Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Design
2.1.1. Experiment on Upland
2.1.2. Experiment on Floodplain
2.1.3. Comparison Between Dry Land and Floodplain
2.2. Trace Gas Flux Measurements
2.3. Soil Sampling and Analysis and Environmental Characterization
2.4. Environmental Characterization
2.5. Statistical Analysis
3. Results
3.1. Carbon Dioxide and Methane Flux
3.1.1. Spatial Analysis of Homogeneous Açaí Planting in the Dry Season
3.1.2. Simultaneous Flow Measurements in Upland and Floodplains
3.2. Seasonal Flux of Greenhouse Gases
3.3. Environmental Variables
3.4. Correlations Between Flow and Environmental Variable
4. Discussion
4.1. Soil Carbon Flux in Açaí Plantation on Dry Land
4.2. Soil Carbon Flux During the Rainy Season in Upland Planting Compared to Estuary Floodplain
4.3. Annual Soil Carbon Flux in Upland Planting Compared to Estuary Floodplain
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 30 June 2024).
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways: The Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018; p. 570.
- Verchot, L.V.; Dannenmann, M.; Kengdo, S.K.; Njine-Bememba, C.B.; Rufino, M.C.; Sonwa, D.J.; Tejedor, J. Land-Use Change and Biogeochemical Controls of Soil CO2, N2O and CH4 Fluxes in Cameroonian Forest Landscapes. J. Integr. Environ. Sci. 2020, 17, 45–67. [Google Scholar] [CrossRef]
- Adachi, M.; Ito, A.; Yonemura, S.; Takeuchi, W. Estimation of Global Soil Respiration by Accounting for Land-Use Changes Derived from Remote Sensing Data. J. Environ. Manag. 2017, 200, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The Role of Soil Carbon in Natural Climate Solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Naidu, D.G.T.; Bagchi, S. Greening of the Earth Does Not Compensate for Rising Soil Heterotrophic Respiration under Climate Change. Glob. Change Biol. 2021, 27, 2029–2038. [Google Scholar] [CrossRef]
- Scheper, A.C.; Verweij, P.A.; van Kuijk, M. Post-Fire Forest Restoration in the Humid Tropics: A Synthesis of Available Strategies and Knowledge Gaps for Effective Restoration. Sci. Total Environ. 2021, 771, 144647. [Google Scholar] [CrossRef] [PubMed]
- Hassler, E.; Corre, M.D.; Tjoa, A.; Damris, M.; Utami, S.R.; Veldkamp, E. Soil Fertility Controls Soil–Atmosphere Carbon Dioxide and Methane Fluxes in a Tropical Landscape Converted from Lowland Forest to Rubber and Oil Palm Plantations. Biogeosciences 2015, 12, 5831–5852. [Google Scholar] [CrossRef]
- Peterson, M.L. Educational Programs for Team Delivery. Interdisciplinary Education of Health Associates. Acad. Med. 1975, 50, 111–117. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Sereenonchai, S.; Hatano, R.; Lal, R. Fire-Induced Changes in Soil Properties and Bacterial Communities in Rotational Shifting Cultivation Fields in Northern Thailand. Biology 2024, 13, 383. [Google Scholar] [CrossRef]
- Alves, N.d.O.; Brito, J.; Caumo, S.; Arana, A.; Hacon, S.d.S.; Artaxo, P.; Hillamo, R.; Teinilä, K.; Medeiros, S.R.B.d.; Vasconcellos, P.d.C. Biomass Burning in the Amazon Region: Aerosol Source Apportionment and Associated Health Risk Assessment. Atmos. Environ. 2015, 120, 277–285. [Google Scholar] [CrossRef]
- Denardin, L.G.d.O.; Alves, L.A.; Ortigara, C.; Winck, B.; Coblinski, J.A.; Schmidt, M.R.; Carlos, F.S.; Toni, C.A.G.d.; Camargo, F.A.d.O.; Anghinoni, I.; et al. How Different Soil Moisture Levels Affect the Microbial Activity. Ciência Rural 2020, 50, 1–10. [Google Scholar] [CrossRef]
- Verchot, L.V.; Davidson, E.A.; Cattânio, J.H.; Ackerman, I.L. Land-Use Change and Biogeochemical Controls of Methane Fluxes in Soils of Eastern Amazonia. Ecosystems 2000, 3, 41–56. [Google Scholar] [CrossRef]
