Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree-Ring Data
2.2. Climatic Data
2.3. Statistical Analysis
3. Results
3.1. Climate and Tree-Ring Data Relationship
3.2. The Followed Process for Reconstructing the Tre-Ring Chronologies
3.3. Verification with Other Existing Reconstructions
3.4. Reconstructions and Regional Precipitation Variability
- –
- TRW AMJJA: 1892–1896 and 1911–1915 (5 y), 1887–1896 and 1813–1822 (10 y), 1879–1898 and 1809–1828 (20 y).
- –
- TRW MJ: 1892–1896 and 1812–1816 (5 y), 1887–1896 and 1813–1822 (10 y), 1879–1898 and 1809–1828 (20 y).
- –
- EWW MJ: 1867–1871 and 1862–1866 (5 y), 1925–1934 and 1857–1866 (10 y), 1927–1946 and 1901–1919 (20 y).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maheras, P.; Xoplaki, E.; Kutiel, H. Wet and Dry Monthly Anomalies Across the Mediterranean Basin and Their Relationship with Circulation, 1860–1990. Theor. Appl. Climatol. 1999, 64, 189–199. [Google Scholar] [CrossRef]
- Luckman, B.H. Dendroclimatology. In Encyclopedia of Quaternary Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 459–470. [Google Scholar]
- Poljanšek, S.; Ceglar, A.; Levanič, T. Long-Term Summer Sunshine/Moisture Stress Reconstruction from Tree-Ring Widths from Bosnia and Herzegovina. Clim. Past 2013, 9, 27–40. [Google Scholar] [CrossRef]
- Esper, J.; Konter, O.; Klippel, L.; Krusic, P.J.; Büntgen, U. Pre-instrumental Summer Precipitation Variability in Northwestern Greece from a High-elevation Pinus heldreichii Network. Int. J. Climatol. 2021, 41, 2828–2839. [Google Scholar] [CrossRef]
- Klippel, L.; Krusic, P.J.; Brandes, R.; Hartl-Meier, C.; Trouet, V.; Meko, M.; Esper, J. High-Elevation Inter-Site Differences in Mount Smolikas Tree-Ring Width Data. Dendrochronologia 2017, 44, 164–173. [Google Scholar] [CrossRef]
- Griggs, C.; Pearson, C.; Manning, S.W.; Lorentzen, B. A 250-Year Annual Precipitation Reconstruction and Drought Assessment for Cyprus from Pinus brutia Ten. Tree-Rings. Int. J. Climatol. 2014, 34, 2702–2714. [Google Scholar] [CrossRef]
- Griggs, C.; DeGaetano, A.; Kuniholm, P.; Newton, M. A Regional High-frequency Reconstruction of May–June Precipitation in the North Aegean from Oak Tree Rings, A.D. 1089–1989. Int. J. Climatol. 2007, 27, 1075–1089. [Google Scholar] [CrossRef]
- Levanič, T.; Popa, I.; Poljanšek, S.; Nechita, C. A 323-Year Long Reconstruction of Drought for SW Romania Based on Black Pine (Pinus nigra) Tree-Ring Widths. Int. J. Biometeorol. 2013, 57, 703–714. [Google Scholar] [CrossRef]
- Touchan, R.; Xoplaki, E.; Funkhouser, G.; Luterbacher, J.; Hughes, M.K.; Erkan, N.; Akkemik, Ü.; Stephan, J. Reconstructions of Spring/Summer Precipitation for the Eastern Mediterranean from Tree-Ring Widths and Its Connection to Large-Scale Atmospheric Circulation. Clim. Dyn. 2005, 25, 75–98. [Google Scholar] [CrossRef]
