Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Framework
2.4. Research Method
2.4.1. Quantification of AFESV
2.4.2. Quantification of RER
2.4.3. Trade-Off–Synergy Analysis
2.4.4. PVAR Model Analysis
2.4.5. Geo-Informatic Tupu Method
3. Results
3.1. Changes in SWCAF and SWL
3.1.1. Changes in SWCAF Areas
3.1.2. Changes in SWL Areas
3.2. Changes in ESV and REEQ
3.2.1. Changes in Total ESV
3.2.2. Changes in Individual ESVs
3.2.3. Changes in REEQ
3.3. The Trade-Off–Synergy Relationship Between AFESV and RER
3.3.1. Spearman Correlation Analysis
3.3.2. Bivariate Spatial Autocorrelation
3.4. Interaction Between SWCAF and RER Based on PVAR Model
3.4.1. Variable Stability
3.4.2. Granger Causality
3.4.3. Impulse Response and Variance Decomposition
4. Discussion
4.1. Benefits of SWC in AF
4.2. Changes in AFESV and REEQ
4.3. SWCAF Promotes RER in Karst Areas
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Wynants, M.; Kelly, C.; Mtei, K.; Munishi, L.; Patrick, A.; Rabinovich, A.; Nasseri, M.; Gilvear, D.; Roberts, N.; Boeckx, P.; et al. Drivers of increased soil erosion in East Africa’s agro-pastoral systems: Changing interactions between the social, economic and natural domains. Reg. Environ. Change 2019, 19, 1909–1921. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, C.H.; Chen, H.S.; Yue, Y.M.; Zhang, W.; Zhang, M.Y.; Qi, X.K.; Fu, Z.Y. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- McDonald, R.I.; Chaplin-Kramer, R.; Mulligan, M.; Kropf, C.M.; Huelsen, S.; Welker, P.; Poor, E.; Erbaugh, J.T.; Masuda, Y.J. Win-wins or trade-offs? Site and strategy determine carbon and local ecosystem service benefits for protection, restoration, and agroforestry. Front. Environ. Sci. 2024, 12, 1432654. [Google Scholar] [CrossRef]
- Nair, P.K.R. Classification of agroforestry systems. Agrofor. Syst. 1985, 3, 97–128. [Google Scholar] [CrossRef]
- Wiersum, K. Forest gardens as an ‘intermediate’ land-use system in the nature-culture continuum: Characteristics and future potential. In New Vistas in Agroforestry; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Zomer, R.J.; Trabuco, A.; Coe, R.; Place, F.; Noordwijk, M.; Xu, J. Trees on Farms: An Update and Reanalysis of Agroforestry’s Global Extent and Socio-Ecological Characteristics; Working Paper 179; World Agroforestry Centre (ICRAF) Southeast Asia Regional Program: Bogor, Indonesia, 2014. [Google Scholar]
- Hu, W.M.; Gu, Z.K.; Xiong, K.N.; Lu, Y.R.; Li, Z.J.; Zhang, M.; You, L.H.; Ruan, H. A Review of Value Realization and Rural Revitalization of Eco-Products: Insights for Agroforestry Ecosystem in Karst Desertification Control. Land 2024, 13, 1888. [Google Scholar] [CrossRef]
- Shin, S.; Soe, K.T.; Lee, H.; Kim, T.H.; Lee, S.; Park, M.S. A systematic map of agroforestry research focusing on ecosystem services in the Asia-Pacific Region. Forests 2020, 11, 368. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Chidozie, B.C.; Ramos, A.L.; Ferreira, J.V.; Ferreira, L.P. Residual agroforestry biomass supply chain simulation insights and directions: A systematic literature review. Sustainability 2023, 15, 9992. [Google Scholar] [CrossRef]
- Dollinger, J.; Jose, S. Agroforestry for soil health. Agrofor. Syst. 2018, 92, 213–219. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.M.; Jose, S. Agroforestry and biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Mohan, K.B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Kaushal, R.; Mandal, D.; Panwar, P.; Kumar, P.; Tomar, J.M.S.; Mehta, H. Soil and water conservation benefits of agroforestry. In Forest Resources Resilience and Conflicts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 259–275. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry systems for soil health improvement and maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Jose, S. Agroforestry strategies to sequester carbon in temperate North America. Agrofor. Syst. 2012, 86, 225–242. [Google Scholar] [CrossRef]
