Why Are Seed Dispersal Models Rarely Used? Limitations of Scalability and Improvement Measures
Abstract
:1. Introduction
2. Materials and Methods
3. Review of Seed Dispersal Mechanisms
3.1. Vertical Seed Movement
3.2. Horizontal Movement of Seeds
4. Research Trends and Limitations in Seed Dispersal
4.1. Observation Phase
4.2. Generalization Phase
4.3. Application Phase
5. Discussion
5.1. Implications from Trends in Seed Dispersal Research
5.2. Elements for Improvement in the Field of Seed Dispersal
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grubb, P.J. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev. 1977, 52, 107–145. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; US Institute for Global Environmental Strategies: Arlington, VI, USA, 2006. [Google Scholar]
- Sayer, J.; Sheil, D.; Galloway, G.; Riggs, R.A.; Mewett, G.; MacDicken, K.G.; Edwards, D.P. SDG 15 Life on land–the central role of forests in sustainable development. In Sustainable Development Goals: Their Impacts on Forest and People; Cambridge University Press: Cambridge, UK, 2019; pp. 482–509. [Google Scholar]
- Clason, T.R. Cost effectiveness of natural regeneration for sustaining production continuity in commercial pine plantations. In Proceedings of the Eleventh Biennial Southern Silvicultural Research Conference, Knoxville, TN, USA, 20–22 March 2002; Volume 92, pp. 287–290. [Google Scholar]
- Harmer, R.; Gill, R. Natural Regeneration in Broadleaved Woodlands: Deer Browsing and the Establishment of Advance Regeneration; Ralph Harmer Forest Research: Edinburgh, UK, 2000; Volume 35, pp. 1–6. [Google Scholar]
- Kim, M.; Lee, S.; Lee, S.; Yi, K.; Kim, H.S.; Chung, S.; Yoon, T.K. Seed dispersal models for natural regeneration: A review and prospects. Forests 2022, 13, 659. [Google Scholar] [CrossRef]
- Levin, S.A.; Muller-Landau, H.C.; Nathan, R.; Chave, J. The ecology and evolution of seed dispersal: A theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 575–604. [Google Scholar] [CrossRef]
- Williams, C.G.; LaDeau, S.L.; Oren, R.; Katul, G.G. Modeling seed dispersal distances: Implications for transgenic Pinus taeda. Ecol. Appl. 2006, 16, 117–124. [Google Scholar] [CrossRef]
- Greene, D.F.; Johnson, E.A. A model of wind dispersal of winged or plumed seeds. Ecology 1989, 70, 339–347. [Google Scholar] [CrossRef]
- Wright, S.J.; Trakhtenbrot, A.; Bohrer, G.; Detto, M.; Katul, G.G.; Horvitz, N.; Nathan, R. Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proc. Natl. Acad. Sci. USA 2008, 105, 19084–19089. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, S.; Kim, H.S.; Chung, S.; Chung, J.; Yoon, T.K. Terminal velocities and falling patterns correlate with morphology of diaspores in wind-dispersed forestry species. Trees 2022, 36, 1865–1879. [Google Scholar] [CrossRef]
- Sakai, S.; Sakai, A.; Ishii, H.S. Patterns of wing size variation in seeds of the lily Cardiocrinum cordatum (Liliaceae). Am. J. Bot. 1997, 84, 1275–1278. [Google Scholar] [CrossRef]
- Yasuda, K.; Azuma, A. The autorotation boundary in the flight of samaras. J. Theor. Biol. 1997, 185, 313–320. [Google Scholar] [CrossRef]
- Cain, M.L.; Milligan, B.G.; Strand, A.E. Long-distance seed dispersal in plant populations. Am. J. Bot. 2000, 87, 1217–1227. [Google Scholar] [CrossRef]
- Hintze, C.; Heydel, F.; Hoppe, C.; Cunze, S.; König, A.; Tackenberg, O. D3: The dispersal and diaspore database–baseline data and statistics on seed dispersal. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 180–192. [Google Scholar] [CrossRef]
- Jongejans, E.; Telenius, A. Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecol. 2001, 152, 67–78. [Google Scholar] [CrossRef]
- Greene, D.F.; Zasada, J.C.; Sirois, L.; Kneeshaw, D.; Morin, H.; Charron, I.; Simard, M.J. A review of the regeneration dynamics of North American boreal forest tree species. Can. J. For. Res. 1999, 29, 824–839. [Google Scholar] [CrossRef]
- Tufto, J.; Engen, S.; Hindar, K. Stochastic dispersal processes in plant populations. Theor. Popul. Biol. 1997, 52, 16–26. [Google Scholar] [CrossRef] [PubMed]
- De Garmo, C. The Essentials of Method: A Discussion of the Essential Form of Right Methods in Teaching: Observation, Generalization, Application; USDA Forest Service: Missoula, MT, USA, 1892; pp. 3–133.