- Lira-Guedes, A.C.; Leal, G.D.A.; Fischer, G.R.; Aguiar, L.J.G.; Melém, N.J.; Baia, A.L.P.; Guedes, M.C.; Júnior, N.J.; Baia, A.L.P.; Guedes, M.C. Carbon Emissions in Hydromorphic Soils from an Estuarine Floodplain Forest in the Amazon River. Rev. Bras. Ciências Ambient. 2021, 56, 413–423. [Google Scholar] [CrossRef]
- Cattanio, J.H.; Anderson, A.B.; Carvalho, M.S. Floristic Composition and Topographic Variation in a Tidal Floodplain Forest in the Amazon Estuary. Rev. Bras. Botânica 2002, 25, 419–430. [Google Scholar] [CrossRef]
- Salo, M.; Sirén, A.; Kalliola, R.; Wild, D.; Harvest, S. Açaí: The Forest Farms of the Amazon Estuary. In Diagnosing Wild Species Harvest; Salo, M., Sirén, A., Kalliola, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 191–202. ISBN 9780123972040. [Google Scholar]
- Cattânio, J.H.; Davidson, E.A.; Nepstad, D.C.; Verchot, L.V.; Ackerman, I.L. Unexpected Results of a Pilot Throughfall Exclusion Experiment on Soil Emissions of CO2, CH4, N2O, and NO in Eastern Amazonia. Biol. Fertil. Soils 2002, 36, 102–108. [Google Scholar] [CrossRef]
- Davidson, E.A.; Ishida, F.Y.; Nepstad, D.C. Effects of an Experimental Drought on Soil Emissions of Carbon Dioxide, Methane, Nitrous Oxide, and Nitric Oxide in a Moist Tropical Forest. Glob. Change Biol. 2004, 10, 718–730. [Google Scholar] [CrossRef]
- Werner, C.; Zheng, X.; Tang, J.; Xie, B.; Liu, C.; Kiese, R.; Butterbach-Bahl, K. N2O, CH4 and CO2 Emissions from Seasonal Tropical Rainforests and a Rubber Plantation in Southwest China. Plant Soil 2006, 289, 335–353. [Google Scholar] [CrossRef]
- Mosier, A.; Wassmann, R.; Verchot, L.; King, J.; Palm, C. Methane and Nitrogen Oxide Fluxes in Tropical Agricultural Soils: Sources, Sinks and Mechanisms. Environ. Dev. Sustain. 2004, 6, 11–49. [Google Scholar] [CrossRef]
- Carvalho, W.D.; Mustin, K.; Hilário, R.R.; Vasconcelos, I.M.; Eilers, V.; Fearnside, P.M. Deforestation Control in the Brazilian Amazon: A Conservation Struggle Being Lost as Agreements and Regulations Are Subverted and Bypassed. Perspect. Ecol. Conserv. 2019, 17, 122–130. [Google Scholar] [CrossRef]
- Serrano-Silva, N.; Sarria-Guzmán, Y.; Dendooven, L.; Luna-Guido, M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere 2014, 24, 291–307. [Google Scholar] [CrossRef]
- Courtois, E.A.; Stahl, C.; Van den Berge, J.; Bréchet, L.; Van Langenhove, L.; Richter, A.; Urbina, I.; Soong, J.L.; Peñuelas, J.; Janssens, I.A. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems 2018, 21, 1445–1458. [Google Scholar] [CrossRef]
- Rachor, I.; Gebert, J.; Gröngröft, A.; Pfeiffer, E.M. Assessment of the Methane Oxidation Capacity of Compacted Soils Intended for Use as Landfill Cover Materials. Waste Manag. 2011, 31, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Bodelier, P.L.E.; Roslev, P.; Henckel, T.; Frenzel, P. Stimulation by Ammonium-Based Fertilizers of Methane Oxidation in Soil around Rice Roots. Nature 2000, 403, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Bodelier, P.L.E.; Steenbergh, A.K. Interactions between Methane and the Nitrogen Cycle in Light of Climate Change. Curr. Opin. Environ. Sustain. 2014, 9–10, 26–36. [Google Scholar] [CrossRef]
