistroma needle blight. Plant Pathol. 2016, 65, 369–379. [Google Scholar] [CrossRef]
- Groenewald, M.; Barnes, I.; Bradshaw, R.E.; Brown, A.; Dale, A.; Groenewald, J.Z.; Lewis, K.J.; Wingfield, B.D.; Wingfield, M.J.; Crous, P.W. Characterization and worldwide distribution of the mating type genes in the Dothistroma needle blight pathogens. Phytopathology 2007, 97, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.S.; Ganley, R.J.; Bradshaw, R.E. An improved artificial pathogenicity assay for Dothistroma needle blight on Pinus radiata. Australas. Plant Pathol. 2013, 42, 503–510. [Google Scholar] [CrossRef]
- Mehrabi, R.; Zwiers, L.H.; De Waard, M.; Kema, G.H.J. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol. Plant Microbe Interact. 2006, 19, 1262–1269. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: Berlin/Heidelberg, Germany, 2000; pp. 100, 461. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1–118. 2014. Available online: http://CRAN.R-project.org/package=nlme (accessed on 24 February 2024).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: http://www.R-project.org/ (accessed on 24 February 2024).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- van der Does, H.C.; Rep, M. Adaptation to the host environment by plant-pathogenic fungi. Annu. Rev. Phytopathol. 2017, 4, 427–450. [Google Scholar] [CrossRef]
- Fraser, S.; Martín-García, J.; Perry, A.; Kabir, M.S.; Owen, T.; Solla, A.; Brown, A.V.; Bulman, L.S.; Barnes, I.; Hale, M.D.; et al. A review of Pinaceae resistance mechanisms against needle and shoot pathogens with a focus on the Dothistroma–Pinus interaction. For. Pathol. 2016, 46, 453–471. [Google Scholar] [CrossRef]
- Muir, J.A.; Cobb, F.W. Infection of radiata and bishop pine by Mycosphaerella pini in California. Can. J. For. Res. 2005, 35, 2529–2538. [Google Scholar] [CrossRef]
- Kabir, M.S.; Ganley, R.J.; Bradshaw, R.E. The hemibiotrophic lifestyle of the fungal pine pathogen Dothistroma septosporum. For. Pathol. 2015, 45, 190–202. [Google Scholar] [CrossRef]
- Gadgil, P.D. Infection of Pinus radiata needles by Dothistroma pini. N. Z. J. Bot. 1967, 5, 498–503. [Google Scholar] [CrossRef]
- Jurgens, J.A.; Blanchette, R.A.; Zambino, P.J.; David, A. Histology of white pine blister rust in needles of resistant and susceptible eastern white pine. Plant Dis. 2003, 87, 1026–1030. [Google Scholar] [CrossRef]
- Perry, A.; Wachowiak, W.; Brown, A.V.; Ennos, R.A.; Cottrell, J.E.; Cavers, S. Substantial heritable variation for susceptibility to Dothistroma septosporum within populations of native British Scots pine (Pinus sylvestris). Plant Pathol. 2016, 65, 987–996. [Google Scholar] [CrossRef]
- Devey, M.E.; Groom, K.A.; Nolan, M.F.; Bell, J.C.; Dudzinski, M.J.; Old, K.M.; Matheson, A.C.; Moran, G.F. Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor. Appl. Genet. 2004, 108, 1056–1063. [Google Scholar] [CrossRef]
- Bradshaw, R.E.; Jin, H.P.; Morgan, B.S.; Schwelm, A.; Teddy, O.R.; Young, C.A.; Zhang, S. A polyketide synthase gene required for biosynthesis of the aflatoxin-like toxin, dothistromin. Mycopathologia. 2006, 161, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Schwelm, A.; Barron, N.J.; Baker, J.; Dick, M.; Long, P.G.; Zhang, S.; Bradshaw, R.E. Dothistromin toxin is not required for Dothistroma needle blight in Pinus radiata. Plant Pathol. 2009, 58, 293–304. [Google Scholar] [CrossRef]
- Gadgil, P.D. Duration of leaf wetness periods and infection of Pinus radiata by Dothistroma pini. N. Z. J. For. 1977, 7, 83–90. [Google Scholar]