- Mayring, P. On generalization in qualitatively oriented research. Forum Qual. Sozialforschung/Forum Qual. Soc. Res. 2007, 8, 26. [Google Scholar]
- der Weduwen, D.; Ruxton, G.D. Secondary dispersal mechanisms of winged seeds: A review. Biol. Rev. 2019, 94, 1830–1838. [Google Scholar] [CrossRef]
- Schurr, F.M.; Bond, W.J.; Midgley, G.F.; Higgins, S.I. A mechanistic model for secondary seed dispersal by wind and its experimental validation. J. Ecol. 2005, 93, 1017–1028. [Google Scholar] [CrossRef]
- Pounden, E.; Greene, D.F.; Quesada, M.; Contreras Sánchez, J.M. The effect of collisions with vegetation elements on the dispersal of winged and plumed seeds. J. Ecol. 2008, 96, 591–598. [Google Scholar] [CrossRef]
- Vander Wall, S.B. Effects of seed size of wind-dispersed pines (Pinus) on secondary seed dispersal and the caching behavior of rodents. Oikos 2003, 100, 25–34. [Google Scholar] [CrossRef]
- Nathan, R.; Safriel, U.N.; Noy-Meir, I. Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology 2001, 82, 374–388. [Google Scholar] [CrossRef]
- Azuma, A.; Yasuda, K. Flight performance of rotary seeds. J. Theor. Biol. 1989, 138, 23–53. [Google Scholar] [CrossRef]
- Minami, S.; Azuma, A. Various flying modes of wind-dispersal seeds. J. Theor. Biol. 2003, 225, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Goszka, A.R.; Snell, R.S. Seed quality and seed quantity in red maple depends on weather and individual tree characteristics. Ecol. Evol. 2020, 10, 13109–13121. [Google Scholar] [CrossRef]
- Schenk, J.J. Evolution of limited seed dispersal ability on gypsum islands. Am. J. Bot. 2013, 100, 1811–1822. [Google Scholar] [CrossRef]
- Baker, W.E.; Cox, P.A.; Kulesz, J.J.; Strehlow, R.A.; Westine, P.S. Explosion Hazards and Evaluation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 222–270. [Google Scholar]
- Gan, S.R.; Guo, J.C.; Zhang, Y.X.; Wang, X.F.; Huang, L.J. “Phoenix in Flight”: An unique fruit morphology ensures wind dispersal of seeds of the phoenix tree (Firmiana simplex (L.) W. Wight). BMC Plant Biol. 2022, 22, 113. [Google Scholar] [CrossRef]
- Nathan, R.; Katul, G.G.; Bohrer, G.; Kuparinen, A.; Soons, M.B.; Thompson, S.E.; Horn, H.S. Mechanistic models of seed dispersal by wind. Theor. Ecol. 2011, 4, 113–132. [Google Scholar] [CrossRef]
- Jung, B.K.; Rezgui, D. Sectional leading edge vortex lift and drag coefficients of autorotating samaras. Aerospace 2023, 10, 414. [Google Scholar] [CrossRef]
- Loftin, L.K. Quest for Performance: The Evolution of Modern Aircraft; Scientific and Technical Information Branch, National Aeronautics and Space Administration: Washington, DC, USA, 1985; Volume 468, pp. 152–162.