- Ho, A.; Angel, R.; Veraart, A.J.; Daebeler, A.; Jia, Z.; Kim, S.Y.; Kerckhof, F.M.; Boon, N.; Bodelier, P.L.E. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System. Front. Microbiol. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Murase, J.; Frenzel, P. Selective Grazing of Methanotrophs by Protozoa in a Rice Field Soil. FEMS Microbiol. Ecol. 2008, 65, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Carvalheiro, L.G.; Maués, M.M.; Jaffé, R.; Giannini, T.C.; Freitas, M.A.B.; Coelho, B.W.T.; Menezes, C. Anthropogenic Disturbance of Tropical Forests Threatens Pollination Services to Açaí Palm in the Amazon River Delta. J. Appl. Ecol. 2018, 55, 1725–1736. [Google Scholar] [CrossRef]
- Freitas, M.A.B.; Vieira, I.C.G.; Albernaz, A.L.K.M.; Magalhães, J.L.L.; Lees, A.C. Floristic Impoverishment of Amazonian Floodplain Forests Managed for Açaí Fruit Production. For. Ecol. Manag. 2015, 351, 20–27. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Moran, E.F. Human Dimensions of Climate Change: The Vulnerability of Small Farmers in the Amazon. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1803–1809. [Google Scholar] [CrossRef]
- Dos Santos, J.C.; Sena, A.L.d.S.; Homma, A.K.O. Viabilidade Econômica Do Manejo de Açaizais No Estuário Amazônico: Estudo de Caso Na Região Do Rio Tauerá-Açu, Abaetetuba—Estado Do Pará. In Proceedings of the Sociedade Brasileira de Economia, Administração e Sociologia Rural, Vitória, Brazil, 21 May 2024; pp. 22–25. [Google Scholar]
- Farias Neto, J.T.; Resende, M.D.V.; Oliveira, M.d.S.P. Seleção Simultânea Em Progênies de Açaizeiro Irrigado Para Produção e Peso Do Fruto. Rev. Bras. Frutic. 2011, 33, 532–539. [Google Scholar] [CrossRef]
- Tavares, G.d.S.; Homma, A.K.O.; Menezes, A.J.E.A.d.; Palheta, M.P. Análise Da Produção e Comercialização de Açaí No Estado Do Pará, Brasil. Int. J. Dev. Res. 2020, 10, 35215–35221. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- INMET. Instituto Nacional de Meteorologia. Available online: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep (accessed on 19 November 2019).
- EMBRAPA. Mapas de Solo—Brasil. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/337420/mapa-de-solos-do-brasil (accessed on 21 May 2024).
- .Wilkinson, J.; Bors, C.; Burgis, F.; Lorke, A.; Bodmer, P. Measuring CO2 and CH4 with a Portable Gas Analyzer: Closed-Loop Operation, Optimization and Assessment. PLoS ONE 2018, 13, e0193973. [Google Scholar] [CrossRef]
- Castellón, S.E.M.; Cattanio, J.H.; Berrêdo, J.F.; Rollnic, M.; Ruivo, M.d.L.; Noriega, C. Greenhouse Gas Fluxes in Mangrove Forest Soil in an Amazon Estuary. Biogeosciences 2022, 19, 5483–5497. [Google Scholar] [CrossRef]
- Sundqvist, E.; Vestin, P.; Crill, P.; Persson, T.; Lindroth, A. Short-Term Effects of Thinning, Clear-Cutting and Stump Harvesting on Methane Exchange in a Boreal Forest. Biogeosciences 2014, 11, 6095–6105. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Microwave Irradiation of Soil for Routine Measurement of Microbial Biomass Carbon. Biol. Fertil. Soils 1998, 27, 408–416. [Google Scholar] [CrossRef]
- Kalembasa, S.J.; Jenkinson, D.S. A Comparative Study of Titrimetric and Gavimetric Methods for Determination of Organic Carbon in Soil. J. Sci. Food Agric. 1973, 24, 1085–1090. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Jenkinson, D.S. Determination of Microbial Biomass C and N in Soil. In Advances in Nitrogen Cycling in Agricultural Ecosystems; Wilson, J.R., Ed.; CAB International: Wallingford, UK, 1988; pp. 368–386. [Google Scholar]
- Embrapa. Manual de Métodos de Análises de Solo, 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasília, DF, Brazil, 2017; ISBN 9788570357717. [Google Scholar]
- ANA. Agência Nacional de Águas e Saneamento Básico: Rede Hidrometeorológica Nacional. Available online: https://www.snirh.gov.br/hidroweb/mapa (accessed on 15 March 2022).
