Do Regional Differences in Forest Distribution Affect Residents’ Preferences for Forest Ecosystem Services?
Abstract
:1. Introduction and Theoretical Framework
2. Materials and Methods
2.1. Study Site
2.2. Choice Experiment
2.2.1. Choice Experiment Theoretical Model
2.2.2. Sampling and Survey Design
3. Results
3.1. Characteristics of Respondents
3.2. Results of Estimation
3.3. Forest Ecosystem Services of Eastern Regions
3.4. Forest Ecosystem Services of Western Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Jin, X.; Ma, J.; Cai, T.; Sun, X. Non-use value assessment for wetland ecosystem service of Hongxing National Nature Reserve in northeast China. J. For. Res. 2016, 27, 1435–1442. [Google Scholar] [CrossRef]
- Miller, E.F.; Doolittle, A.A.; Cerutti, P.O.; Naimark, J.; Rufino, M.C.; Ashton, M.S.; Mwangi, E. Spatial distribution and perceived drivers of provisioning service values across an East African montane forest landscape. Landsc. Urban Plan. 2021, 207, 103995. [Google Scholar] [CrossRef]
- Siiskonen, H. The conflict between traditional and scientific forest management in 20th century Finland. For. Ecol. Manag. 2007, 249, 125–133. [Google Scholar] [CrossRef]
- Kumagai, J.; Wakamatsu, M.; Hashimoto, S.; Saito, O.; Yoshida, T.; Yamakita, T.; Hori, K.; Matsui, T.; Oguro, M.; Aiba, M.; et al. Natural capital for nature’s contributions to people: The case of Japan. Sustain. Sci. 2021, 17, 919–954. [Google Scholar] [CrossRef]
- Park, M.S.; Lee, H. Forest Policy and Law for Sustainability within the Korean Peninsula. Sustainability 2014, 6, 5162–5186. [Google Scholar] [CrossRef]
- Korea Forest Services. Statistical Yearbook of Forestry; Korea Forest Services: Seoul, Republic of Korea, 2022. [Google Scholar]
- Korea Forest Services. 2020 Forest Statistics; Korea Forest Services: Seoul, Republic of Korea, 2021. [Google Scholar]
- Chee, Y.E. An ecological perspective on the valuation of ecosystem services. Biol. Conserv. 2004, 120, 549–565. [Google Scholar] [CrossRef]
- Danley, B.; Widmark, C. Evaluating conceptual definitions of ecosystem services and their implications. Ecol. Econ. 2016, 126, 132–138. [Google Scholar] [CrossRef]
- Smith, N.; Deal, R.; Kline, J.; Blahna, D.; Patterson, T.; Spies, T.A.; Bennett, K. Ecosystem Services as a Framework for Forest Stewardship: Deschutes National Forest Overview; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2011; General Technical Report PNW-GTR-852; Volume 46. [Google Scholar]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.P.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Khan, A.; Khan, S.U.; Ali, M.A.S.; Khan, A.A.; Zhao, M. Prioritizing stakeholders’ preferences for policy scenarios of vulnerable ecosystems with spatial heterogeneity in choice experiment: Coupling stated preferences with elevation. J. Environ. Manag. 2022, 310, 114757. [Google Scholar] [CrossRef]
- Castro, A.J.; Vaughn, C.C.; Julian, J.P.; García-Llorente, M. Social Demand for Ecosystem Services and Implications for Watershed Management. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 209–221. [Google Scholar] [CrossRef]
- Jo, J.H.; Choi, M.; Shin, S.; Lee, C.B. Navigating nature’s benefits to people: Examining asymmetrical stakeholder preferences for local forest ecosystem services in South Korea. Forestry 2023, 96, 277–292. [Google Scholar] [CrossRef]
- Brouwer, R.; Martin-Ortega, J.; Berbel, J. Spatial Preference Heterogeneity: A Choice Experiment. Land Econ. 2010, 86, 552–568. [Google Scholar] [CrossRef]