- Lentink, D.; Dickson, W.B.; Van Leeuwen, J.L.; Dickinson, M.H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 2009, 324, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, I.H.; Rezgui, D.; Theunissen, R. Analytical model for leading-edge vortex lift on rotating samara seeds: Development and validation. In Proceedings of the 2016 Applied Aerodynamic Royal Aeronautical Society Conference, Bristol, UK, 19–21 July 2016. [Google Scholar]
- Chen, L.; Zhou, C.; Werner, N.H.; Cheng, B.; Wu, J. Dual-stage radial–tangential vortex tilting reverses radial vorticity and contributes to leading-edge vortex stability on revolving wings. J. Fluid Mech. 2023, 963, A29. [Google Scholar] [CrossRef]
- Limacher, E.; Rival, D.E. On the distribution of leading-edge vortex circulation in samara-like flight. J. Fluid Mech. 2015, 776, 316–333. [Google Scholar] [CrossRef]
- Rott, N. Note on the history of the Reynolds number. Annu. Rev. Fluid Mech. 1990, 22, 1–12. [Google Scholar] [CrossRef]
- Khodabakhshian, R.; Emadi, B.; Abbaspour Fard, M.H.; Saiedirad, M.H. The effect of variety, size, and moisture content of sunflower seed and its kernel on their terminal velocity, drag coefficient, and Reynold’s number. Int. J. Food Prop. 2012, 15, 262–273. [Google Scholar] [CrossRef]
- Reynolds, O. XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 1883, 174, 935–982. [Google Scholar]
- Trinh, K.T. On the critical Reynolds number for transition from laminar to turbulent flow. arXiv 2010, arXiv:1007.0810. [Google Scholar]
- Stevenson, R.A.; Evangelista, D.; Looy, C.V. When conifers took flight: A biomechanical evaluation of an imperfect evolutionary takeoff. Paleobiology 2015, 41, 205–225. [Google Scholar] [CrossRef]
- Pazos, G.E.; Greene, D.F.; Katul, G.; Bertiller, M.B.; Soons, M.B. Seed dispersal by wind: Towards a conceptual framework of seed abscission and its contribution to long-distance dispersal. J. Ecol. 2013, 101, 889–904. [Google Scholar] [CrossRef]
- Greene, D.F.; Quesada, M. Seed size, dispersal, and aerodynamic constraints within the Bombacaceae. Am. J. Bot. 2005, 92, 998–1005. [Google Scholar] [CrossRef]
- Kuparinen, A. Mechanistic models for wind dispersal. Trends Plant Sci. 2006, 11, 297–301. [Google Scholar] [CrossRef]
- Monty, A.; Stainier, C.; Lebeau, F.; Pieret, N.; Mahy, G. Seed rain pattern of the invasive weed Senecio inaequidens (Asteraceae). Belg. J. Bot. 2008, 141, 51–63. [Google Scholar]
- Zhu, J.; Liu, M.; Xin, Z.; Zhao, Y.; Liu, Z. Which factors have stronger explanatory power for primary wind dispersal distance of winged diaspores: The case of Zygophyllum xanthoxylon (Zygophyllaceae)? J. Plant Ecol. 2016, 9, 346–356. [Google Scholar] [CrossRef]
- Soons, M.B.; Heil, G.W.; Nathan, R.; Katul, G.G. Determinants of long-distance seed dispersal by wind in grasslands. Ecology 2004, 85, 3056–3068. [Google Scholar] [CrossRef]
- De Langre, E. Effects of wind on plants. Annu. Rev. 2008, 40, 141–168. [Google Scholar] [CrossRef]
- Ruck, B.; Frank, C.; Tischmacher, M. On the influence of windward edge structure and stand density on the flow characteristics at forest edges. Eur. J. For. Res. 2012, 131, 177–189. [Google Scholar] [CrossRef]
- Bullock, J.M.; Clarke, R.T. Long distance seed dispersal by wind: Measuring and modelling the tail of the curve. Oecologia 2000, 124, 506–521. [Google Scholar] [CrossRef] [PubMed]
- Landenberger, R.E.; Kota, N.L.; McGraw, J.B. Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol. 2007, 192, 55–70. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, Z.; Xin, Z.; Daryanto, S.; Wang, L.; Qian, J.; Liu, M. Relationship between seed morphological traits and wind dispersal trajectory. Funct. Plant Biol. 2019, 46, 1063–1071. [Google Scholar] [CrossRef]
- Higgins, S.I.; Nathan, R.; Cain, M.L. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 2003, 84, 1945–1956. [Google Scholar] [CrossRef]
- Nathan, R.; Katul, G.G.; Horn, H.S.; Thomas, S.M.; Oren, R.; Avissar, R.; Levin, S.A. Mechanisms of long-distance dispersal of seeds by wind. Nature 2002, 418, 409–413. [Google Scholar] [CrossRef]
