Dynamic Effects of Close-to-Nature Forest Management on the Growth Investment Strategies of Future Crop Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Site
2.2. Experimental Design and Data Collection
2.2.1. Controlled Experimental Design of Close-to-Nature Forest Management
2.2.2. Point Cloud Collection and Preprocessing
2.2.3. Future Crop Tree Segmentation and Structural Component Extraction
2.3. Data Analysis
2.3.1. Structural Components Growth
2.3.2. Investment Strategy of Future Crop Trees
2.3.3. Crown Environment Surrounding Future Crop Trees
2.3.4. Statistics Analysis
3. Results
3.1. Dynamic Difference in Structural Components’ Growth of Future Crop Trees Between Managed and Reference Plots
3.2. Dynamic Differences in Height-to-Diameter and Crown-to-Diameter Ratio of Future Crop Trees Between Managed and Reference Plots
3.3. Dynamic Difference in Crown Overlap and Crown Gap Area Around Future Crop Trees Between Managed and Reference Plots
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Bonc Ina, A.; Chauvin, C.; Drossler, L.; Garcia-Guemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Collado, E.; Piqué, M.; Coello, J.; de-Dios-García, J.; Fuentes, C.; Coll, L. Close-to-Nature Management Effects on Tree Growth and Soil Moisture in Mediterranean Mixed Forests. For. Ecol. Manag. 2023, 549, 121457. [Google Scholar] [CrossRef]
- Pinnschmidt, A.; Yousefpour, R.; Nölte, A.; Hanewinkel, M. Close-to-Nature Management of Tropical Timber Plantations Is Economically Viable and Provides Biodiversity Benefits. For. Int. J. For. Res. 2024, 98, 99–116. [Google Scholar] [CrossRef]
- Sturm, K. Die natürlichkeit zweier forstorte südöstlich hannovers. Beiträge Naturkunde Niedersachs. 1984, 37, 158–167. [Google Scholar]
- Sturm, K. Was bringt die naturgemäβe waldwirtschaft für den naturschutz. NNA Berichte Niedersachs-Naturgemäβe Waldwirtsch. und Naturschutz 1989, 2/3, 154–158. [Google Scholar]
- Lu, Y.C. Theory and Practice of Close-to-Nature Forest Management; Science Press: Beijing, China, 2006; p. 6. (In Chinese) [Google Scholar]
- Lu, Y.C.; Luan, S.Q.; Zhang, S.G.; Bernhard, V.D.H.; Lei, X.D.; Bao, Y. From Normal Forest to Close-to-nature Forest: Multi-functional Forestry and Its Practice at National, Regional and Forest Management Unit Levels in Germany. World For. Res. 2010, 23, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- Dubois, H.; Claessens, H.; Ligot, G. Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula Pendula Roth) Logs in Western Europe. Forests 2021, 12, 599. [Google Scholar] [CrossRef]
- Vogel, P.J.; Lhotka, J.M.; Stringer, J.W. Long-Term Effects of Crop Tree Release on Growth and Quality in White-Oak (Quercus Alba L.)-Dominated Stands. For. Sci. 2022, 68, 343–352. [Google Scholar] [CrossRef]
- Song, Y.F. Individual Tree Growth Models and Competitors Harvesting Simulation for Target Tree-Oriented Management; Chinese Academy of Forestry: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Annighöfer, P.; Petritan, A.M.; Petritan, I.C.; Ammer, C. Disentangling Juvenile Growth Strategies of Three Shade-Tolerant Temperate Forest Tree Species Responding to a Light Gradient. For. Ecol. Manag. 2017, 391, 115–126. [Google Scholar] [CrossRef]
- Noyer, E.; Ningre, F.; Dlouhá, J.; Fournier, M.; Collet, C. Time Shifts in Height and Diameter Growth Allocation in Understory European Beech (Fagus Sylvatica L.) Following Canopy Release. Trees 2019, 33, 333–344. [Google Scholar] [CrossRef]
- Rozendaal, D.M.A.; During, H.J.; Sterck, F.J.; Asscheman, D.; Wiegeraad, J.; Zuidema, P.A. Long-Term Growth Patterns of Juvenile Trees from a Bolivian Tropical Moist Forest: Shifting Investments in Diameter Growth and Height Growth. J. Trop. Ecol. 2015, 31, 519–529. [Google Scholar] [CrossRef]