- Shin, Y.J.; Park, S.J.; Park, C.R. Valuation of Cultural Ecosystem Services using the Choice Experiment Method (CE). J. Korean Inst. For. Recreat. 2016, 20, 65–77. [Google Scholar]
- Lapointe, M.; Cumming, G.S.; Gurney, G.G. Comparing Ecosystem Service Preferences between Urban and Rural Dwellers. BioScience 2019, 69, 108–116. [Google Scholar] [CrossRef]
- de Juan, S.; Gelcich, S.; Fernandez, M. Integrating stakeholder perceptions and preferences on ecosystem services in the management of coastal areas. Ocean Coast. Manag. 2017, 136, 38–48. [Google Scholar] [CrossRef]
- Quyen, N.T.K.; Berg, H.; Gallardo, W.; Da, C.T. Stakeholders’ perceptions of ecosystem services and Pangasius catfish farming development along the Hau River in the Mekong Delta, Vietnam. Ecosyst. Serv. 2017, 25, 2–14. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Zhang, J.; Ma, X.; Zhou, L.; Sun, Y. Spatial-temporal changes in ecosystem services and social-ecological drivers in a typical coastal tourism city: A case study of Sanya, China. Ecol. Indic. 2022, 145, 109607. [Google Scholar] [CrossRef]
- Kumar, S.; Kant, S. Exploded logit modeling of stakeholders’ preferences for multiple forest values. For. Policy Econ. 2007, 9, 516–526. [Google Scholar] [CrossRef]
- Edwards, D.M.; Jay, M.; Jensen, F.S.; Lucas, B.; Marzano, M.; Montagné, C.; Weiss, G. Public preferences across Europe for different forest stand types as sites for recreation. Ecol. Soc. 2012, 17, 27. [Google Scholar] [CrossRef]
- Altman, I.; Rogoff, B. World views in psychology: Trait, interactional, organismic, and transactional perspectives. In Handbook of Environmental Psychology; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton, Mifflin and Company: Boston, MA, USA, 1979. [Google Scholar]
- McGrenere, J.; Ho, W. Affordances: Clarifying and evolving a concept. In Proceedings of the Graphics Interface 2000, Montréal, QC, Canada, 15–17 May 2000; pp. 179–186. [Google Scholar]
- Heft, H. An ecological approach to psychology. Rev. Gen. Psychol. 2013, 17, 162–167. [Google Scholar] [CrossRef]
- Andersson, E.; McPhearson, T. Making sense of biodiversity: The affordances of systems ecology. Front. Psychol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Chemero, A. Stage Setting: A BIT of Radical Embodied Cognitive Science; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Laaksoharju, T.; Rappe, E. Trees as affordances for connectedness to place—A framework to facilitate children’s relationship with nature. Urban For. Urban Green. 2017, 28, 150–159. [Google Scholar] [CrossRef]
- Sharma-Brymer, V.; Brymer, E.; Gray, T.; Davids, K. Affordances guiding Forest School practice: The application of the ecological dynamics approach. J. Outdoor Environ. Educ. 2018, 21, 103–115. [Google Scholar] [CrossRef]
- Guardini, B. Restorative Urban Forests: A Study of Nature Affordances Along Forest Bathing Trails in Northeast Italy; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2022. [Google Scholar]
- Vilar, E.; Teixeira, L.; Rebelo, F.; Noriega, P.; Teles, J. Using environmental affordances to direct people natural movement indoors. Work 2012, 41 (Suppl. 1), 1149–1156. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C. Introduction: What Are Ecosystem Services; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for classifying, describing and valuing ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Dunford, R.; Harrison, P.; Smith, A.; Dick, J.; Barton, D.N.; Martin-Lopez, B.; Kelemen, E.; Jacobs, S.; Saarikoski, H.; Turkelboom, F.; et al. Integrating methods for ecosystem service assessment: Experiences from real world situations. Ecosyst. Serv. 2018, 29, 499–514. [Google Scholar] [CrossRef]