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating Root and Soil Microbial Contributions to Soil Respiration: A Review Ofmethods and Observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, P.; Du, Q.; Yang, H.; Luo, K.; Wang, X.; Yang, F.; Yong, T.; Yang, W. Soil Organic Matter, Aggregates, and Microbial Characteristics of Intercropping Soybean under Straw Incorporation and N Input. Agriculture 2022, 12, 1409. [Google Scholar] [CrossRef]
- Konda, R.; Ohta, S.; Ishizuka, S.; Heriyanto, J.; Wicaksono, A. Seasonal Changes in the Spatial Structures of N2O, CO2, and CH4 Fluxes from Acacia Mangium Plantation Soils in Indonesia. Soil Biol. Biochem. 2010, 42, 1512–1522. [Google Scholar] [CrossRef]
- Sotta, E.D.; Veldkamp, E.; Guimarães, B.R.; Paixão, R.K.; Ruivo, M.L.P.; Almeida, S.S. Landscape and Climatic Controls on Spatial and Temporal Variation in Soil CO2 Efflux in an Eastern Amazonian Rainforest, Caxiuanã, Brazil. For. Ecol. Manag. 2006, 237, 57–64. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Higuchi, N.; Teixeira, L.M.; Dos Santos, J.; Laurance, S.G.; Trumbore, S.E. Response of Tree Biomass and Wood Litter to Disturbance in a Central Amazon Forest. Oecologia 2004, 141, 596–611. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, S.; Tsuruta, H.; Murdiyarso, D. An Intensive Field Study on CO2, CH4, and N2O Emissions from Soils at Four Land-Use Types in Sumatra, Indonesia. Global Biogeochem. Cycles 2002, 16, 22-1–22-11. [Google Scholar] [CrossRef]
- Verchot, L.V.; Brienza, S.; de Oliveira, V.C.; Mutegi, J.K.; Cattânio, J.H.; Davidson, E.A. Fluxes of CH4, CO2, NO, and N2O in an Improved Fallow Agroforestry System in Eastern Amazonia. Agric. Ecosyst. Environ. 2008, 126, 113–121. [Google Scholar] [CrossRef]
- Werner, C.; Kiese, R.; Butterbach-Bahl, K. Soil-Atmosphere Exchange of N2O, CH4, and CO2 and Controlling Environmental Factors for Tropical Rain Forest Sites in Western Kenya. J. Geophys. Res. Atmos. 2007, 112, 3308. [Google Scholar] [CrossRef]
- Murphy, M.; Balser, T.; Buchmann, N.; Hahn, V.; Potvin, C. Linking Tree Biodiversity to Belowground Process in a Young Tropical Plantation: Impacts on Soil CO2 Flux. For. Ecol. Manag. 2008, 255, 2577–2588. [Google Scholar] [CrossRef]
- Silver, W.L.; Thompson, A.W.; McGroddy, M.E.; Varner, R.K.; Dias, J.D.; Silva, H.; Crill, P.M.; Keller, M. Fine Root Dynamics and Trace Gas Fluxes in Two Lowland Tropical Forest Soils. Glob. Change Biol. 2005, 11, 290–306. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative Forcing of Carbon Dioxide, Methane, and Nitrous Oxide: A Significant Revision of the Methane Radiative Forcing. Geophys. Res. Lett. 2016, 43, 12614–12623. [Google Scholar] [CrossRef]
- Collins, W.J.; Webber, C.P.; Cox, P.M.; Huntingford, C.; Lowe, J.; Sitch, S.; Chadburn, S.E.; Comyn-Platt, E.; Harper, A.B.; Hayman, G.; et al. Increased Importance of Methane Reduction for a 1.5 Degree Target. Environ. Res. Lett. 2018, 13, 054003. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global Atmospheric Methane: Budget, Changes and Dangers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2058–2072. [Google Scholar] [CrossRef]