- Jackson, T.D.; Bittencourt, P.; Poffley, J.; Anderson, J.; Muller-Landau, H.C.; Ramos, P.A.R.; Rowland, L.; Coomes, D. Wind Shapes the Growth Strategies of Trees in a Tropical Forest. Ecol. Lett. 2024, 27, e14527. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass Allocation to Leaves, Stems and Roots: Meta-analyses of Interspecific Variation and Environmental Control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.M.; Olson, M.G. The Lateral Growth of Branches into Small Canopy Gaps: Implications for Competition between Canopy Trees. Forests 2023, 14, 1350. [Google Scholar] [CrossRef]
- Hess, A.F.; Minatti, M.; Costa, E.A.; Schorr, L.P.B.; Rosa, G.T.; Souza, I.A.; Borsoi, G.A.; Liesenberg, V.; Stepka, T.F.; Abatti, R. Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil. J. For. Res. 2021, 32, 191–202. [Google Scholar] [CrossRef]
- Stăncioiu, P.T.; Erbescu, A.A.; Dutcă, I. Live Crown Ratio as an Indicator for Tree Vigor and Stability of Turkey Oak (Quercus cerris L.): A Case Study. Forests 2021, 12, 1763. [Google Scholar] [CrossRef]
- Huang, W.Z.; Zhao, J.P.; Wang, C.W.; Yang, T. Effects of Various Planting Density on the Growth of Chinese Fir. J. Hennan Agric. Univ. 1997, 31, 80–86. (In Chinese) [Google Scholar] [CrossRef]
- Vieilledent, G.; Courbaud, B.; Kunstler, G.; Dhote, J.F.; Clark, J.S. Individual variability in tree allometry determines light resource allocation in forest ecosystems: A hierarchical Bayesian approach. Oecologia 2010, 163, 759–773. [Google Scholar] [CrossRef]
- Wonn, H.T.; O’Hara, K.L. Height: Diameter ratios and stability relationships for four northern Rocky Mountain tree species. West. J. Appl. For. 2001, 16, 87–94. [Google Scholar] [CrossRef]
- Cremer, K.W.; Borough, C.J.; Mckinnell, F.H.; Carter, P.R. Effects of stocking and thinning on wind damage in plantations. N. Z. J. For. Sci. 1982, 12, 244–268. [Google Scholar]
- Pommerening, A.; Grabarnik, P.; Sveriges, L. Individual-Based Methods in Forest Ecology and Management; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 39–44. [Google Scholar]
- Waring, R.H.; Thies, W.G.; Muscato, D. Stem Growth per Unit of Leaf Area: A Measure of Tree Vigor. For. Sci. 1980, 26, 112–117. [Google Scholar]
- Miller, G.W.; Stringer, J.W. Effect of Crown Release on Tree Grade and DBH Growth of White Oak Sawtimber in Eastern Kentucky. In Proceedings of the 14th Central Hardwood Forest Conference: Newtown Square, Wooster, OH, USA, 16–19 March 2004; pp. 16–19. [Google Scholar]
- Wu, J.Q.; Wang, Y.X.; Yang, Y.; Zhu, T.T.; Zhu, X.D. Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation. Chin. J. Appl. Ecol. 2015, 26, 340–348. (In Chinese) [Google Scholar] [CrossRef]
- Shi, J.J.; Chen, Z.Z.; Wang, G.H.; Jin, C.S.; Li, Y.N. Impacts of thinning on canopy structure and understory light in secondary poplar-birch forests. Chin. J. Appl. Ecol. 2019, 30, 1956–1964. (In Chinese) [Google Scholar] [CrossRef]
- Zambrano, J.; Fagan, W.F.; Worthy, S.J.; Thompson, J.; Uriarte, M.; Zimmerman, J.K.; Umana, M.N.; Swenson, N.G. Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. J. Ecol. 2019, 107, 887–900. [Google Scholar] [CrossRef]
- Biging, G.S.; Dobbertin, M. Evaluation of Competition Indices in Individual Tree Growth Models. For. Sci. 1995, 41, 360–377. [Google Scholar] [CrossRef]
- Ko, C.; Lee, S.; Yim, J.; Kim, D.; Kang, J. Comparison of Forest Inventory Methods at Plot-Level between a Backpack Personal Laser Scanning (BPLS) and Conventional Equipment in Jeju Island, South Korea. Forests 2021, 12, 308. [Google Scholar] [CrossRef]