- Jinger, D.; Kumar, R.; Kakade, V.; Dinesh, D.; Singh, G.; Pande, V.C.; Bhatnagar, P.R.; Rao, B.K.; Vishwakarma, A.K.; Kumar, D.; et al. Agroforestry for controlling soil erosion and enhancing system productivity in ravine lands of Western India under climate change scenario. Environ. Monit. Assess. 2022, 194, 267. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Olschewski, R.; Tscharntke, T.; Benítez, P.C.; Schwarze, S.; Klein, A.M. Economic evaluation of pollination services comparing coffee landscapes in Ecuador and Indonesia. Ecol. Soc. 2006, 11, 7. [Google Scholar] [CrossRef]
- Tsonkova, P.; Quinkenstein, A.; Böhm, C.; Freese, D.; Schaller, E. Ecosystem services assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem services provided by alley cropping systems. Ecol. Indic. 2014, 45, 285–299. [Google Scholar] [CrossRef]
- Kearney, S.P.; Fonte, S.J.; García, E.; Siles, P.; Chan, K.M.A.; Smukler, S.M. Evaluating ecosystem service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador. Ecol. Indic. 2019, 105, 264–278. [Google Scholar] [CrossRef]
- Leroux, L.; Clermont-Dauphin, C.; Ndienor, M.; Jourdan, C.; Roupsard, O.; Seghieri, J. A spatialized assessment of ecosystem service relationships in a multifunctional agroforestry landscape of Senegal. Sci. Total Environ. 2022, 853, 158707. [Google Scholar] [CrossRef] [PubMed]
- Ran, R.; Hua, L.; Xiao, J.F.; Ma, L.; Pang, M.Y.; Ni, Z.X. Can poverty alleviation policy enhance ecosystem service value? Evidence from poverty-stricken regions in China. Econ. Anal. Policy 2023, 80, 1509–1525. [Google Scholar] [CrossRef]
- Ketema, H.; Wei, W.; Legesse, A.; Zinabu, W.; Temesgen, H.; Yirsaw, E. Ecosystem service variation and its importance to the wellbeing of smallholder farmers in contrasting agro-ecological zones of East African Rift. Food Energy Secur. 2021, 10, e310. [Google Scholar] [CrossRef]
- Temesgen, H.; Wu, W.; Shi, X.; Yirsaw, E.; Bekele, B.; Kindu, M. Variation in ecosystem service values in an agroforestry dominated landscape in Ethiopia: Implications for land use and conservation policy. Sustainability 2018, 10, 1126. [Google Scholar] [CrossRef]
- Moreno, G.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; de Jalón, S.G.; Hartel, T.; Mirck, J.; Pantera, A.; Palma, J.H.N. Agroforestry systems of high nature and cultural value in Europe: Provision of commercial goods and other ecosystem services. Agrofor. Syst. 2018, 92, 877–891. [Google Scholar] [CrossRef]
- Baumgärtner, J.; Bieri, M. Fruit tree ecosystem service provision and enhancement. Ecol. Eng. 2006, 27, 118–123. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple functions of buffer strips in farming areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A systematic map of ecosystem services assessments around European agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Huang, G.Q. A look at rural ecological revitalization. Chin. J. Eco-Agric. 2019, 27, 190–197. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Fu, R. The goal setting and its realization path of rural ecological revitalization based on ecosystem services. Rural Econ. 2020, 12, 42–48. [Google Scholar]
- Duraiappah, A.K.; Nakamura, K.; Takeuchi, K.; Watanabe, M.; Nishi, M. Satoyama–Satoumi Ecosystems and Human Well-Being: Assessing Trends to Rethink a Sustainable Future; United Nations University Press: Tokyo, Japan, 2010. [Google Scholar]
- Ma, X.X.; Hua, Y.J. Establishing an evaluation index system for measuring the effect of rural ecological revitalization. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 60–67. [Google Scholar]
- Ma, L.Y.; Wen, X.J.; Jing, F.H.; Luo, Q.Y.; Liu, Y. Study on the spatial-temporal evolution of coupling coordinated degree of rural revitalization and eco-environmental system in border ethnic areas. Chin. J. Agric. Resour. Reg. Plan. 2024, 45, 11–21. [Google Scholar]