- Katul, G.G.; Porporato, A.; Nathan, R.; Siqueira, M.; Soons, M.B.; Poggi, D.; Levin, S.A. Mechanistic analytical models for long-distance seed dispersal by wind. Am. Nat. 2005, 166, 368–381. [Google Scholar] [CrossRef]
- Sullivan, L.L.; Clark, A.T.; Tilman, D.; Shaw, A.K. Mechanistically-Derived Dispersal Kernels Explain Species-Level Patterns of Recruitment and Succession. Bull. Ecol. Soc. Am. 2019, 100. [Google Scholar] [CrossRef]
- Wald, A. Sequential Analysis; Courier Corporation: Honolulu, HA, USA, 2004; pp. 5–155. [Google Scholar]
- Teller, B.J.; Campbell, C.; Shea, K. Dispersal under duress: Can stress enhance the performance of a passively dispersed species? Ecology 2014, 95, 2694–2698. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Milne, R.I.; Liu, J.; Nathan, R.; Corlett, R.T.; Li, D.Z. The establishment of plants following long-distance dispersal. Trends Ecol. Evol. 2023, 38, 289–300. [Google Scholar] [CrossRef]
- Okubo, A.; Levin, S.A. A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 1989, 70, 329–338. [Google Scholar] [CrossRef]
- Dorp, D.V.; Hoek, W.V.D.; Daleboudt, C. Seed dispersal capacity of six perennial grassland species measured in a wind tunnel at varying wind speed and height. Can. J. Bot. 1996, 74, 1956–1963. [Google Scholar] [CrossRef]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Comparative study of flow field and drag coefficient of model and small natural trees in a wind tunnel. Urban For. Urban Green. 2018, 35, 230–239. [Google Scholar] [CrossRef]
- Yong, T.H.; Dol, S.S. Design and development of low-cost wind tunnel for educational purpose. IOP Conf. Ser. Mater. Sci. Eng. 2015, 78, 012039. [Google Scholar] [CrossRef]
- Matlack, G.R. Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am. J. Bot. 1987, 74, 1150–1160. [Google Scholar]
- Poggi, D.; Katul, G.G. An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain. Agric. For. Meteorol. 2007, 144, 1–13. [Google Scholar] [CrossRef]
- Belcher, S.E.; Harman, I.N.; Finnigan, J.J. The wind in the willows: Flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech. 2012, 44, 479–504. [Google Scholar] [CrossRef]
- Katul, G.G.; Poggi, D. The effects of gentle topographic variation on dispersal kernels of inertial particles. Geophys. Res. Lett. 2012, 39, L03401. [Google Scholar] [CrossRef]
- Gardiner, B.; Marshall, B.; Achim, A.; Belcher, R.; Wood, C. The stability of different silvicultural systems: A wind-tunnel investigation. Forestry 2005, 78, 471–484. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, K.; Liu, C.; Zou, X.; Kang, L.; Chen, T.; Fang, Y. Wind tunnel study of airflow recovery on the lee side of single plants. Agric. For. Meteorol. 2018, 263, 362–372. [Google Scholar] [CrossRef]
- Yoon, T.K.; Lee, S.; Lee, S.; Lee, S.G.; Hussain, M.; Lee, S.; Chung, S. A Wind Tunnel Test for the Effect of Seed Tree Arrangement on Wake Wind Speed. Forests 2024, 15, 1772. [Google Scholar] [CrossRef]
- Bohrer, G.; Katul, G.G.; Nathan, R.; Walko, R.L.; Avissar, R. Effects of canopy heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree seeds. J. Ecol. 2008, 96, 569–580. [Google Scholar] [CrossRef]
- Nathan, R.; Horn, H.S.; Chave, J.; Levin, S.A. Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. In Seed Dispersal and Frugivory: Ecology, Evolution and Conservation, Third International Symposium-Workshop on Frugivores and Seed Dispersal: São Pedro, Brazil, 6–11 August 2000; CABI Publishing: Wallingford, UK, 2002; pp. 69–82. [Google Scholar]
- Andersen, M.C. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am. J. Bot. 1993, 80, 487–492. [Google Scholar]
- Peart, M.H. Experiments on the biological significance of the morphology of seed-dispersal units in grasses. J. Ecol. 1979, 67, 843–863. [Google Scholar] [CrossRef]