- Dutaur, L.; Verchot, L.V. A Global Inventory of the Soil CH4 Sink. Global Biogeochem. Cycles 2007, 21, GB4013. [Google Scholar] [CrossRef]
- Davidson, E.A.; Nepstad, D.C.; Ishida, F.Y.; Brando, P.M. Effects of an Experimental Drought and Recovery on Soil Emissions of Carbon Dioxide, Methane, Nitrous Oxide, and Nitric Oxide in a Moist Tropical Forest. Glob. Change Biol. 2008, 14, 2582–2590. [Google Scholar] [CrossRef]
- Fang, Y.; Gundersen, P.; Zhang, W.; Zhou, G.; Christiansen, J.R.; Mo, J.; Dong, S.; Zhang, T. Soil-Atmosphere Exchange of N2O, CO2 and CH4 along a Slope of an Evergreen Broad-Leaved Forest in Southern China. Plant Soil 2009, 319, 37–48. [Google Scholar] [CrossRef]
- Silver, W.L.; Neff, J.; Mcgroddy, M.; Veldkamp, E.; Keller, M.; Cosme, R. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem. Ecosystems 2000, 3, 193–209. [Google Scholar] [CrossRef]
- Bunnell, F.L.; Tait, D.E.N.; Flanagan, P.W.; Van Clever, K. Microbial Respiration and Substrate Weight Loss-I. A General Model of the Influences of Abiotic Variables. Soil Biol. Biochem. 1977, 9, 33–40. [Google Scholar] [CrossRef]
- Ishikura, K.; Hirano, T.; Okimoto, Y.; Hirata, R.; Kiew, F.; Melling, L.; Aeries, E.B.; Lo, K.S.; Musin, K.K.; Waili, J.W.; et al. Soil Carbon Dioxide Emissions Due to Oxidative Peat Decomposition in an Oil Palm Plantation on Tropical Peat. Agric. Ecosyst. Environ. 2018, 254, 202–212. [Google Scholar] [CrossRef]
- Chanda, A.; Akhand, A.; Manna, S.; Dutta, S.; Das, I.; Hazra, S.; Rao, K.H.; Dadhwal, V.K. Measuring Daytime CO2 Fluxes from the Inter-Tidal Mangrove Soils of Indian Sundarbans. Environ. Earth Sci. 2014, 72, 417–427. [Google Scholar] [CrossRef]
- Lessard, R.; Rochette, P.; Topp, E.; Pattey, E.; Desjardins, R.L.; Beaumont, G. Methane and Carbon Dioxide Fluxes from Poorly Drained Adjacent Cultivated and Forest Sites. Can. J. Soil Sci. 1994, 74, 139–146. [Google Scholar] [CrossRef]
- Davidson, E.A.; Verchot, L.V.; Cattânio, J.H.; Ackerman, I.L.; Carvalho, J.E.M. Effects of Soil Water Content on Soil Respiration in Forests and Cattle Pastures of Eastern Amazonia. Biogeochemistry 2000, 48, 53–69. [Google Scholar] [CrossRef]
- Segers, R. Methane Production and Methane Consumption—A Review of Processes Underlying Wetland Methane Fluxes. Biogeochemistry 1998, 41, 23–51. [Google Scholar] [CrossRef]
- Keller, M.; Mitre, M.E.; Stallard, R.F. Consumption of Atmospheric Methane in Soils of Central Panama: Effects of Agricultural Development. Global Biogeochem. Cycles 1990, 4, 21–27. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Hatano, R. Soil Organic Carbon and Soil Erodibility Response to Various Land-Use Changes in Northern Thailand. Catena 2022, 219, 106595. [Google Scholar] [CrossRef]
- Fernandes, S.A.P.; Bernoux, M.; Cerri, C.C.; Feigl, B.J.; Piccolo, M.C. Seasonal Variation of Soil Chemical Properties and CO2 and CH4 Fluxes in Unfertilized and P-Fertilized Pastures in an Ultisol of the Brazilian Amazon. Geoderma 2002, 107, 227–241. [Google Scholar] [CrossRef]