- Touchan, R.; Anchukaitis, K.J.; Shishov, V.V.; Sivrikaya, F.; Attieh, J.; Ketmen, M.; Stephan, J.; Mitsopoulos, I.; Christou, A.; Meko, D.M. Spatial Patterns of Eastern Mediterranean Climate Influence on Tree Growth. Holocene 2014, 24, 381–392. [Google Scholar] [CrossRef]
- Trouet, V. A Tree-Ring Based Late Summer Temperature Reconstruction (AD 1675–1980) for the Northeastern Mediterranean. Radiocarbon 2014, 56, S69–S78. [Google Scholar] [CrossRef]
- Klesse, S.; Ziehmer, M.; Rousakis, G.; Trouet, V.; Frank, D. Synoptic Drivers of 400 Years of Summer Temperature and Precipitation Variability on Mt. Olympus, Greece. Clim. Dyn. 2015, 45, 807–824. [Google Scholar] [CrossRef]
- Akkemik, Ü.; D’Arrigo, R.; Cherubini, P.; Köse, N.; Jacoby, G.C. Tree-Ring Reconstructions of Precipitation and Streamflow for North-Western Turkey. Int. J. Climatol. 2008, 28, 173–183. [Google Scholar] [CrossRef]
- Akkemik, Ü.; Dağdeviren, N.; Aras, A. A Preliminary Reconstruction (A.D. 1635–2000) of Spring Precipitation Using Oak Tree Rings in the Western Black Sea Region of Turkey. Int. J. Biometeorol. 2005, 49, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Akkemik, U.; Aras, A. Reconstruction (1689–1994 AD) of April-August Precipitation in the Southern Part of Central Turkey. Int. J. Climatol. 2005, 25, 537–548. [Google Scholar] [CrossRef]
- Köse, N.; Akkemik, Ü.; Güner, H.T.; Dalfes, H.N.; Grissino-Mayer, H.D.; Özeren, M.S.; Kındap, T. An Improved Reconstruction of May–June Precipitation Using Tree-Ring Data from Western Turkey and Its Links to Volcanic Eruptions. Int. J. Biometeorol. 2013, 57, 691–701. [Google Scholar] [CrossRef]
- Köse, N.; Akkemik, Ü.; Dalfes, H.N.; Özeren, M.S. Tree-Ring Reconstructions of May–June Precipitation for Western Anatolia. Quat. Res. 2011, 75, 438–450. [Google Scholar] [CrossRef]
- Christopoulou, A.; Fyllas, N.M.; Gmińska-Nowak, B.; Özarslan, Y.; Arianoutsou, M.; Brandes, R.; Ważny, T. Exploring the Past of Mavrovouni Forest in the Pindus Mountain Range (Greece) Using Tree Rings of Bosnian Pines. Trees 2022, 36, 153–166. [Google Scholar] [CrossRef]
- Papadopoulos, A. Tree-Ring Patterns and Climate Response of Mediterranean Fir Populations in Central Greece. Dendrochronologia 2016, 40, 17–25. [Google Scholar] [CrossRef]
- Panayotov, M.; Bebi, P.; Trouet, V.; Yurukov, S. Climate Signal in Tree-Ring Chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees 2010, 24, 479–490. [Google Scholar] [CrossRef]
- Hughes, M.K.; Kuniholm, P.; Eischeid, J.K.; Garfin, G.M.; Griggs, C.B.; Latini, C.E. Aegean Tree-Ring Signature Years Explained. Tree-Ring Res. 2001, 57, 67–73. [Google Scholar]
- Genç, S.; Güner, H.T. Precipitation and Streamflow Reconstructions from Tree Rings for the Lower Kızılırmak River Basin, Turkey. Forests 2022, 13, 501. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; van der Schrier, G.; Andreu-Hayles, L.; et al. Old World Megadroughts and Pluvials during the Common Era. Sci. Adv. 2015, 1, 1500561. [Google Scholar] [CrossRef]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological Analysis of Fir (A. borisii-regis) in Greece in the Frame of Climate Change Investigation. Forests 2022, 13, 879. [Google Scholar] [CrossRef]