- Qin, X.; Liang, W.; Liu, Z.; Liu, M.; Baskin, C.C.; Baskin, J.M.; Zhou, Q. Plant canopy may promote seed dispersal by wind. Sci. Rep. 2022, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, M.; Xin, Z.; Liu, Z.; Schurr, F.M. A trade-off between primary and secondary seed dispersal by wind. Plant Ecol. 2019, 220, 541–552. [Google Scholar] [CrossRef]
- Gupta, R.K.; Arora, G.; Sharma, R. 2007 Aerodynamic properties of sunflower seed (Helianthus annuus L.). J. Food Eng. 2007, 79, 899–904. [Google Scholar] [CrossRef]
- Seale, M.; Zhdanov, O.; Soons, M.B.; Cummins, C.; Kroll, E.; Blatt, M.R.; Nakayama, N. Environmental morphing enables informed dispersal of the dandelion diaspore. eLife 2022, 11, e81962. [Google Scholar] [CrossRef]
- Downey, M.; Valkonen, S.; Heikkinen, J. Natural tree regeneration and vegetation dynamics across harvest gaps in Norway spruce dominated forests in southern Finland. Can. J. For. Res. 2018, 48, 524–534. [Google Scholar] [CrossRef]
- Greene, D.F.; Johnson, E.A. Wind dispersal of seeds from a forest into a clearing. Ecology 1996, 77, 595–609. [Google Scholar] [CrossRef]
- McEuen, A.B.; Curran, L.M. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 2004, 85, 507–518. [Google Scholar] [CrossRef]
- Skarpaas, O.; Silverman, E.J.; Jongejans, E.; Shea, K. Are the best dispersers the best colonizers? Seed mass, dispersal and establishment in Carduus thistles. Evol. Ecol. 2011, 25, 155–169. [Google Scholar] [CrossRef]
- Axer, M.; Schlicht, R.; Wagner, S. Modelling potential density of natural regeneration of European oak species (Quercus robur L.; Quercus petraea (Matt.) Liebl.) depending on the distance to the potential seed source: Methodological approach for modelling dispersal from inventory data at forest enterprise level. For. Ecol. Manag. 2021, 482, 118802. [Google Scholar]
- Holmström, E.; Ekö, P.M.; Hjelm, K.; Karlsson, M.; Nilsson, U. Natural Regeneration on Planted Clearcuts—The Easy Way to Mixed Forest? Open J. For. 2016, 6, 281–294. [Google Scholar] [CrossRef]
- Montoro Girona, M.; Lussier, J.M.; Morin, H.; Thiffault, N. Conifer regeneration after experimental shelterwood and seed-tree treatments in boreal forests: Finding silvicultural alternatives. Front. Plant Sci. 2018, 9, 1145. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Ledo, A.; Cañellas, I.; Montes, F. Strategies for modeling regeneration density in relation to distance from adult trees. Forests 2020, 11, 120. [Google Scholar] [CrossRef]
- McCanny, S.J. Alternatives in parent-offspring relationships in plants. Oikos 1985, 45, 148. [Google Scholar] [CrossRef]
- Nathan, R.A.N.; Casagrandi, R. A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J. Ecol. 2004, 92, 733–746. [Google Scholar] [CrossRef]
- Andresen, E. Effects of dung presence, dung amount and secondary dispersal by dung beetles on the fate of Micropholis guyanensis (Sapotaceae) seeds in Central Amazonia. J. Trop. Ecol. 2001, 17, 61–78. [Google Scholar] [CrossRef]
- Shepherd, V.E.; Chapman, C.A. Dung beetles as secondary seed dispersers: Impact on seed predation and germination. J. Trop. Ecol. 1998, 14, 199–215. [Google Scholar] [CrossRef]
- Vulinec, K. Dung Beetle Communities and Seed Dispersal in Primary Forest and Disturbed Land in Amazonia1. Biotropica 2002, 34, 297–309. [Google Scholar] [CrossRef]
- Giladi, I. Choosing benefits or partners: A review of the evidence for the evolution of myrmecochory. Oikos 2006, 112, 481–492. [Google Scholar] [CrossRef]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Peco, B. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. J. Ecol. 2008, 96, 1266–1274. Available online: http://uol.de/en/landeco/research/leda (accessed on 5 January 2024). [CrossRef]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Cuntz, M. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 2020, 26, 119–188. Available online: http://try-db.org/TryWeb/Home.php (accessed on 13 October 2022). [CrossRef]
- Brand, M.H. UConn Plant Database of Trees, Shrubs and Vines; Department of Plant Science and Landscape Architecture: Storrs, CT, USA, 2002; Available online: https://plantdatabase.uconn.edu/ (accessed on 13 January 2024).