- Steudler, P.A.; Melillo, J.M.; Feigl, B.J.; Neill, C.; Piccolo, M.C.; Cerri, C.C. Consequence of Forest-to-Pasture Conversion on CH4 Fluxes in the Brazilian Amazon Basin. J. Geophys. Res. Atmos. 1996, 101, 18547–18554. [Google Scholar] [CrossRef]
- Sihi, D.; Davidson, E.A.; Savage, K.E.; Liang, D. Simultaneous Numerical Representation of Soil Microsite Production and Consumption of Carbon Dioxide, Methane, and Nitrous Oxide Using Probability Distribution Functions. Glob. Change Biol. 2019, 26, 200–218. [Google Scholar] [CrossRef]
- Roslev, P.; King, G.M. Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia. FEMS Microbiol. Ecol. 1996, 19, 105–115. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, L.; Zhou, G.; Huang, W.; Liu, J. Increased Litter Input Increases Litter Decomposition and Soil Respiration but Has Minor Effects on Soil Organic Carbon in Subtropical Forests. Plant Soil 2015, 392, 139–153. [Google Scholar] [CrossRef]
- Fanin, N.; Hättenschwiler, S.; Barantal, S.; Schimann, H.; Fromin, N. Does Variability in Litter Quality Determine Soil Microbial Respiration in an Amazonian Rainforest? Soil Biol. Biochem. 2011, 43, 1014–1022. [Google Scholar] [CrossRef]
- RoyChowdhury, T.; Bramer, L.; Hoyt, D.W.; Kim, Y.-M.; Metz, T.O.; McCue, L.A.; Diefenderfer, H.L.; Jansson, J.K.; Bailey, V. Temporal Dynamics of CO2 and CH4 Loss Potentials in Response to Rapid Hydrological Shifts in Tidal Freshwater Wetland Soils. Ecol. Eng. 2018, 114, 104–114. [Google Scholar] [CrossRef]
- Ishikura, K.; Darung, U.; Inoue, T.; Hatano, R. Variation in Soil Properties Regulate Greenhouse Gas Fluxes and Global Warming Potential in Three Land Use Types on Tropical Peat. Atmosphere 2018, 9, 465. [Google Scholar] [CrossRef]
- Kiese, R.; Hewett, B.; Graham, A.; Butterbach-Bahl, K.; Kiese, C.; Hewett, B.; Graham, A.; Butterbach-Bahl, K. Seasonal Variability of N2O Emissions and CH4 Uptake by Tropical Rainforest Soils of Queensland, Australia. Global Biogeochem. Cycles 2003, 17, 1043. [Google Scholar] [CrossRef]
- Conrad, R. The Global Methane Cycle: Recent Advances in Understanding the Microbial Processes Involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef]
- Gontijo, J.B.; Paula, F.S.; Bieluczyk, W.; França, A.G.; Navroski, D.; Mandro, J.A.; Venturini, A.M.; Asselta, F.O.; Mendes, L.W.; Moura, J.M.S.; et al. Methane-Cycling Microbial Communities from Amazon Floodplains and Upland Forests Respond Differently to Simulated Climate Change Scenarios. Environ. Microbiome 2024, 19, 48. [Google Scholar] [CrossRef]
- Whalen, S.C. Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environ. Eng. Sci. 2005, 22, 73–94. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Kotowska, A.; Bubier, J.; Dise, N.B.; Crill, P.; Hornibrook, E.R.C.; Minkkinen, K.; Moore, T.R.; Myers-Smith, I.H.; Nykänen, H.; et al. A Synthesis of Methane Emissions from 71 Northern, Temperate, and Subtropical Wetlands. Glob. Change Biol. 2014, 20, 2183–2197. [Google Scholar] [CrossRef]