- Resende, F.M.; Fernandes, G.W.; Andrade, D.C.; Néder, H.D. Economic valuation of the ecosystem services provided by a protected area in the Brazilian Cerrado: Application of the contingent valuation method. Braz. J. Biol. 2017, 77, 762–773. [Google Scholar] [CrossRef]
- Ghermandi, A. Integrating social media analysis and revealed preference methods to value the recreation services of ecologically engineered wetlands. Ecosyst. Serv. 2018, 31, 351–357. [Google Scholar] [CrossRef]
- Venkatachalam, L. The contingent valuation method: A review. Environ. Impact Assess. Rev. 2004, 24, 89–124. [Google Scholar] [CrossRef]
- Hanley, C.E. Marginality and Modernity: A Study of Identity and Experience Among Low Income Residents of Boston. Ph.D. Thesis, Wellesley College, Wellesley, MA, USA, 1998. [Google Scholar]
- Jo, J.H.; Park, S.H.; Koo, J.C.; Roh, T.; Emily, M.L.; Youn, Y.C. Preferences for ecosystem services provided by urban forests in South Korea. For. Sci. Technol. 2020, 16, 86–103. [Google Scholar]
- Tahvanainen, L.; Tyrväinen, L.; Ihalainen, M.; Vuorela, N.; Kolehmainen, O. Forest management and public perceptions—Visual versus verbal information. Landsc. Urban Plan. 2001, 53, 53–70. [Google Scholar] [CrossRef]
- Kuvan, Y.; Akan, P. Residents’ attitudes toward general and forest-related impacts of tourism: The case of Belek, Antalya. Tour. Manag. 2005, 26, 691–706. [Google Scholar] [CrossRef]
- Jeonju University-Industry Cooperation Foundation. 2022 Jeollabuk-do Social Survey Report; Jeonju University-Industry Cooperation Foundation: Jeonju, Republic of Korea, 2022. [Google Scholar]
- Korea Forest Services. West Regional Forest Service Visits Carbon Neutrality Weekly Forest Caring Destinations; Korea Forest Services platform: Daejeon, Republic of Korea, 2021. [Google Scholar]
- Jeonbuk Institute. Jeollabuk-do Mountainous Resource Specialization Plan; Jeonbuk Institute: Jeonju, Republic of Korea, 2017. [Google Scholar]
- Louviere, J.J. Choice Experiments: An Overview of Concepts and Issues. The Choice Modelling Approach to Environmental Valuation; Edward Elgar: Cheltenham, UK, 2001; Volume 13. [Google Scholar]
- Koo, J.C.; Park, M.S.; Youn, Y.C. Preferences of urban dwellers on urban forest recreational services in South Korea. Urban For. Urban Greening 2013, 12, 200–210. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior; UC Berkeley: Berkeley, CA, USA, 1973. [Google Scholar]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Statistics Korea. Population Census Statistics; Statistics Korea: Seoul, Republic of Korea, 2023. [Google Scholar]
- National Institute of Forest Science. Assessment of Forest Public Benefit Functions; NIFoS: Seoul, Republic of Korea, 2020. [Google Scholar]
- Swank, W.T.; Douglass, J.E. Streamflow greatly reduced by converting deciduous hardwood stands to pine. Science 1974, 185, 857–859. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Zhang, X.; Chen, J.J.; Zhan, F.D.; Guo, X.H.; Zu, Y.Q. Differential water and soil conservation capacity and associated processes in four forest ecosystems in Dianchi Watershed, Yunnan Province, China. J. Soil Water Conserv. 2015, 70, 198–206. [Google Scholar] [CrossRef]
- Breil, M.; Weber, A.; Pinto, J.G. The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe. Biogeosciences 2023, 20, 2237–2250. [Google Scholar] [CrossRef]
- FAO. Global Forest Resource Assessment; Food and Agriculture Organization: Rome, Italy, 2000. [Google Scholar]