- Society for Ecological Restoration. International Network for Seed Based Restoration and Royal Botanic Gardens Kew. Seed Information Database (SID). 2023. Available online: http://ser-sid.org/ (accessed on 10 January 2024).
- Filipiak, M. Age structure of natural regeneration of European silver-fir (Abies alba Mill.). Dendrobiology 2002, 48, 9–14. [Google Scholar]
- Gärtner, S.M.; Lieffers, V.J.; Macdonald, S.E. Ecology and management of natural regeneration of white spruce in the boreal forest. Environ. Rev. 2011, 19, 461–478. [Google Scholar] [CrossRef]
- Stoehr, M.U. Seed production of western larch in seed-tree systems in the southern interior of British Columbia. For. Ecol. Manag. 2000, 130, 7–15. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Guariguata, M.R. Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica 2016, 48, 716–730. [Google Scholar] [CrossRef]
- Trevor Caughlin, T.; de la Peña-Domene, M.; Martínez-Garza, C. Demographic costs and benefits of natural regeneration during tropical forest restoration. Ecol. Lett. 2019, 22, 34–44. [Google Scholar] [CrossRef] [PubMed]
- McConkey, K.R.; Prasad, S.; Corlett, R.T.; Campos-Arceiz, A.; Brodie, J.F.; Rogers, H.; Santamaria, L. Seed dispersal in changing landscapes. Biol. Conserv. 2012, 146, 1–13. [Google Scholar] [CrossRef]
- Greene, D.F.; Johnson, E.A. Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos 1993, 67, 69–74. [Google Scholar] [CrossRef]
- Kruse, S.; Gerdes, A.; Kath, N.J.; Herzschuh, U. Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0. Geosci. Model Dev. 2018, 11, 4451–4467. [Google Scholar] [CrossRef]
- Skarpaas, O.; Stabbetorp, O.E.; Rønning, I.; Svennungsen, T.O. How far can a hawk’s beard fly? Measuring and modelling the dispersal of Crepis praemorsa. J. Ecol. 2004, 92, 747–757. [Google Scholar] [CrossRef]
- Grivet, D.; Smouse, P.E.; Sork, V.L. A novel approach to an old problem: Tracking dispersed seeds. Mol. Ecol. 2005, 14, 3585–3595. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Trapnell, D.W. Using population genetic analyses to understand seed dispersal patterns. Acta Oecologica 2011, 37, 641–649. [Google Scholar] [CrossRef]
- Plumptre, A.J. The importance of “seed trees” for the natural regeneration of selectively logged tropical forest. Commonw. For. Rev. 1995, 74, 253–258. [Google Scholar]
- Latawiec, A.E.; Crouzeilles, R.; Brancalion, P.H.; Rodrigues, R.R.; Sansevero, J.B.; Santos, J.S.D.; Strassburg, B.B. Natural regeneration and biodiversity: A global meta-analysis and implications for spatial planning. Biotropica 2016, 48, 844–855. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Ferreira, M.S.; Chazdon, R.L.; Lindenmayer, D.B.; Sansevero, J.B.; Monteiro, L.; Strassburg, B.B. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 2017, 3, e1701345. [Google Scholar] [CrossRef]
- Ruņģis, D.; Luguza, S.; Bāders, E.; Šķipars, V.; Jansons, Ā. Comparison of genetic diversity in naturally regenerated Norway spruce stands and seed orchard progeny trials. Forests 2019, 10, 926. [Google Scholar] [CrossRef]
- Raja, R.G.; Tauer, C.G.; Wittwer, R.F.; Huang, Y. Regeneration methods affect genetic variation and structure in shortleaf pine (Pinus echinata Mill.). For. Genet. 1998, 5, 71–178. [Google Scholar]
- Diaz, O.; Gustafsson, M.; Astley, D. Effect of regeneration procedures on genetic diversity in Brassica napus and B. rapa as estimated by isozyme analysis. Genet. Resour. Crop Evol. 1997, 44, 523–532. [Google Scholar] [CrossRef]
- Mendes, S.B.; Olesen, J.M.; Memmott, J.; Costa, J.M.; Timóteo, S.; Dengucho, A.L.; Heleno, R. Evidence of a European seed dispersal crisis. Science 2024, 386, 206–211. [Google Scholar] [CrossRef]
- Holmström, E.; Karlsson, M.; Nilsson, U. Modeling birch seed supply and seedling establishment during forest regeneration. Ecol. Model. 2017, 352, 31–39. [Google Scholar] [CrossRef]
Mechanism | Parameters | Independent Variables | Main Objective (+) and Challenge (−) |
---|---|---|---|