- Waldo, N.B.; Hunt, B.K.; Fadely, E.C.; Moran, J.J.; Neumann, R.B. Plant Root Exudates Increase Methane Emissions through Direct and Indirect Pathways. Biogeochemistry 2019, 145, 213–234. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Glob. Change Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef]
- Zhang, C.; Comas, X.; Brodylo, D. A Remote Sensing Technique to Upscale Methane Emission Flux in a Subtropical Peatland. J. Geophys. Res. Biogeosci. 2020, 125, 1–13. [Google Scholar] [CrossRef]
Upland | Floodplain | |||
---|---|---|---|---|
Dry | Rainy | Dry | Rainy | |
Soil moisture (Us, %) | 8.64 ± 0.51 bB | 23.12 ± 0.77 aB | 26.44 ± 0.70 bA | 53.27 ± 1.12 aA |
pH | 4.83 ± 0.21 aA | 5.16 ± 0.05 aA | 4.15 ± 0.01 aB | 4.15 ± 0.04 aB |
Fine roots (Mg ha−1) | 2.61 ± 0.28 aA | 2.96 ± 0.36 aA | 4.64 ± 0.88 aA | 2.25 ± 0.42 aA |
Thick roots (Mg ha−1) | 11.38 ± 1.17 aA | 8.87 ± 0.77 bA | 5.91 ± 0.91 aA | 3.39 ± 0.60 bB |
Total Roots (Mg ha−1) | 13.59 ± 1.38 aA | 11.84 ± 1.04 aA | 6.57 ± 0.40 aB | 5.64 ± 0.89 aB |
Microbial carbon (g kg−1) | 0.42 ± 0.03 B | ND | 1.56 ± 0.10 A | ND |
Microbial nitrogen (mg kg−1) | 6.12 ± 0.74 B | ND | 46.28 ± 2.12 A | ND |
Rainy Season | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ATF | FCH4 | Ts | Us | RF | RG | TR | Ta | UR | Pa | Cm | Nm | pH |
FCO2 | −0.111 | 0.250 ** | 0.287 ** | −0.174 ** | 0.293 ** | 0.156 ** | 0.259 ** | −0.245 ** | −0.156 ** | ND | ND | −0.743 ** |
FCH4 | 1.000 | −0.453 ** | 0.137 * | −0.088 | 0.028 | −0.009 | −0.493 ** | 0.500 ** | 0.142 * | ND | ND | −0.067 |
AV | ||||||||||||
FCO2 | 0.163 ** | 0.448 ** | −0.135 * | 0.209 ** | 0.295 ** | 0.297 ** | 0.553 ** | −0.562 ** | −0.153 * | ND | ND | −0.173 ** |
FCH4 | 1.000 | −0.043 | −0.081 | −0.078 | 0.025 | −0.019 | 0.079 | −0.099 | 0.017 | ND | ND | −0.007 |
Dry Season | ||||||||||||
ATF | FCH4 | Ts | Us | RF | RG | TR | Ta | UR | Pa | Cm | Nm | pH |
FCO2 | −0.316 ** | −0.151 ** | 0.626 ** | 0.570 ** | −0.207 ** | −0.009 | −0.053 | 0.062 | 0.056 | 0.441 ** | 0.001 | 0.419 ** |
FCH4 | 1.000 | 0.173 ** | −0.173 ** | −0.100 ** | 0.204 ** | 0.158 ** | 0.057 | −0.078 | −0.215 ** | −0.116 ** | 0.116 * | −0.166 ** |
AV | ||||||||||||
FCO2 | −0.053 | 0.197 | 0.209 | 0.207 | 0.257 | 0.245 | 0.406 * | −0.461 * | −0.370 | 0.112 | −0.073 | 0.248 |
FCH4 | 1.000 | −0.307 | −0.209 | −0.119 | −0.200 | −0.169 | 0.121 | −0.241 | −0.148 | −0.019 | −0.019 | −0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroni, M.F.; Cattanio, J.H.; de Carvalho, C.J.R. Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils. Forests 2025, 16, 944. https://doi.org/10.3390/f16060944
Aroni MF, Cattanio JH, de Carvalho CJR. Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils. Forests. 2025; 16(6):944. https://doi.org/10.3390/f16060944
Chicago/Turabian StyleAroni, Mario Flores, José Henrique Cattanio, and Claudio José Reis de Carvalho. 2025. "Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils" Forests 16, no. 6: 944. https://doi.org/10.3390/f16060944
APA StyleAroni, M. F., Cattanio, J. H., & de Carvalho, C. J. R. (2025). Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils. Forests, 16(6), 944. https://doi.org/10.3390/f16060944