- Slanina, S.; Natov, P.; Dvořák, J.; Gabrielová, B. Analysis of Standing Timber Sales Based on Overall Coniferous/Broadleaved Tree Species Ratio. J. For. Sci. 2016, 61, 106–111. [Google Scholar] [CrossRef]
- Nepal, P.; Johnston, C.M.; Ganguly, I. Effects on global forests and wood product markets of increased demand for mass timber. Sustainability 2021, 13, 13943. [Google Scholar] [CrossRef]
- Korea Rural Economic Institute. Agricultural Outlook 2023 Korea; KREI: Naju, Republic of Korea, 2023. [Google Scholar]
- Colombo, S.; Hanley, N.; Calatrava-Requena, J. Designing policy for reducing the off-farm effects of soil erosion using choice experiments. J. Agric. Econ. 2005, 56, 81–95. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Sustain. Agric. 2009, 28, 785–811. [Google Scholar]
- Ochoa-Cueva, P.; Fries, A.; Montesinos, P.; Rodríguez-Díaz, J.A.; Boll, J. Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador. Land Degrad. Dev. 2015, 26, 565–573. [Google Scholar] [CrossRef]
- Kirby, K.R.; Potvin, C. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For. Ecol. Manag. 2007, 246, 208–221. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Pregitzer, C.C.; Hanna, C.; Charlop-Powers, S.; Bradford, M.A. Estimating carbon storage in urban forests of New York City. Urban Ecosyst. 2022, 25, 617–631. [Google Scholar] [CrossRef]
- Hardiman, B.S.; Gough, C.M.; Halperin, A.; Hofmeister, K.L.; Nave, L.E.; Bohrer, G.; Curtis, P.S. Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. For. Ecol. Manag. 2013, 298, 111–119. [Google Scholar] [CrossRef]
- Hooykaas, M.J.; Schilthuizen, M.; Smeets, I. Expanding the role of biodiversity in laypeople’s lives: The view of communicators. Sustainability 2020, 12, 2768. [Google Scholar] [CrossRef]
- Mohneke, M.; Erguvan, F.; Schlüter, K. Explorative study about knowledge of species in the field of early years education. J. Emergent. Sci. 2016, 11, 1–234. [Google Scholar]
- Breitschopf, E.; Bråthen, K.A. Perception and appreciation of plant biodiversity among experts and laypeople. People Nat. 2023, 5, 826–838. [Google Scholar] [CrossRef]
- Vanhöfen, J.; Schöffski, N.; Härtel, T.; Randler, C. Are lay people able to estimate breeding bird diversity? Animals 2022, 12, 3095. [Google Scholar] [CrossRef]
- Jo, J.H.; Lee, C.B.; Cho, H.J.; Lee, J. Estimation of citizens’ willingness to pay for the implementation of payment for local Forest ecosystem services: The case of taxes and donations. Sustainability 2021, 13, 6186. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, E.; Wang, Z. Valuing Nonuse Value of a National Forest Park with Consideration of the Local Residents’ Environmental Attitudes. Forests 2023, 14, 1487. [Google Scholar] [CrossRef]
- Moeltner, K.; Fanara, T.; Foroutan, H.; Hanlon, R.; Lovko, V.; Ross, S.; Schmale, D., III. Harmful algal blooms and toxic air: The economic value of improved forecasts. Mar. Resour. Econ. 2023, 38, 1–28. [Google Scholar] [CrossRef]
- Green, P.E. On the design of choice experiments involving multifactor alternatives. J. Consum. Res. 1974, 1, 61–68. [Google Scholar] [CrossRef]
- Clyde, M.; Desimone, H.; Parmigiani, G. Prediction via orthogonalized model mixing. J. Am. Stat. Assoc. 1996, 91, 1197–1208. [Google Scholar] [CrossRef]
- Rolfe, J.; Bennett, J. The impact of offering two versus three alternatives in choice modelling experiments. Ecol. Econ. 2009, 68, 1140–1148. [Google Scholar] [CrossRef]
- O’Hare, W.P. 2020 Census Faces Challenges in Rural America; University of New Hampshire: Burham, NH, USA, 2018. [Google Scholar]
