Biochar Promotes the Growth of Arbuscular Mycorrhizal Fungi on Taxodium ‘Zhongshanshan’ in Coastal Saline–Alkali Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Samples Determination
2.4. Statistical Analyses
3. Results
3.1. The Influence of AMF Inoculant and Organic Amendments on the Physicochemical Properties of Soil in Taxodium ‘Zhongshanshan’ Plantations
3.2. The Influence of AMF Inoculant and Organic Amendments on the Growth of Taxodium ‘Zhongshanshan’
3.3. Analysis of the Factors Influencing the Growth of Taxodium ‘Zhongshanshan’ Following the Application of AMF Inoculant and Organic Amendments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Xie, H.; Li, J.; Zhang, Y.; Xu, X.; Wang, L.; Ouyang, Z. Evaluation of coastal farming under salinization and optimized fertilization strategies in China. Sci. Total Environ. 2021, 797, 149038. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Li, Y.; Zhang, B.; Zhai, L.; Liu, X.; Zhang, J. Determinants of rhizospheric organic carbon fractions and accumulation in four different vegetations of coastal saline-alkali soils. Catena 2024, 246, 108454. [Google Scholar] [CrossRef]
- Yu, C.; Xu, S.; Yin, Y. Transcriptome analysis of the Taxodium ‘Zhongshanshan 405’ roots in response to salinity stress. Plant Physiol. Biochem. 2016, 100, 156–165. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, L.; Ma, J.; Zhang, J.; Wang, G.G.; Liu, X.; Zhang, S.; Song, J.; Wu, Y. Comparative physiological mechanisms of arbuscular mycorrhizal fungi mitigate salt-induced adverse effects in leaves and roots of Zelkova serrata. Mycorrhiza 2020, 30, 341–355. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, L.; Zhang, P.; Liu, F.D.; Xiao, H.; Dong, Y.C.; Sun, H.W. Research and Application Progress of Biochar in Amelioration of Saline-Alkali Soil. Huan Jing Ke Xue 2024, 45, 940–951. [Google Scholar]
- Zhang, K.; Chang, L.; Li, G.; Li, Y. Advances and future research in ecological stoichiometry under saline-alkali stress. Environ. Sci. Pollut. Res. 2023, 30, 5475–5486. [Google Scholar] [CrossRef]
- Wang, S.J.; Chen, Q.; Li, Y.; Zhuo, Y.Q.; Xu, L.Z. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recycl. 2017, 121, 89–92. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, B.; Liu, B.; Wang, J.; Zhang, H. Effects of Straw Return Rate on Soil Physicochemical Properties and Yield in Paddy Fields. Agronomy 2024, 14, 1668. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Zheng, S.; Dou, S.; Duan, H.M. Effects of straw enrichment and deep incorporation on humus composition and humic acid structure of black soil profile in Northeast China. Appl. Ecol. Environ. Res. 2022, 20, 1051–1063. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, H.; Li, M.; Li, P. The presence of the biochar interlayer effectively inhibits soil water evaporation and salt migration to the soil surface. Agriculture 2023, 13, 638. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.X.; Wang, Z.F.; Gao, M.; Tian, D.; Huang, R.; Liu, J.; Li, J.C. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration. Huan Jing Ke Xue 2018, 39, 355–362. [Google Scholar]
- Wu, F.; Zheng, X.; Cao, M.; Guan, X.; Jiang, J. Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation. Forests 2022, 13, 979. [Google Scholar] [CrossRef]
- Duan, S.; Feng, G.; Limpens, E.; Bonfante, P.; Xie, X.; Zhang, L. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat. Rev. Microbiol. 2024, 22, 773–790. [Google Scholar] [CrossRef]
- Mickan, B.S.; Abbott, L.K.; Stefanova, K.; Solaiman, Z.M. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 2016, 26, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Nath, H.; Sarkar, B.; Mitra, S.; Bhaladhare, S. Biochar from biomass: A review on biochar preparation its modification and impact on soil including soil microbiology. Geomicrobiol. J. 2022, 39, 373–388. [Google Scholar] [CrossRef]
- Zeng, J.; Ma, S.; Liu, J.; Qin, S.; Liu, X.; Li, T.; Liao, Y.; Shi, Y.; Zhang, J. Organic Materials and AMF Addition Promote Growth of Taxodium ‘zhongshanshan’ by Improving Soil Structure. Forests 2023, 14, 731. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.J.; Fan, J.; Fu, W.; Du, M.G. Rapid in-situ measurement of soil evaporation using the cutting ring method. Chin. J. Soil Sci. 2021, 52, 55–61. [Google Scholar]
- O’Kelly, B.C. Accurate Determination of Moisture Content of Organic Soils Using the Oven Drying Method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Shang, S.S.; Yu, X.F.; Qi, Y. Comparison and precautions of determination methods for hydrolysable nitrogen in soil. Agric. Technol. 2022, 42, 97–99. [Google Scholar]
- Tang, S.Y.; Zhang, L.P.; Wang, J.R.; Yuan, H.C.; He, Z.; Geng, M.M.; Chen, W. Method optimization and research for determining soil available phosphorus extracted by sodium bicarbonate using continuous flow analyzer. Soil Fertil. Sci. China 2024, 5, 232–239. [Google Scholar]
- Zhou, K.J.; Guan, C.Y.; Xiao, W.N. Effects of chemical ripeners on chlorophyll content and antioxidant enzyme activities of rapeseed pod. Yingyong Shengtai Xuebao 2009, 20, 3015–3019. [Google Scholar]