- Seim, A.; Büntgen, U.; Fonti, P.; Haska, H.; Herzig, F.; Tegel, W.; Trouet, V.; Treydte, K. Climate Sensitivity of a Millennium-Long Pine Chronology from Albania. Clim. Res. 2012, 51, 217–228. [Google Scholar] [CrossRef]
- Seim, A.; Treydte, K.; Trouet, V.; Frank, D.; Fonti, P.; Tegel, W.; Panayotov, M.; Fernández-Donado, L.; Krusic, P.; Büntgen, U. Climate Sensitivity of Mediterranean Pine Growth Reveals Distinct East-West Dipole. Int. J. Climatol. 2015, 35, 2503–2513. [Google Scholar] [CrossRef]
- Klippel, L.; Krusic, P.J.; Brandes, R.; Hartl, C.; Belmecheri, S.; Dienst, M.; Esper, J. A 1286-year Hydro-climate Reconstruction for the Balkan Peninsula. Boreas 2018, 47, 1218–1229. [Google Scholar] [CrossRef]
- Sakalis, V.D. Reconstructing the Rainfall Series of the Greek and Balkan Peninsula since 1595 A.D Based on Tree-Ring Data and Historical Evidence Verification. Rend. Lincei Sci. Fis. Nat. 2025, 1–39. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Blasing, T.J.; Duvick, D.N.; West, D.C. Dendroclimatic Calibration and Verification Using Regionally Averaged and Single Station Precipitation Data. Tree-Ring Bull. 1981, 41, 38–43. [Google Scholar]
- Tejedor, E.; Saz, M.Á.; Cuadrat, J.M.; Esper, J.; de Luis, M. Temperature Variability in the Iberian Range since 1602 Inferred from Tree-Ring Records. Clim. Past 2017, 13, 93–105. [Google Scholar] [CrossRef]
- Schneider, L.; Ljungqvist, F.C.; Yang, B.; Chen, F.; Chen, J.; Li, J.; Hao, Z.; Ge, Q.; Talento, S.; Osborn, T.J.; et al. The Impact of Proxy Selection Strategies on a Millennium-Long Ensemble of Hydroclimatic Records in Monsoon Asia. Quat. Sci. Rev. 2019, 223, 105917. [Google Scholar] [CrossRef]
- Ljungqvist, F.C.; Piermattei, A.; Seim, A.; Krusic, P.J.; Büntgen, U.; He, M.; Kirdyanov, A.V.; Luterbacher, J.; Schneider, L.; Seftigen, K.; et al. Ranking of Tree-Ring Based Hydroclimate Reconstructions of the Past Millennium. Quat. Sci. Rev. 2020, 230, 106074. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a More Reliable Historical Reanalysis: Improvements for Version 3 of the Twentieth Century Reanalysis System. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Grissino-Mayer, H.D. Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Cook, E.R.; Holmes, R.L. Users Manual for Program ARSTAN. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin; Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1986; pp. 50–65. [Google Scholar]