Code | Country | Origin | Coordinates | Collector/Supplier | Altitude (m asl) | Year Collected | Seed Weight 1 (mg) |
---|---|---|---|---|---|---|---|
AU1 | Austria | Hochwolkersdorf | N47°40′16″, E16°18′44″ | Heino Konrad (Vienna, Austria) | 590 | 1988 | 5.9 ± 0.1 |
UK1 | UK | Unknown (seed source = Roseisle Forest) | n.a. | Forestry Commission (Bristol, UK) | n.a. | 2008 | 7.5 ± 0.3 |
UK2 | UK | Unknown (seed source = Kielder Forest District) | n.a. | Forestry Commission (Bristol, UK) | n.a. | 2010 | 8.8 ± 0.2 |
Trait/Descriptive Statistics | No of Resin Ducts | Resin Duct Ø | Epidermis Thickness | Hypodermis Thickness | Endodermis Thickness | |
---|---|---|---|---|---|---|
AU1 | max | 8 | 57 | 16 | 36 | 44 |
mean | 4.8 | 41.9 | 10.1 | 17 | 25.5 | |
min | 3 | 19 | 4 | 7 | 11 | |
RSD % | 26.7 | 24.6 | 33.95 | 44.02 | 41.02 | |
UK1 | max | 5 | 68 | 14 | 18 | 37 |
mean | 3.3 | 52.6 | 11.6 | 13.6 | 25.4 | |
min | 3 | 41 | 7 | 7 | 19 | |
RSD % | 17.83 | 14.71 | 16.21 | 21.35 | 21.52 | |
UK2 | max | 5 | 61 | 17 | 19 | 39 |
mean | 3.67 | 49.08 | 12.08 | 15.46 | 27 | |
min | 3 | 33 | 9 | 9 | 17 | |
RSD % | 21.55 | 17.95 | 20.56 | 20.56 | 24.8 |
Effect | numDF | F-Value | p-Value |
---|---|---|---|
(Intercept) | 1 | 12,423.9 | <0.001 |
Seed source | 2 | 18.5 | <0.001 |
Week | 1 | 22.7 | <0.001 |
Seed source * week | 2 | 4.8 | 0.01 |
Seed Source | Week | Estimate | 95% CI (Lower–Upper) |
---|---|---|---|
4 | 44.76 | 42.52–47.01 | |
AU1 | 5 | 44.1 | 41.86–46.34 |
6 | 43.67 | 41.43–45.92 | |
4 | 53.25 | 51–55.49 | |
UK1 | 5 | 45.4 | 43.15–47.64 |
6 | 45.15 | 42.91–47.4 | |
4 | 51.67 | 49.43–53.92 | |
UK2 | 5 | 49.8 | 47.55–52.04 |
6 | 47.63 | 45.38–49.87 |
Parameter | Estimate | Std. Error | df | t-Value | p-Value |
---|---|---|---|---|---|
Intercept | 4.640 | 2.592 | 15 | 1.790 | 0.094 |
UK1 | −1.515 | 3.975 | 15 | −0.381 | 0.709 |
UK2 | 7.119 | 3.840 | 15 | 1.854 | 0.084 |
Seed Source | Time (Days Post Inoculation) | Mean Germination/ Coverage | Sd Germination/ Coverage |
---|---|---|---|
AU1 | T1 | 14.8 | 13.2 |
AU1 | T4 | 54.8 | 18.9 |
AU1 | T7 | 72.4 | 6.95 |
AU1 | T14 | 30.2 | 15.6 |
UK1 | T1 | 12.7 | 13.1 |
UK1 | T4 | 56.0 | 30.6 |
UK1 | T7 | 79.5 | 9.20 |
UK1 | T14 | 27.9 | 15.2 |
UK2 | T1 | 13.2 | 16.1 |
UK2 | T4 | 55.4 | 25.8 |
UK2 | T7 | 77.9 | 7.30 |
UK2 | T14 | 31.4 | 19.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jánošíková, Z.; Adamčíková, K.; Ondrušková, E.; Ostrovský, R.; Woodward, S.; Fraser, S. Histological Analysis of Dothistroma septosporum Infection on Different Provenances of Pinus sylvestris. Forests 2025, 16, 973. https://doi.org/10.3390/f16060973
Jánošíková Z, Adamčíková K, Ondrušková E, Ostrovský R, Woodward S, Fraser S. Histological Analysis of Dothistroma septosporum Infection on Different Provenances of Pinus sylvestris. Forests. 2025; 16(6):973. https://doi.org/10.3390/f16060973
Chicago/Turabian StyleJánošíková, Zuzana, Katarína Adamčíková, Emília Ondrušková, Radovan Ostrovský, Steve Woodward, and Stuart Fraser. 2025. "Histological Analysis of Dothistroma septosporum Infection on Different Provenances of Pinus sylvestris" Forests 16, no. 6: 973. https://doi.org/10.3390/f16060973
APA StyleJánošíková, Z., Adamčíková, K., Ondrušková, E., Ostrovský, R., Woodward, S., & Fraser, S. (2025). Histological Analysis of Dothistroma septosporum Infection on Different Provenances of Pinus sylvestris. Forests, 16(6), 973. https://doi.org/10.3390/f16060973