- Ruf, M.; Brunner, I. Vitality of tree fine roots: Reevaluation of the tetrazolium test. Tree Physiol. 2003, 23, 257–263. [Google Scholar] [CrossRef]
- Artiola, J.F.; Rasmussen, C.; Freitas, R. Effects of a biochar amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci. 2012, 177, 561–570. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y.; et al. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Liu, S.; Li, J.; Geng, J.; Wang, L. Key soil properties influencing infiltration capacity after long-term straw incorporation in a wheat (Triticum aestivum L.)–maize (Zea mays L.) rotation system. Agric. Ecosyst. Environ. 2023, 344, 108301. [Google Scholar] [CrossRef]
- Wang, J.; Jing, H.; Xu, T.; Li, C.; Zhao, C.; Feng, W. Application Effect of Straw Returning and Biochar in the Improvement of Saline-Alkali Land in Northeast China. Biol. Bull. 2023, 50, 825–836. [Google Scholar] [CrossRef]
- Chen, T.; Mei, Y.; Liu, X.; Zhao, Z.; Liang, Y. Effects of Straw at Different Fermentation Phases on Soil Nutrient Availability and Microbial Activity. Agronomy 2024, 14, 3005. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mastrolonardo, G.; Sánchez-Monedero, M.A.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chem. Biol. Technol. Agric. 2020, 7, 15. [Google Scholar] [CrossRef]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef]
- Moure Abelenda, A.; Semple, K.T.; Lag-Brotons, A.J.; Herbert, B.M.; Aggidis, G.; Aiouache, F. Effects of wood ash-based alkaline treatment on nitrogen, carbon, and phosphorus availability in food waste and agro-industrial waste digestates. Waste Biomass Valorization 2021, 12, 3355–3370. [Google Scholar] [CrossRef]
- Jin, F.; Piao, J.; Miao, S.; Che, W.; Li, X.; Li, X.; Shiraiwa, T.; Tanaka, T.; Taniyoshi, K.; Hua, S.; et al. Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: Based on a 6-year field experiment. Biochar 2024, 6, 40. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Awad, M.Y.M.; Hegab, S.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Alaylar, B.; Kistaubayeva, A. Biochar for improving soil biological properties and mitigating salt stress in plants on saltaffected soils. Commun. Soil Sci. Plant Anal. 2021, 53, 140–152. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Q.; Wang, B.; Zhang, N.; Qiu, R.; Yuan, Y.; Yang, M.; Wang, F.; Mei, L.; Cui, G. Arbuscular mycorrhizal fungi communities and promoting the growth of alfalfa in saline ecosystems of northern China. Front. Plant Sci. 2024, 15, 1438771. [Google Scholar] [CrossRef]
- Llanes, A.; Palchetti, M.V.; Vilo, C.; Ibañez, C. Molecular control to salt tolerance mechanisms of woody plants: Recent achievements and perspectives. Ann. For. Sci. 2021, 78, 96. [Google Scholar] [CrossRef]
- Vahedi, R.; Rasouli-Sadaghiani, M.; Barin, M.; Vetukuri, R.R. Interactions between biochar and compost treatment and mycorrhizal fungi to improve the qualitative properties of a calcareous soil under rhizobox conditions. Agriculture 2021, 11, 993. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, P.; Zhang, Q.; Li, X. Advances in salt-tolerant mechanisms of trees and forestation techniques on saline-alkali land. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 96–104. [Google Scholar]
- Pan, J.; Peng, F.; Tedeschi, A.; Xue, X.; Wang, T.; Liao, J.; Zhang, W.; Huang, C. Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Bot. Stud. 2020, 61, 13. [Google Scholar] [CrossRef] [PubMed]
- Jithesh, M.N.; Prashanth, S.R.; Sivaprakash, K.R.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 2006, 85, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Wang, X.; Zhao, X. Antioxidant defense response of arbuscular mycorrhizal fungi and setaria viridis. Pak. J. Bot 2023, 55, 1951–1960. [Google Scholar] [CrossRef]
- Wu, D.; Sun, P.; Lu, P.Z.; Chen, Y.Y.; Guo, J.M.; Liu, M.; Wang, L.; Zhang, C.J. Effect and approach of Enteromorpha prolifera biochar to improve coastal saline soil. Huan Jing Ke Xue 2020, 41, 1941–1949. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Ma, J.; Zhang, J.; Cai, Q.; Lin, J.; Zeng, J.; Liu, X. Biochar Promotes the Growth of Arbuscular Mycorrhizal Fungi on Taxodium ‘Zhongshanshan’ in Coastal Saline–Alkali Soils. Forests 2025, 16, 828. https://doi.org/10.3390/f16050828
Peng X, Ma J, Zhang J, Cai Q, Lin J, Zeng J, Liu X. Biochar Promotes the Growth of Arbuscular Mycorrhizal Fungi on Taxodium ‘Zhongshanshan’ in Coastal Saline–Alkali Soils. Forests. 2025; 16(5):828. https://doi.org/10.3390/f16050828
Chicago/Turabian StylePeng, Xiang, Jieyi Ma, Jinchi Zhang, Qi Cai, Jie Lin, Jingyi Zeng, and Xin Liu. 2025. "Biochar Promotes the Growth of Arbuscular Mycorrhizal Fungi on Taxodium ‘Zhongshanshan’ in Coastal Saline–Alkali Soils" Forests 16, no. 5: 828. https://doi.org/10.3390/f16050828
APA StylePeng, X., Ma, J., Zhang, J., Cai, Q., Lin, J., Zeng, J., & Liu, X. (2025). Biochar Promotes the Growth of Arbuscular Mycorrhizal Fungi on Taxodium ‘Zhongshanshan’ in Coastal Saline–Alkali Soils. Forests, 16(5), 828. https://doi.org/10.3390/f16050828