- Fritts Harold, C. Tree Rings and Climate; Academic Press: Cambridge, MA, USA, 1976; ISBN 9780122684500. [Google Scholar]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s New Land Surface Precipitation Climatology Based on Quality-Controlled in Situ Data and Its Role in Quantifying the Global Water Cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A Description of the Global Land-Surface Precipitation Data Products of the Global Precipitation Climatology Centre with Sample Applications Including Centennial (Trend) Analysis from 1901–Present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zheng, J.; Hao, Z. The Summer Standardized Precipitation Evapotranspiration Index (SPEI) Dataset for Six European Regions over the Past Millennium Reconstructed by Tree-Ring Chronologies. Big Earth Data 2023, 7, 1146–1168. [Google Scholar] [CrossRef]
- Cook, R.E.; Kairiukstis, A.L. (Eds.) Methods of Dendrochronology; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-90-481-4060-2. [Google Scholar]
- Cook, E.R.; Palmer, J.G.; Cook, B.I.; Hogg, A.; D’Arrigo, R.D. A Multi-Millennial Palaeoclimatic Resource from Lagarostrobos Colensoi Tree-Rings at Oroko Swamp, New Zealand. Glob. Planet. Change 2002, 33, 209–220. [Google Scholar] [CrossRef]
- Fritts, H.C.; Guiot, J.; Gordon, G.A.; Schweingruber, F. Methods of Calibration, Verification, and Reconstruction. In Methods of Dendrochronology; Springer: Dordrecht, The Netherlands, 1990; pp. 163–217. [Google Scholar]
- Waszak, N.; Robertson, I.; Puchałka, R.; Przybylak, R.; Pospieszyńska, A.; Koprowski, M. Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland. Atmosphere 2021, 12, 1690. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Characteristics and Water Demand in Semi-Arid Mediterranean Catchments under Water Deficit Conditions. Climate 2023, 11, 137. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate 2023, 11, 106. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Oliva, J.; Vicente-Serrano, S.M. To Die or Not to Die: Early Warnings of Tree Dieback in Response to a Severe Drought. J. Ecol. 2015, 103, 44–57. [Google Scholar] [CrossRef]
- Camarero, J.J.; Rubio-Cuadrado, Á. Relating Climate, Drought and Radial Growth in Broadleaf Mediterranean Tree and Shrub Species: A New Approach to Quantify Climate-Growth Relationships. Forests 2020, 11, 1250. [Google Scholar] [CrossRef]
- Subotić, J.; Dukić, V.; Popov, T.; Trbić, G.; Maunaga, Z.; Petrović, D. Relationships Between Climatic Variables and Tree-Ring Width of Silver Fir (Abies alba Mill.) in Kozara National Park (Bosnia and Herzegovina). South-East Eur. For. 2020, 11, 17–27. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Plastic Responses of Abies pinsapo Xylogenesis to Drought and Competition. Tree Physiol. 2009, 29, 1525–1536. [Google Scholar] [CrossRef]
- Carrer, M.; Nola, P.; Motta, R.; Urbinati, C. Contrasting Tree-Ring Growth to Climate Responses of Abies Alba toward the Southern Limit of Its Distribution Area. Oikos 2010, 119, 1515–1525. [Google Scholar] [CrossRef]
- Walder, D.; Krebs, P.; Bugmann, H.; Manetti, M.C.; Pollastrini, M.; Anzillotti, S.; Conedera, M. Silver Fir (Abies alba Mill.) Is Able to Thrive and Prosper under Meso-Mediterranean Conditions. For. Ecol. Manag. 2021, 498, 119537. [Google Scholar] [CrossRef]