- Yang, M.D. On the vulnerability of karst environment. Yunnan Geogr. Environ. Res. 1990, 2, 21–29. [Google Scholar]
- Ford, D.C.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 1–5. [Google Scholar]
- Sweeting, M.M. Karst in China: Its Geomorphology and Environment; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Yuan, D.X. World correlation of karst ecosystem: Objectives and implementation. Adv. Earth Sci. 2001, 16, 461–466. [Google Scholar]
- Xiong, K.N.; Li, J.; Long, M.Z. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification. Acta Geogr. Sin. 2012, 67, 878–888. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing remote sensing methods for monitoring karst rocky desertification at sub-pixel scales in a highly heterogeneous karst region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Xiong, K.N.; Xiao, H. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China, 1960–2017. Catena 2021, 197, 104977. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Li, K.P.; Xiong, K.N.; Li, Y.; Wang, J.; Sun, J.; Cai, L.L. Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area. Agric. Water. Manag. 2021, 257, 107125. [Google Scholar] [CrossRef]
- Wu, Q.L.; Liang, H.; Xiong, K.N.; Li, R. Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: Frontier theories and outlook. Agrofor. Syst. 2019, 93, 1927–1938. [Google Scholar] [CrossRef]
- Bdoor, B.S. Tree diversity in homegarden land use of Mawsmai Village karst landscape, Meghalaya, northeast, India. Int. J. Environ. Ecol. Fam. Urban Stud. 2017, 7, 33–42. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, K.N. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. Sci. Total Environ. 2022, 852, 158538. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.N.; Xiao, J.; Zhu, D.Y. Research Progress on Agroforestry Ecosystem Services and its implications for industrial revitalization in karst regions. Acta Ecol. Sin. 2022, 42, 851–861. [Google Scholar] [CrossRef]
- He, J.Y.; Xiong, K.N.; Zhu, D.Y.; Zhang, S.H.; Zhang, J.J.; Fu, Y.Y. Characteristics and simulations of soil infiltration in agroforestry on karst mountains. Fujian J. Agric. Sci. 2020, 35, 200–209. [Google Scholar] [CrossRef]
- Yang, Y.W.; Xiao, H.; Chen, H.; Xiao, N.J.; Guo, C. Structural characteristics of soil mite communities under different modes of rose-based agroforestry in karst area. Acta Agric. Zhejiangensis 2021, 33, 112–121. [Google Scholar]
- Daw, T.M.; Hicks, C.C.; Brown, K.; Chaigneau, T.; Januchowski-Hartley, F.A.; Cheung, W.W.L.; Rosendo, S.; Crona, B.; Coulthard, S.; Sandbrook, C.; et al. Elasticity in ecosystem services: Exploring the variable relationship between ecosystems and human well-being. Ecol. Soc. 2016, 21, 11. [Google Scholar] [CrossRef]
- Gao, G.L.; Deng, Z.M.; Xiong, K.N.; Su, X.L.; Yang, M.D.; Tu, Y.L.; Su, W.C.; He, G. The Call and Hope of Karst: Guizhou Karst Ecological Environment Construction and Sustainable Development; Guizhou Science and Technology Publishing House: Guiyang, China, 2003. [Google Scholar]
- Xiong, K.N.; Chen, Y.B.; Chen, H.; Lan, A.J.; Sui, J. Turning Stones into Gold: Technologies and Models for Rocky Desertification Control in Guizhou; Guizhou Science and Technology Publishing House: Guiyang, China, 2011. [Google Scholar]
- Tai, L.; Chen, J.; Long, W.T.; Cai, H.Y.; Wang, X.X. Spatial-temporal pattern of the “Grain-for-Green Project” and its carbon sequestration effect in Guizhou province. J. Soil Water Conserv. 2024, 38, 170–177. [Google Scholar] [CrossRef]
- Lin, C.S.; Pan, S. Preliminary study on complex model of agriculture and forestry in karst ecological fragile region in Guizhou. J. Anhui Agric. Sci. 2007, 35, 5269–5270+5322. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022. Earth Syst. Sci. Data 2023, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Zhuo, S.; Liu, G.H.; Zhou, W.; Su, X.K. Spillover of ecosystem service value in Honghe Hani terrace heritage area. Acta Ecol. Sin. 2023, 43, 2734–2744. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Classification Criteria for Soil Erosion (SL 190-2007); China Water & Power Press: Beijing, China, 2007. [Google Scholar]