- Aizaki, H. Basic functions for supporting an implementation of choice experiments in R. J. Stat. Softw. 2012, 50, 1–24. [Google Scholar] [CrossRef]
- Jacobs, S.; Dendoncker, N.; Martín-López, B.; Barton, D.N.; Gomez-Baggethun, E.; Boeraeve, F.; Washbourne, C.L. A new valuation school: Integrating diverse values of nature in resource and land use decisions. Ecosyst. Serv. 2016, 22, 213–220. [Google Scholar] [CrossRef]
- Glass, R.J.; Muth, R.M.; Flewelling, R. Distinguishing recreation from subsistence in a modernizing economy. In Social Science and Natural Resource Recreation Management; Routledge: New York, NY, USA, 2019; pp. 151–164. [Google Scholar]
- Williams, K.; Biedenweg, K.; Cerveny, L. Understanding ecosystem service preferences across residential classifications near Mt. Baker Snoqualmie National Forest, Washington (USA). Forests 2017, 8, 157. [Google Scholar] [CrossRef]
- Han, Z.Y.; Youn, Y.C. Beijing resident’s preferences of ecosystem services of urban forests. Forests 2020, 12, 14. [Google Scholar] [CrossRef]
- Khaing, K.S.; Youn, Y.C. Perceptions of forest-dependent communities toward participation in forest conservation: A case study in Bago Yoma, South-Central Myanmar. For. Policy Econ. 2019, 100, 129–141. [Google Scholar]
- Weinbrenner, H.; Breithut, J.; Hebermehl, W.; Kaufmann, A.; Klinger, T.; Palm, T.; Wirth, K. The forest has become our new living room”–the critical importance of urban forests during the COVID-19 pandemic. Front. For. Glob. Change 2021, 4, 672909. [Google Scholar] [CrossRef]
- Ribe, R.G.; Matteson, M.Y. Views of old forestry and new among reference groups in the Pacific Northwest. West. J. Appl. For. 2002, 17, 173–182. [Google Scholar] [CrossRef]
- Racevskis, L.A.; Lupi, F. Comparing urban and rural perceptions of and familiarity with the management of forest ecosystems. Soc. Nat. Resour. 2006, 19, 479–495. [Google Scholar] [CrossRef]
- Korea Forest Services. Landslide Information System; Korea Forest Services platform: Daejeon, Republic of Korea, 2023. [Google Scholar]
- Frondel, M.; Simora, M.; Sommer, S. Risk perception of climate change: Empirical evidence for Germany. Ecol. Econ. 2017, 137, 173–183. [Google Scholar] [CrossRef]
- Thiemann, M.; Riebl, R.; Haensel, M.; Schmitt, T.M.; Steinbauer, M.J.; Landwehr, T.; Koellner, T. Perceptions of ecosystem services: Comparing socio-cultural and environmental influences. PLoS ONE 2022, 17, e0276432. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.I. Implications of Urbanization for Conservation and Biodiversity Protection; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Ma, J.; Mitchell, G.; Dong, G.; Zhang, W. Inequality in Beijing: A spatial multilevel analysis of perceived environmental hazard and self-rated health. Ann. Am. Assoc. Geogr. 2017, 107, 109–129. [Google Scholar] [CrossRef]
- Yang, H.; Song, W.; Moon, J. Mega-events and conflict: The case of the 2018 Pyeongchang Winter Olympics. J. Qual. Assur. Hosp. Tour. 2019, 20, 552–571. [Google Scholar] [CrossRef]
- Shoyama, K.; Managi, S.; Yamagata, Y. Public preferences for biodiversity conservation and climate-change mitigation: A choice experiment using ecosystem services indicators. Land Use Policy 2013, 34, 282–293. [Google Scholar] [CrossRef]
- Afriyie, J.O.; Opare, M.A.; Hejcmanová, P. Knowledge and perceptions of rural and urban communities towards small protected areas: Insights from Ghana. Ecosphere 2022, 13, e4257. [Google Scholar] [CrossRef]