- Tejedor, E.; de Luis, M.; Cuadrat, J.M.; Esper, J.; Saz, M.Á. Tree-Ring-Based Drought Reconstruction in the Iberian Range (East of Spain) since 1694. Int. J. Biometeorol. 2016, 60, 361–372. [Google Scholar] [CrossRef]
- Pauling, A.; Luterbacher, J.; Casty, C.; Wanner, H. Five Hundred Years of Gridded High-Resolution Precipitation Reconstructions over Europe and the Connection to Large-Scale Circulation. Clim. Dyn. 2006, 26, 387–405. [Google Scholar] [CrossRef]
- Cook, E.R.; Woodhouse, C.A.; Eakin, C.M.; Meko, D.M.; Stahle, D.W. Long-Term Aridity Changes in the Western United States. Science 2004, 306, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, R.; Cullen, H.M. A 350-Year (AD 1628–1980) Reconstruction of Turkish Precipitation. Dendrochronologia 2001, 19, 169–177. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Xoplaki, E.; Maheras, P.; Luterbacher, J. Variability of Climate in Meridional Balkans during the Periods 1675–1715 and 1780–1830 and Its Impact on Human Life. Clim. Change 2001, 48, 581–615. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Barriendos, M.; Dominguez-Castro, F.; Cocheo, C.; Enzi, S.; Sghedoni, M.; Della Valle, A.; Garnier, E.; Alcoforado, M.J.; et al. 500-Year Temperature Reconstruction in the Mediterranean Basin by Means of Documentary Data and Instrumental Observations. Clim. Change 2010, 101, 169–199. [Google Scholar] [CrossRef]
- Roibu, C.C.; Nagavciuc, V.; Ionita, M.; Popa, I.; Horodnic, S.A.; Mursa, A.; Büntgen, U. A Tree Ring-Based Hydroclimate Reconstruction for Eastern Europe Reveals Large-Scale Teleconnection Patterns. Clim. Dyn. 2022, 59, 2979–2994. [Google Scholar] [CrossRef]
No | Latitude | Longitude | Altitude (m) | Site | Species | Availability | Proxy Variable | Original Period | Truncated Period * | Chronology doi Number |
---|---|---|---|---|---|---|---|---|---|---|
1 | 37.08 | 22.33 | 1.106 | Sparta (Langada) | Pinus nigra subsp. nigra | Standard, ARSTAN, residual | TRW, EWW | 1825–1980 | 1833–1978 | https://doi.org/10.25921/jpm4-p943 |
2 | 37.63 | 22.28 | 1.322 | Menalon Oros | Abies cephalonica Loudon | Standard, ARSTAN, residual | TRW, EWW | 1832–1980 | 1833–1978 | https://doi.org/10.25921/gpe0-0t88 |
3 | 38.72 | 21.67 | 1407 | Panetolikon-Oros | Abies borisii regis Mattf. | Standard, ARSTAN, residual | TRW, EWW | 1812–1980 | 1812–1978 | https://doi.org/10.25921/tf06-v979 |
4 | 41.77 | 23.38 | 2.100 | Vihren National Park | Pinus leucodermis H. Christ. | Standard, ARSTAN, residual | TRW, EWW | 1721–1980 | 1722–1978 | https://doi.org/10.25921/fech-b460 |
5 | 36.92 | 22.95 | 1.400 | Taygetos Forest | Pinus nigra subsp. nigra | Standard | TRW | 1657–1999 | 1657–1999 | https://doi.org/10.25921/v2v4-r670 |
6 | 40.3 | 20.9 | 1500 | Scotida Forest (1) | Abies cephalonica Loudon | Standard | TRW | 1676–1978 | 1676–1978 | https://doi.org/10.25921/mdh4-e656 |
7 | 40.3 | 20.9 | 1500 | Scotida Forest (2) | Pinus nigra subsp. nigra | Standard | TRW | 1751–2003 | 1751–1999 | https://doi.org/10.25921/zqwn-3r45 |