Vertical seed movement | Wing loading (disc loading) | · Seed mass · Wing area | (+) Identifying the physical properties of seeds to understand terminal velocity for each species (−) Difficult to apply to multiple species due to lack of diaspore data |
Drag force | · Seed mass · Air velocity · Seed velocity · Air density · Drag coefficient | (+) Measuring the influence of wind on seed movement and changes in terminal velocity (−) Requires large-scale experiments, and modeling is difficult because environmental conditions influence variables | |
Leading-edge vortex | · Wing thickness · Wing curvature · Aspect ratio · Ratio of wingspan to chord · Center of rotation | (+) Determining seed rotation mechanisms according to wing shape and curvature (−) Lacks sufficient research cases and requires standardized measurements and general models | |
Reynolds number | · Air viscosity · Air density · Seed diameter · Terminal velocity · Seed length, width, and thickness | (+) Identifying the airflow pattern through moving seeds as determined by inertial and viscosity forces (−) Requires micro-measurement equipment and facilities, and values are influenced by environmental conditions | |
Horizontal seed movement | Dispersal distance | · Wind speed · Seed mass · Wing loading · Release height | (+) Estimating seed dispersal distance according to wind speed and landscape topography (−) Field surveys are costly and time-consuming; data are mostly gathered via interior wind tunnel tests |
Dispersal trajectory | · Horizontal wind · Turbulent wind in vertical updraft · Release height · Terminal velocity | (+) Identifying differences in seed flight trajectories according to seed shape (−) Research on various seed types and evaluations of trajectory changes based on wind speed are lacking | |
Long-distance dispersal | · Wind speed · Terminal velocity · Wing loading · Upward vertical air movement | (+) Measuring mechanisms of long-distance seed dispersal (−) Low model accuracy due to complex turbulence variations influencing vertical wind speed |
Research Phase | Topical Subcategory | Description | Number of References |
---|---|---|---|
Observation | Field investigations | Measuring and analyzing seed inflow through field surveys | 19 |
Measurement of physical features | Identifying seed morphology and terminal velocities | 50 | |
Seed type classifications | Classifying seed type and falling behavior | 12 | |
Wind tunnel experiments | Simulating seed dispersal distance according to environmental variables | 30 | |
Generalization | Wind effect studies | Simulating seed dispersal patterns by wind speed | 28 |
Effect of environmental factors | Identifying the effects of environmental conditions on seed dispersal | 12 | |
Modeling and predictions | Developing models for seed dispersal and trajectory | 11 | |
Spatial analysis | Identifying spatial patterns of seed influx | 2 | |
Meta-analysis | Meta-analysis of seed dispersal distances | 1 | |
Application | Natural regeneration | Field experiment on the effects of using seed dispersal for natural regeneration | 35 |
Secondary dispersal | Identifying seed movements occurring after they have settled on the ground | 40 | |
Total | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-g.; Yoon, T.K. Why Are Seed Dispersal Models Rarely Used? Limitations of Scalability and Improvement Measures. Forests 2025, 16, 851. https://doi.org/10.3390/f16050851
Lee S-g, Yoon TK. Why Are Seed Dispersal Models Rarely Used? Limitations of Scalability and Improvement Measures. Forests. 2025; 16(5):851. https://doi.org/10.3390/f16050851
Chicago/Turabian StyleLee, Sle-gee, and Tae Kyung Yoon. 2025. "Why Are Seed Dispersal Models Rarely Used? Limitations of Scalability and Improvement Measures" Forests 16, no. 5: 851. https://doi.org/10.3390/f16050851
APA StyleLee, S.-g., & Yoon, T. K. (2025). Why Are Seed Dispersal Models Rarely Used? Limitations of Scalability and Improvement Measures. Forests, 16(5), 851. https://doi.org/10.3390/f16050851