- Czajkowski, M.; Bartczak, A.; Giergiczny, M.; Navrud, S.; Żylicz, T. Providing preference-based support for forest ecosystem service management. For. Policy Econ. 2014, 39, 1–12. [Google Scholar] [CrossRef]
- Shoji, Y.; Tsuge, T.; Kubo, T.; Imamura, K.; Kuriyama, K. Examining Preferences for Forest Ecosystem Services using Partial Profile Choice Experiments. J. For. Econ. 2023, 38, 235–263. [Google Scholar] [CrossRef]
- Faccioli, M.; Czajkowski, M.; Glenk, K.; Martin-Ortega, J. Environmental attitudes and place identity as determinants of preferences for ecosystem services. Ecol. Econ. 2020, 174, 106600. [Google Scholar] [CrossRef]
- Ureta, J.C.; Motallebi, M.; Vassalos, M.; Seagle, S.; Baldwin, R. Estimating residents’ WTP for ecosystem services improvement in a payments for ecosystem services (PES) program: A choice experiment approach. Ecol. Econ. 2022, 201, 107561. [Google Scholar] [CrossRef]
- Toledo-Gallegos, V.M.; Long, J.; Campbell, D.; Börger, T.; Hanley, N. Spatial clustering of willingness to pay for ecosystem services. J. Agric. Econ. 2021, 72, 673–697. [Google Scholar] [CrossRef]
Region | Eastern Region | Western Region | ||
---|---|---|---|---|
Model 1 (3 Alternatives) | Model 2 (2 Alternatives) | Model 1 (3 Alternatives) | Model 2 (2 Alternatives) | |
Water provision (Reference: <25% Broadleaf) | ||||
Moderate | 0.0239 | 0.0366 | −0.0193 | −0.0568 |
Rich | 0.3290 | 0.3551 | −0.0111 | −0.0540 |
Timber provision (Reference: <25% Conifer) | ||||
Moderate | −0.0110 | −0.0348 | 0.0573 | 0.0371 |
Rich | 0.0368 | 0.0222 | 0.1606 | 0.1665 |
NTFP provision (Reference: <25% Short-term Income or Fruit Trees) | ||||
Moderate | 0.0513 | 0.0413 | 0.0805 | 0.0432 |
Rich | −0.0245 | −0.0223 | −0.0164 | −0.0468 |
Erosion Control (Reference: 33% Understory Cover) | ||||
Moderate | 0.4747 | 0.4823 | 0.1089 | 0.1578 |
Rich | 0.6670 | 0.6872 | −0.0101 | 0.0216 |
Carbon Storage (Reference: Low Canopy Density) | ||||
Moderate | 0.3222 | 0.3003 | −0.0273 | −0.0669 |
Rich | 0.5576 | 0.5361 | −0.1039 | −0.1211 |
Recreation (Reference: Hiking) | ||||
Moderate | 0.2596 | 0.2748 | 0.0210 | 0.0036 |
Rich | 0.3869 | 0.3865 | 0.0535 | 0.0626 |
Biodiversity (Reference: Poor Species Diversity and Richness) | ||||
Moderate | 0.3694 | 0.3898 | 0.0463 | 0.0506 |
Rich | 0.5740 | 0.5877 | 0.0750 | 0.0794 |
Tax | −0.0201 | −0.0194 | 0.0010 | 0.0014 |
Status | Case Number (Person) | Proportion (%) | |||
---|---|---|---|---|---|
Survey link successfully sent | Received the survey link unchecked | 3387 | 81.1 | ||
Received survey link, checked | Out | Not targeted subject | 83 | 2.0 | |
Exceeded the targeted subject | 154 | 3.7 | |||
Incomplete response | 63 | 1.4 | |||
Response completed | Untrustworthy data | 90 | 2.2 | ||
Completed response | 400 | 9.6 | |||
Total | 4177 | 100.0 |
Category | Sample Size (%) | Proposition of Jeollabuk-do’s Total Population, as of 2020 (%) | ||
---|---|---|---|---|
Variables | Code | |||
Age | 20s | 2 | 26.5 | 15.7 |
30s | 3 | 26.8 | 11.2 | |
40s | 4 | 26.8 | 10.0 | |
50s and above | 5 | 20.0 | 48.8 | |
Sex | Male | 1 | 50.0 | 49.8 |
Female | 2 | 50.0 | 51.1 | |
Marriage | Single | 0 | 52.0 | 12.0 |
Married | 1 | 48.0 | 88.0 | |
Number of children | None | 0 | 15.5 | - |
1 | 1 | 13.3 | ||
2 | 2 | 16.8 | ||
3 above | 3 | 2.5 | ||
Education | Less than a middle school graduate | 1 | 0.8 | 48.1 |
High school graduate | 2 | 12.3 | 29.2 | |
Attended or graduated from a university | 3 | 73.0 | 21.0 | |
Graduate school student or a graduate degree holder | 4 | 14.0 | 1.7 | |
Monthly household income | Less than KRW 1,000,000 | 0 | 6.3 | 21.7 |