8 | 39.54 | 21.45 | 1200–1500 | Pertouli Forest | Abies borisii-regis Mattf. | Standard, ARSTAN, residual | TRW, EWW | 1833–2020 | 1833–2020 | https://doi.org/10.3390/f13060879 |
Reconstruction | Period | Number of PC | Calibration | Verification | R | F | RE | Regression Line | R2 | R (Probability) | F | Acceptance |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AMJJA (20th Reanalysis) | 1929–2020 | 1 | 1929–1953 | 1954–1978 | 0.48 | 6.8 | 0.22 | 256.01 × PC1 − 24.48487 | 0.31 | 0.56 (2.5 × 10−5) | 21.8 | OK |
1954–1978 | 1929–1953 | 0.65 | 17.1 | 0.39 | ||||||||
1929–1999 | 3 | 1929–1953 | 1954–1978 | 0.55 | 10.2 | 0.32 | 226.88 + 22.47 × PC1 − 21.13 × PC3 | 0.36 | 0.60 (3.5 × 10−6) | 27.47 | OK | |
1954–1978 | 1929–1953 | 0.42 | 4.9 | 0.22 | ||||||||
1833–1978 | 5 | 1929–1953 | 1954–1978 | 0.68 | 20.12 | 0.35 | 233.0 + 28.93 × PC1 + 9.07 × PC2 | 0.45 | 0.67 (1.2 × 10−7) | 35.6 | OK | |
1954–1978 | 1929–1953 | 0.61 | 13.22 | 0.39 | ||||||||
1812–1978 | 4 | 1929–1953 | 1954–1978 | 0.65 | 16.7 | 0.25 | 238.57 + 33.27 × PC1 − 11.47 × PC3 | 0.39 | 0.62 (1.9 × 10−6) | 29.44 | OK | |
1954–1978 | 1929–1953 | 0.49 | 7.3 | 0.29 | ||||||||
1751–1978 | 3 | 1929–1953 | 1954–1978 | 0.63 | 14.7 | 0.33 | 228.97 + 27.79 × PC1 − 23.63 × PC3 | 0.35 | 0.59 (7.7 × 10−6) | 25.14 | OK | |
1954–1978 | 1929–1953 | 0.50 | 7.52 | 0.16 | ||||||||
1676–1978 | 2 | 1929–1953 | 1954–1978 | 0.58 | 11.36 | 0.46 | 230.075 + 37.720 × PC1 | 0.35 | 0.59 (7.5 × 10−6) | 25.22 | OK | |
1954–1978 | 1929–1953 | 0.50 | 7.5 | 0.20 | ||||||||
1657–1978 | 1 | 1929–1953 | 1954–1978 | 0.59 | 12.4 | 0.32 | 213.03 × PC1 + 16.14284 | 0.24 | 0.49 (3.5 × 10−4) | 14.84 | OK | |
1954–1978 | 1929–1953 | 0.33 | 2.7 | 0.12 | ||||||||
MJ (GPCC) | 1929–2020 | 1 | 1929–1953 | 1954–1978 | 0.61 | 13.9 | 0.1 | 171.97 × PC1 − 95.78 | 0.35 | 0.59 (7 × 10−6) | 25.5 | OK |
1954–1978 | 1929–1953 | 0.63 | 15.4 | 0.29 | ||||||||
1929–1999 | 3 | 1929–1953 | 1954–1978 | 0.52 | 8.51 | −0.19 | 1.4157 × PC1 − 31.29 | 0.25 | 0.50 (2 × 10−4) | 16.0 | Not OK | |
1954–1978 | 1929–1953 | 0.65 | 17.05 | 0.31 | ||||||||
1833–1978 | 5 | 1929–1953 | 1954–1978 | 0.61 | 13.9 | 0.1 | 71.22 + 14.53 × PC1 + 9.41 × CPC2 | 0.42 | 0.65 (3 × 10−7) | 35.5 | OK | |
1954–1978 | 1929–1953 | 0.64 | 33.6 | 0.28 | ||||||||
1812–1978 | 5 | 1929–1953 | 1954–1978 | 0.54 | 9.4 | 0.05 | 71.97 + 18.56 × PC1 + 8.36 × PC2 | 0.39 | 0.62 (1.4 × 10−6) | 30.3 | OK | |
1954–1978 | 1929–1953 | 0.60 | 12.7 | 0.29 | ||||||||
1751–1978 | 4 | 1929–1953 | 1954–1978 | 0.53 | 8.7 | 0.19 | 74.83 + 17.60 × PC1 − 19.01 × PC4 | 0.39 | 0.62 (1.7 × 10−6) | 29.7 | OK | |
1954–1978 | 1929–1953 | 0.59 | 12.3 | 0.30 | ||||||||
1676–1978 | 2 | 1929–1953 | 1954–1978 | 0.56 | 10.7 | 0.11 | 74.73 + 23.39 × PC1 − 14.68 × PC2 | 0.39 | 0.62 (5.5 × 10−7) | 29.8 | OK | |
1954–1978 | 1929–1953 | 0.63 | 15.4 | 0.38 | ||||||||