- Xu, H.Q. A remote sensing index for assessment of regional ecological changes. Chin. Environ. Sci. 2013, 33, 889–897. [Google Scholar] [CrossRef]
- Chen, Y.X.; Ning, X.G.; Zhang, H.C.; Lan, X.Q.; Chang, Z.B. Remote sensing ecological index (RSEI) model and its applications: A review. Remote Sens. Nat. Resour. 2024, 36, 28–40. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Luo, W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference. Sci. Total Environ. 2020, 741, 140256. [Google Scholar] [CrossRef]
- Yang, Z.G. Evaluation of Ecological Environment Quality Based on a New Karst Remote Sensing Ecological Index in Qiannan Prefecture. Master’s Thesis, Guilin University of Technology, Guilin, China, 2023. [Google Scholar]
- Pang, C.Y.; Wen, Q.; Ding, J.M.; Wu, X.Y.; Shi, L.N. Ecosystem services and their trade-offs and synergies in the upper reaches of the Yellow River basin. Acta Ecol. Sin. 2024, 44, 5003–5013. [Google Scholar] [CrossRef]
- Chen, Y.G. Reconstructing the mathematical process of spatial autocorrelation based on Moran’s statistics. Geogr. Res. 2009, 28, 1449–1463. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, A.L.; Du, M.J.; Liu, B. The implication of regional consumer credit behavior difference in supply side: An empirical study based on PVAR model with 29 provincial panel data. Financ. Econ. Res. 2016, 31, 40–48. [Google Scholar]
- Lian, Y.J.; Su, Z. Financial Constraints, Uncertainty and Firms’ Investment Efficiency. Manag. Rev. 2009, 21, 19–26. [Google Scholar] [CrossRef]
- Shi, K.; Wu, Y.; Li, L. Quantifying and evaluating the effect of urban expansion on the fine particulate matter (PM2. 5) emissions from fossil fuel combustion in China. Ecol. Indic. 2021, 125, 107541. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Han, Y.F.; Zhang, S. Coupling coordination measure and interactive response between green finance and ecological civilization in Shandong province. Ecol. Econ. 2023, 39, 221–229. [Google Scholar]
- He, W.H.; Zhang, Y. Environmental regulation, industrial restructuring and high-quality economic development—An analysisbased on PVAR model of 11 provinces and cities in Yangtze River Economic Belt. Stat. Inf. Forum 2021, 36, 21–29. [Google Scholar]
- Lu, C.; Zhou, H.; Zhang, F.; Dong, G.L.; Fu, J.S. Land spatial transformation analysis in Shandong province based on geo information map. Trans. Chin. Soc. Agric. Mach. 2021, 52, 222–230. [Google Scholar]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef]
- Yuan, X.D.; Ma, L.R.; Li, L. Analysis of forest patch evolution in Guizhou Province based on remote sensing monitoring. Chin. Soil Water Conserv. 2017, 8, 54–57. [Google Scholar] [CrossRef]
- Sang, X.; Sun, C.; Chai, Z. Dynamic changes and prediction of land-use patterns in a typical area for rocky desertification control. Front. Ecol. Evol. 2025, 13, 1542799. [Google Scholar] [CrossRef]
- Niu, L.; Shao, Q. Soil conservation service spatiotemporal variability and its driving mechanism on the Guizhou Plateau, China. Remote Sens. 2020, 12, 2187. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.F.; Huang, D.H.; Zhu, M.; Wu, Y.; Sun, J.W. Spatio-temporal evolution of cultivated land and analysis of influence factors in karst mountainous areas. Trans. Chin. Soc. Agric. Eng. 2020, 36, 266–275. [Google Scholar] [CrossRef]
- Sun, D.Z.; Liang, Y.J.; Liu, L.J. Impact of Land Use Change on Ecosystem Service Values in Guizhou Province from 2000 to 2020. Resour. Environ. Yangtze Basin. 2024, 33, 547–560. [Google Scholar]