KRW 1,000,000 to less than KRW 2,000,000 | 1 | 5.5 | 18.3 | |
KRW 2,000,000 to less than KRW 3,000,000 | 2 | 21.0 | 20.2 | |
KRW 3,000,000 to less than KRW 4,000,000 | 3 | 16.8 | 14.7 | |
KRW 4,000,000 to less than KRW 5,000,000 | 4 | 14.3 | 9.5 | |
KRW 5,000,000 to less than KRW 6,000,000 | 5 | 14.3 | 6.4 | |
KRW 6,000,000 to less than KRW 7,000,000 | 6 | 8.0 | 3.5 | |
KRW 7,000,000 to less than KRW 8,000,000 | 7 | 6.3 | 1.8 | |
KRW 8,000,000 or more | 8 | 7.8 | 3.9 | |
Number of forest visits in the past year | None | 1 | 24.8 | - |
More than once | 2 | 75.3 | ||
Purpose of visit | Forestry activities | 1 | 0.3 | |
Relaxation/walking | 2 | 46.5 | ||
Nature experience/education | 3 | 1.0 | ||
Physical activity | 4 | 27.0 | ||
Others | 5 | 0.5 |
Ecosystem Service (Attributes) | Attributes and Levels | Eastern (E) | Western (W) | Hypothesis Testing (βE = βw) χ2 (1) |
---|---|---|---|---|
Alternative specific constant (ASC) | - | 1.614 * | 1.377 * | - |
Water provision (Standard level: less than 25% of deciduous trees) | 25% to less than 75% of deciduous trees | 0.024 | 0.214 * | 2.001 |
More than 75% of deciduous trees | 0.329 | 0.339 * | 0.006 | |
Timber provision (Standard level: less than 25% of coniferous trees) | 25% to less than 75% of coniferous trees | −0.011 | −0.053 | 0.100 |
More than 75% of coniferous trees | 0.037 | 0.125 | 0.449 | |
NTFP provision (Standard level: less than 25% of forest products and fruit tree planting) | 25% to less than 75% of Forest products and fruit trees planting | 0.051 | −0.140 | 2.066 |
More than 75% of Forest products and fruit trees planting | −0.024 | −0.088 | 0.223 | |
Erosion control (Standard level: area covered by the forest 33%) | The area covered by the forest is 66% | 0.475 *** | 0.217 *** | 2.256 |
The area covered by the forest is 99% | 0.667 *** | 0.510 *** | 1.385 | |
Carbon storage (Standard level: low canopy density) | Medium canopy density | 0.322 *** | 0.310 ** | 0.008 |
High canopy density | 0.558 *** | 0.521 *** | 0.073 | |
Recreation (Standard level: trekking) | Trekking, camping, and climbing | 0.260 *** | 0.235 * | 0.035 |
Trekking, camping, climbing, MTB, paragliding, etc. | 0.387 *** | 0.246 * | 1.101 | |
Biodiversity improvement (Standard level: poor) | Average | 0.369 *** | 0.550 *** | 1.764 |
Rich | 0.574 *** | 0.799 *** | 0.095 | |
WTP for forest ecosystem service (Tax) (KRW/household/year) | - | −0.020 *** | −0.018 *** | - |
Ecosystem Service (Attributes) | Levels | Coefficient | p > z | MWTP (Unit: KRW) | ||
---|---|---|---|---|---|---|
Mean | 95% CI | |||||
Alternative specific constant (ASC) | - | 1.614 * | 0.000 | - | - | |
Water provision (Standard level: less than 25% of deciduous trees) | 25% to less than 75% of deciduous trees | 0.024 | 0.781 | 1185 | −7332 | 9844 |
More than 75% of deciduous trees | 0.329 | 0.000 | 16,329 | 8020 | 27,410 | |
Timber provision (Standard level: less than 25% of coniferous trees) | 25% to less than 75% of coniferous trees | −0.011 | 0.895 | −0.550 | −9122 | 8011 |
More than 75% of coniferous trees | 0.037 | 0.666 | 1829 | −6647 | 10,654 | |
NTFP provision (Standard level: less than 25% of forest products and fruit tree planting) | 25% to less than 75% of Forest products and fruit trees planting | 0.051 | 0.553 | 2545 | −5862 | 11,851 |
More than 75% of Forest products and fruit trees planting | −0.024 | 0.779 | −1216 | −10,006 | 7752 | |
Erosion control (Standard level: area covered by the forest 33%) | The area covered by the forest is 66% | 0.475 *** | 0.000 | 23,559 | 14,217 | 36,638 |