1657–1978 | 2 | 1929–1953 | 1954–1978 | 0.29 | 2.1 | 0.05 | 105.37 × PC1 − 30.8 | 0.15 | 0.38 (7 × 10−3) | 8.00 | OK | |
1954–1978 | 1929–1953 | 0.57 | 10.7 | 0.38 | ||||||||
MJ (CRU) | 1929–2020 | 1 | 1929–1953 | 1954–1978 | 0.61 | 13.4 | 0.27 | 254 × PC1 − 164.56 | 0.39 | 0.62 (7 × 10−7) | 29.0 | OK |
1954–1978 | 1929–1953 | 0.67 | 18.5 | 0.40 | ||||||||
1833–1978 | 5 | 1929–1953 | 1954–1978 | 0.48 | 6.8 | 0.09 | 0.9991 × PC1 + 0.00721 | 0.39 | 0.62 (2 × 10−6) | 29.3 | OK | |
1954–1978 | 1929–1953 | 0.40 | 4.2 | 0.13 | ||||||||
1812–1978 | 2 | 1929–1953 | 1954–1978 | 0.16 | 0.62 | −0.31 | - | 0.13 | 0.36 (0.01) | 7.05 | Not OK | |
1954–1978 | 1929–1953 | 0.30 | 2.2 | 0.07 | ||||||||
1722–1978 | 1 | 1929–1953 | 1954–1978 | 0.06 | 0.07 | −0.32 | - | 0.1 | 0.28 (0.05) | 4.18 | Not OK | |
1954–1978 | 1929–1953 | 0.44 | 5.5 | 0.034 |
Reconstructions of the Present Study | Griggs et al. (2007) (MJ) [6] | Pauling et al., 2005 (JJA) [55] | Pauling et al., 2005 (MAM) [55] | Cook et al., 2005 (PDSI) (JJ) [56] | Akkemic and Aras 2005 (AMJJA) [14] | Akkemic Dagdeviren and Aras 2005 (MAM) [13] | Touchan et al., 2005 (MAM) [5] | Touchan et al., 2005 (MAM) Second [5] | D Arrigo and Kullen (2001) [57] | Sakalis (2025) Greece JJA [27] | Sakalis (2025) Trikala JJA [27] | Sakalis (2025) Tripoli AMJJA [27] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPCC MJJA PRECIPITATION | 0.27 (p < 6 × 10−5) | 0.24 (p < 3.4 × 10−4) | 0.18 (p < 0.0074) | 0.51 (p < 1.2 × 10−15) | 0.28 (p < 3.6 × 10−5) | 0.13 (p < 0.042) | 0.25 (p < 6.5 × 10−5) | 0.29 (p < 8.2 × 10−6) | 0.23 (p < 6.4 × 10−4) | 0.17 (p < 0.01) | 0.18 (p < 0.005) | 0.18 (p < 0.007) |
REANALYSIS AMJJA PRECIPITATION | 0.25 (p < 1.3 × 10−4) | 0.26 (p < 2.4 × 10−5) | 0.15 (p < 0.015) | 0.5 (p < 1 × 10−20) | 0.29 (p < 8 × 10−6) | 0.13 (p < 0.04) | 0.24 (p < 5 × 10−5) | 0.34 (p < 2 × 10−7) | 0.26 (p < 6.5 × 10−5) | 0.14 (p < 0.03) | 0.14 (p < 0.03) | 0.14 (p < 0.029) |
EARLYWOOD MJ CRU PRECIPITATION | 0.30 (p < 2.9 × 10−4) | 0.13 (p < 0.084) | 0.21 (p < 0.0073) | 0.52 (p < 5.1 × 10−13) | 0.39 (p < 10 × 10−6) | 0.12 (p < 0.11) | 0.33 (p < 4.5 × 10−6) | 0.40 (p < 1.8 × 10−8) | 0.44 (p < 2.1 × 10−8) | 0.08 (p < 0.33) | 0.09 (p < 0.29) | 0.09 (p < 0.45) |
AMJJA TRW | MJ TRW | MJ EWW | |
---|---|---|---|
AMJJA TRW | 1 | 0.93 | 0.67 |
MJ TRW | 1 | 0.70 | |
MJ EWW | 1 |
Reconstruction | Period T | Probability P |
---|---|---|
Reanalysis AMJJA precipitation | ||
54.80053 | 0.01561 | |
19.57139 | 0.0001 | |
15.22232 | 0.02127 | |
14.42107 | 0.02976 | |
13.69994 | 0.02289 | |
12.45454 | 0.0002 | |
7.82859 | 0.04842 | |
7.6111 | 0.01683 | |
6.68293 | 0.00593 | |
3.80555 | 0.04062 | |
GPCC MJ Precipitation | ||
30.44418 | 0.00991 | |
22.83314 | 0.03905 | |
19.57139 | 0.00194 | |
14.42107 | 0.03196 | |
12.45454 | 0.00131 | |
7.02563 | 0.04313 | |
6.68293 | 0.00455 | |
3.91429 | 0.02663 | |
3.80555 | 0.03906 | |
Earlywood MJ CRU Precipitation | 18.60015 | 0.02078 |
12.40002 | 0.03086 | |
3.95745 | 0.04443 | |
2.61972 | 0.03652 | |