- Barrios, E.; Valencia, V.; Jonsson, M.; Brauman, A.; Hairiah, K.; Mortimer, P.E.; Okubo, S. Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Lefroy, E.C.; Dann, P.R.; Wildin, J.H.; Wesley-Smith, R.N.; McGowan, A.A. Trees and shrubs as sources of fodder in Australia. Agrofor. Syst. 1992, 20, 117–139. [Google Scholar] [CrossRef]
- Isselstein, J.; Kayser, M. Functions of grassland and their potential in delivering ecosystem services. Grassl. Sci. Eur. 2014, 19, 199–214. [Google Scholar]
- Zhao, X.Y.; Mu, F.F.; He, X.F.; Su, H.Z.; Jie, Y.Q.; Lan, H.X.; Xue, B. Livelihood vulnerability of farmers in key ecological function area under multiple stressors: Taking the Yellow River water supply area of Gannan as an example. Acta Ecol. Sin. 2020, 40, 7479–7492. [Google Scholar]
- Aryal, K.; Maraseni, T.; Apan, A. Transforming agroforestry in contested landscapes: A win-win solution to trade-offs in ecosystem services in Nepal. Sci. Total Environ. 2023, 857, 159301. [Google Scholar] [CrossRef]
- Deng, X.H.; Xiong, K.N.; Yu, Y.H.; Zhang, S.H.; Kong, L.W.; Zhang, Y. A Review of Ecosystem Service Trade-Offs/Synergies: Enlightenment for the Optimization of Forest Ecosystem Functions in Karst Desertification Control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Xiong, K.N.; He, C.; Zhang, M.S.; Pu, J.B. A New Advance on the Improvement of Forest Ecosystem Functions in the Karst Desertification Control. Forests 2023, 14, 2115. [Google Scholar] [CrossRef]
- Ye, J.P.; Liu, S.Y.; Sheng, F.; Liu, Z.; Yang, M.; Li, J. Landscape pattern evolution and ecological environment effect of Xunwu watershed. Acta Ecol. Sin. 2020, 40, 4737–4748. [Google Scholar]
- Shen, H. Problems and Suggestions of the Rural Ecological Vitalization. Ecol. Econ. 2021, 37, 196–200. [Google Scholar]
- Mieno, T.; Foster, T.; Kakimoto, S.; Brozović, N. Aquifer depletion exacerbates agricultural drought losses in the US High Plains. Nat. Water 2024, 2, 41–51. [Google Scholar] [CrossRef]
- Mao, R.; Zeng, D.H. Research advances in plant competition in agroforestry systems. Chin. J. Eco-Agric. 2009, 17, 379–386. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.Y. Measurement, regional difference and dynamic evolution of rural revitalization level in China. J. Quant. Technol. Econ. 2022, 39, 64–83. [Google Scholar] [CrossRef]
- Huang, M.Y.; Zhang, G.Z.; Wang, Q.L.; Qi, Y.; Wang, J.H.; Li, W.H.; Feng, S.R.; Ke, Q.J.; Guo, Q. Evaluation of typical ecosystem services in Dabie Mountain area and its application in improving residents’ well-being. Front. Plant Sci. 2023, 14, 1195644. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yao, G.H.; Ma, W.B.; Li, H.D. Analysis on the degree of coupling coordination between county ecosystem services and rural revitalization in the priority Areas for Biodiversity conservation in southeastern Himalayas: A case Study of Dingie County. J. Ecol. Rural Environ. 2023, 39, 1515–1524. [Google Scholar] [CrossRef]
- Dan, W.H. Research on the sustainable development model of karst canyon agriculture: A case study of Huajiang canyon in Guizhou Province. Carsol. Sin. 1999, 72, 56–61. [Google Scholar]
- Peng, J.; Hu, X.X.; Zhao, M.Y.; Liu, Y.X.; Tian, L. Research progress on ecosystem service trade-offs: From cognition to decision-making. J. Geogr. Sin. 2017, 72, 960–973. [Google Scholar] [CrossRef]
- Zhong, J.; Cui, L.; Deng, Z.; Zhang, Y.; Lin, J.; Guo, G.; Zhang, X. Long-term effects of ecological restoration projects on ecosystem services and their spatial interactions: A case study of Hainan tropical forest park in China. Environ. Manag. 2024, 73, 493–508. [Google Scholar] [CrossRef]
Data type | Resolution | Source |
---|---|---|
Land use | 30 m 2010–2020 | From paper [58] https://zenodo.org/record/8176941 (accessed on 3 June 2025) |
Remote sensing image | TIF image | https://earthengine.google.com/ (accessed on 3 June 2025) MODIS/061/MOD09A1 MODIS/061/MOD13A1 MODIS/061/MOD11A2 |