The area covered by the forest is 99% | 0.667 *** | 0.000 | 33,109 | 22,894 | 48,510 | |
Carbon storage (Standard level: low canopy density) | Medium canopy density | 0.322 *** | 0.000 | 15,991 | 7366 | 27,217 |
High canopy density | 0.558 *** | 0.000 | 27,678 | 18,294 | 41,565 | |
Recreation (Standard level: trekking) | Trekking, camping, and climbing | 0.260 *** | 0.003 | 12,884 | 4321 | 23,585 |
Trekking, camping, climbing, MTB, paragliding, etc. | 0.387 *** | 0.000 | 19,202 | 10,468 | 31,211 | |
Biodiversity improvement (Standard level: poor) | Average | 0.369 *** | 0.000 | 18,337 | 9565 | 30,345 |
Rich | 0.574 *** | 0.000 | 28,492 | 18,902 | 42,470 | |
WTP for forest ecosystem service (Tax) (KRW/household/year) | - | −0.020 *** | 0.000 | - | - | - |
Ecosystem Service (Attributes) | Levels | Coefficient | p > z | MWTP (Unit: KRW) | ||
---|---|---|---|---|---|---|
Mean | 95% CI | |||||
Alternative specific constant (ASC) | - | 1.377 *** | 0.000 | - | - | - |
Water provision (Standard level: less than 25% of deciduous trees) | 25% to less than 75% of deciduous trees | 0.214 * | 0.039 | 11,770 | 697 | 26,620 |
More than 75% of deciduous trees | 0.339 ** | 0.001 | 18,644 | 7360 | 35,776 | |
Timber provision (Standard level: less than 25% of coniferous trees) | 25% to less than 75% of coniferous trees | −0.053 | 0.603 | −2905 | −14,661 | 8343 |
More than 75% of coniferous trees | 0.125 | 0.213 | 6877 | −4072 | 19,635 | |
NTFP provision (Standard level: less than 25% of forest products and fruit tree planting) | 25% to less than 75% of Forest products and fruit trees planting | −0.140 | 0.167 | −7721 | −20,290 | 3480 |
More than 75% of Forest products and fruit trees planting | −0.088 | 0.391 | −4847 | −17,972 | 6222 | |
Erosion control (Standard level: area covered by the forest 33%) | The area covered by the forest is 66% | 0.217 *** | 0.009 | 14,910 | 3432 | 30,781 |
The area covered by the forest is 99% | 0.510 *** | 0.000 | 28,029 | 15,770 | 47,745 | |
Carbon storage (Standard level: low canopy density) | Medium canopy density | 0.310 ** | 0.003 | 17,058 | 5497 | 33,718 |
High canopy density | 0.521 *** | 0.000 | 28,661 | 16,069 | 49,722 | |
Recreation (Standard level: trekking) | Trekking, camping, and climbing | 0.235 * | 0.020 | 12,901 | 1823 | 26,452 |
Trekking, camping, climbing, MTB, paragliding, etc. | 0.246 * | 0.017 | 13,533 | 2429 | 28,059 | |
Biodiversity improvement (Standard level: poor) | Average | 0.550 *** | 0.000 | 30,225 | 17,445 | 51,707 |
Rich | 0.799 *** | 0.000 | 43,961 | 29,160 | 71,818 | |
WTP for forest ecosystem service (Tax) (KRW/household/year) | - | −0.018 *** | 0.000 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.-G.; Jo, J.-H.; Lim, C.-J. Do Regional Differences in Forest Distribution Affect Residents’ Preferences for Forest Ecosystem Services? Forests 2025, 16, 826. https://doi.org/10.3390/f16050826
Son Y-G, Jo J-H, Lim C-J. Do Regional Differences in Forest Distribution Affect Residents’ Preferences for Forest Ecosystem Services? Forests. 2025; 16(5):826. https://doi.org/10.3390/f16050826
Chicago/Turabian StyleSon, Young-Gyun, Jang-Hwan Jo, and Chae-Jun Lim. 2025. "Do Regional Differences in Forest Distribution Affect Residents’ Preferences for Forest Ecosystem Services?" Forests 16, no. 5: 826. https://doi.org/10.3390/f16050826
APA StyleSon, Y.-G., Jo, J.-H., & Lim, C.-J. (2025). Do Regional Differences in Forest Distribution Affect Residents’ Preferences for Forest Ecosystem Services? Forests, 16(5), 826. https://doi.org/10.3390/f16050826