2.21429 | 0.00119 |
TRW AMJJA (20CRv3) | TRW MJ (GPCCv2020) | EWW MJ (CRUTS 4.07) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WET | DRY | WET | DRY | WET | DRY | ||||||
1 ≤ SD < 2 | SD ≥ 2 | −2 < SD < −1 | SD ≤ −2 | 1 ≤ SD < 2 | SD ≥ 2 | −2 < SD < −1 | SD ≤ −2 | 1 ≤ SD < 2 | SD ≥ 2 | −2 < SD < −1 | SD ≤ −2 |
1747 | 1748 | 1756 | 1773 | 1766 | 1748 | 1756 | 1830 | 1841 | 1857 | 1852 | 1834 |
1755 | 1773 | 1767 | 1893 | 1771 | 1799 | 1767 | 1893 | 1842 | 1865 | 1854 | 1861 |
1766 | 1799 | 1769 | 1894 | 1792 | 1812 | 1769 | 1894 | 1844 | 1876 | 1858 | 1869 |
1771 | 1804 | 1774 | 1895 | 1804 | 1814 | 1773 | 1895 | 1859 | 1877 | 1867 | 1871 |
1792 | 1812 | 1779 | 1908 | 1813 | 1815 | 1774 | 1908 | 1860 | 1881 | 1868 | 1929 |
1813 | 1818 | 1782 | 1816 | 1818 | 1779 | 1866 | 1884 | 1878 | |||
1814 | 1827 | 1794 | 1819 | 1885 | 1782 | 1889 | 1915 | 1880 | |||
1815 | 1859 | 1795 | 1822 | 1913 | 1794 | 1892 | 1882 | ||||
1819 | 1885 | 1796 | 1827 | 1937 | 1795 | 1897 | 1887 | ||||
1822 | 1913 | 1806 | 1855 | 1796 | 1899 | 1893 | |||||
1826 | 1914 | 1808 | 1858 | 1806 | 1900 | 1894 | |||||
1837 | 1915 | 1810 | 1859 | 1808 | 1913 | 1895 | |||||
1838 | 1975 | 1830 | 1860 | 1810 | 1917 | 1898 | |||||
1842 | 1833 | 1876 | 1829 | 1920 | 1908 | ||||||
1855 | 1834 | 1877 | 1831 | 1930 | 1916 | ||||||
1858 | 1840 | 1884 | 1832 | 1936 | 1923 | ||||||
1860 | 1847 | 1899 | 1833 | 1959 | 1927 | ||||||
1876 | 1861 | 1901 | 1834 | 1960 | 1928 | ||||||
1877 | 1869 | 1912 | 1835 | 1975 | 1932 | ||||||
1884 | 1870 | 1914 | 1840 | 1979 | 1935 | ||||||
1899 | 1871 | 1915 | 1847 | 1983 | 1952 | ||||||
1900 | 1880 | 1934 | 1848 | 1998 | 1969 | ||||||
1912 | 1887 | 1936 | 1861 | 1971 | |||||||
1926 | 1896 | 1940 | 1869 | 2002 | |||||||
1936 | 1909 | 1941 | 1870 | 2006 | |||||||
1937 | 1918 | 1959 | 1875 | 2020 | |||||||
1959 | 1923 | 1960 | 1879 | ||||||||
1960 | 1928 | 1975 | 1880 | ||||||||
1998 | 1929 | 1979 | 1887 | ||||||||
2018 | 1944 | 1983 | 1890 | ||||||||
1945 | 1998 | 1891 | |||||||||
1949 | 2005 | 1896 | |||||||||
1969 | 2018 | 1907 | |||||||||
1971 | 1909 | ||||||||||
1988 | 1918 | ||||||||||
2020 | 1923 | ||||||||||
1928 | |||||||||||
1929 | |||||||||||
1944 | |||||||||||
1945 | |||||||||||
1969 | |||||||||||
1981 | |||||||||||
2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakalis, V.D.; Kastridis, A. Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece. Forests 2025, 16, 773. https://doi.org/10.3390/f16050773
Sakalis VD, Kastridis A. Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece. Forests. 2025; 16(5):773. https://doi.org/10.3390/f16050773
Chicago/Turabian StyleSakalis, Vasileios D., and Aristeidis Kastridis. 2025. "Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece" Forests 16, no. 5: 773. https://doi.org/10.3390/f16050773
APA StyleSakalis, V. D., & Kastridis, A. (2025). Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece. Forests, 16(5), 773. https://doi.org/10.3390/f16050773