NDVI | ||
LST | ||
Area of soil erosion | 2010, 2015 and 2020 | Bulletin of Soil and Water Conservation in Guizhou Province (https://www.guizhou.gov.cn/ (accessed on 3 June 2025)) |
Administrative boundary | - | National Geomatics Center of China (https://www.ngcc.cn/ (accessed on 3 June 2025)) |
Type | Ecosystem Service | Cropland | Forest | Shrub | Grassland |
---|---|---|---|---|---|
Provision service (PSV) | Food production | 1327.62 | 452.95 | 296.76 | 156.19 |
Materials production | 624.76 | 1030.86 | 671.62 | 218.67 | |
Water resource supply | 31.24 | 531.05 | 343.62 | 124.95 | |
Regulation service (RSV) | Gas regulation | 1046.48 | 3389.35 | 2202.29 | 796.57 |
Climate regulation | 562.29 | 10,152.42 | 6606.88 | 2092.96 | |
Purification of environment | 156.19 | 3014.49 | 1999.25 | 687.24 | |
Hydrological regulation | 421.72 | 7403.46 | 5232.40 | 1530.67 | |
Support service (SSV) | Soil conservation | 1608.77 | 4139.06 | 2686.49 | 968.38 |
Nutrient cycle | 187.43 | 312.38 | 203.05 | 78.10 | |
Biodiversity | 203.05 | 3764.21 | 2452.20 | 874.67 | |
Cultural service (CSV) | Aesthetic landscape | 93.71 | 1655.63 | 1077.72 | 390.48 |
ESV (CNY 108) | Change Rate (%) | |||||
---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010–2020 | 2010–2015 | 2015–2020 | |
Cropland | 383.486 | 385.723 | 367.726 | −4.11% | 0.58% | −4.67% |
Forests | 3712.071 | 3747.028 | 3881.259 | 4.56% | 0.94% | 3.58% |
Shrubs | 172.263 | 141.147 | 115.516 | −32.94% | −18.06% | −18.16% |
Grassland | 23.019 | 19.682 | 18.151 | −21.15% | −14.50% | −7.78% |
Total ESV | 4290.839 | 4293.579 | 4382.652 | 2.14% | 0.06% | 2.07% |
Single ESV | Year | Variation (CNY 108) | ||||
---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010–2020 | 2010–2015 | 2015–2020 | |
Food production | 130.798 | 131.26 | 128.791 | −2.007 | 0.462 | −2.469 |
Materials production | 150.508 | 150.765 | 152.064 | 1.556 | 0.257 | 1.299 |
Water resource supply | 59.76 | 59.785 | 61.29 | 1.531 | 0.027 | 1.504 |
Gas regulation | 433.338 | 433.797 | 440.954 | 7.617 | 0.461 | 7.157 |
Climate regulation | 1139.737 | 1140.308 | 1169.182 | 29.445 | 0.571 | 28.874 |
Purification of environment | 338.218 | 338.307 | 346.858 | 8.640 | 0.089 | 8.551 |
Hydrological regulation | 834.862 | 834.739 | 855.313 | 20.451 | −0.124 | 20.574 |
Soil conservation | 549.411 | 550.097 | 557.89 | 8.479 | 0.686 | 7.793 |
Nutrient cycle | 45.523 | 45.596 | 45.994 | 0.470 | 0.073 | 0.397 |
Biodiversity | 422.552 | 422.717 | 433.417 | 10.864 | 0.165 | 10.699 |
Aesthetic landscape | 186.133 | 186.206 | 190.899 | 4.766 | 0.073 | 4.693 |
Impact Variable | AFESV | RER | ||
---|---|---|---|---|
Response Variable | RER | AFESV | AFESV | RER |
1 | 0 | 0.996 | 0.004 | 1 |
2 | 0.013 | 0.996 | 0.004 | 0.987 |
3 | 0.015 | 0.993 | 0.007 | 0.985 |
4 | 0.026 | 0.984 | 0.016 | 0.974 |
5 | 0.025 | 0.984 | 0.016 | 0.975 |
6 | 0.026 | 0.984 | 0.016 | 0.974 |
7 | 0.027 | 0.983 | 0.017 | 0.973 |
8 | 0.027 | 0.983 | 0.017 | 0.973 |
9 | 0.027 | 0.983 | 0.017 | 0.973 |
10 | 0.027 | 0.983 | 0.017 | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Zhang, M.; Li, Z.; Xiong, K.; Fang, Q.; Hu, W.; You, L.; Luo, Z. Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst. Forests 2025, 16, 955. https://doi.org/10.3390/f16060955
Fu Y, Zhang M, Li Z, Xiong K, Fang Q, Hu W, You L, Luo Z. Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst. Forests. 2025; 16(6):955. https://doi.org/10.3390/f16060955
Chicago/Turabian StyleFu, Yuwen, Min Zhang, Zuju Li, Kangning Xiong, Qi Fang, Wanmei Hu, Liheng You, and Zhifu Luo. 2025. "Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst" Forests 16, no. 6: 955. https://doi.org/10.3390/f16060955
APA StyleFu, Y., Zhang, M., Li, Z., Xiong, K., Fang, Q., Hu, W., You, L., & Luo, Z. (2025). Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst. Forests, 16(6), 955. https://doi.org/10.3390/f16060955