- Moe, K.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Dong, P.; Chen, Y.; Liu, Z. Estimating Individual Tree Height and Diameter at Breast Height (DBH) from Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests 2018, 9, 398. [Google Scholar] [CrossRef]
- Almeida, D.R.A.; Stark, S.C.; Chazdon, R.; Nelson, B.W.; Cesar, R.G.; Meli, P.; Gorgens, E.B.; Duarte, M.M.; Valbuena, R.; Moreno, V.S.; et al. The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. For. Ecol. Manag. 2019, 438, 34–43. [Google Scholar] [CrossRef]
- Decuyper, M.; Mulatu, K.A.; Brede, B.; Calders, K.; Armston, J.; Rozendaal, D.M.A.; Mora, B.; Clevers, J.G.P.W.; Kooistra, L.; Herold, M.; et al. Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning. For. Ecol. Manag. 2018, 429, 327–335. [Google Scholar] [CrossRef]
- Giannetti, F.; Puletti, N.; Quatrini, V.; Travaglini, D.; Bottalico, F.; Corona, P.; Chirici, G. Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. Eur. J. Remote Sens. 2018, 51, 795–807. [Google Scholar] [CrossRef]
- Ryding, J.; Williams, E.; Smith, M.J.; Eichhorn, M.P. Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote Sens. 2015, 7, 1095–1111. [Google Scholar] [CrossRef]
- Wang, X.H.; Song, Y.C.; Wang, L.Y. Study on Restoration of Evergreen Broad—leaved Forest from Pinus massoniana Forest. Chin. J. Ecol. 2001, 20, 30–32. (In Chinese) [Google Scholar]
- Yang, Q.S.; Yang, W.Z.; Ren, S.Y.; Chen, Y.Q. Comparative Analysis of Stand Structure Before and After Interference Tree Thinning of Forest Close-to-Nature Management. J. Fujian For. Sci. Technol. 2019, 46, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Radu, B.R.; Steve, C. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Roussel, J.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Conto, T.; Olofsson, K.; Gorgens, E.B.; Rodriguez, L.; Almeida, G. Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning. Comput. Electron. Agric. 2017, 143, 165–176. [Google Scholar] [CrossRef]
- Camarretta, N.; Harrison, P.A.; Lucieer, A.; Potts, B.M.; Davidson, N.; Hunt, M. Handheld Laser Scanning Detects Spatiotemporal Differences in the Development of Structural Traits among Species in Restoration Plantings. Remote Sens. 2021, 13, 1706. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Opio, C.; Jacob, N.; Coopersmith, D. Height to diameter ratio as a competition index for young conifer plantations in northern British Columbia, Canada. For. Ecol. Manag. 2000, 137, 245–252. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Jin, G.Z. Effects of selection cutting on diameter growth and vertical growth among major tree species in the mixed broadleaved-Korean pine forest. Acta Ecol. Sin. 2010, 30, 5843–5852. (In Chinese) [Google Scholar]
- Ying, H.G. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees. J. Beijing For. Univ. 2013, 35, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Silva, C.A.; Valbuena, R.; Pinage, E.R.; Mohan, M.; de Almeida, D.; North, E.; Jaafar, W.; Papa, D.; Cardil, A.; Klauberg, C. ForestGapR: An r Package for forest gap analysis from canopy height models. Methods Ecol. Evol. 2019, 10, 1347–1356. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Miller, G.W. Effect of Crown Growing Space on the Development of Young Hardwood Crop Trees. North. J. Appl. For. 2000, 17, 25–35. [Google Scholar] [CrossRef]
- Wang, Y.X. Theory and Practice of Target Trees Management in Pinus massoniana and Cunninghamia lanceolata Plantation; Chinese Academy of Forestry: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Cao, Y.H.; Chen, J.C.; Li, S. Impacts of Different Intermediate Cutting on Crown Structure of Manglietia yuyuanensis in Mixed Stands with Cunninghamia lanceolata. For. Res. 2004, 17, 646–653. (In Chinese) [Google Scholar]
- Stimm, K.; Heym, M.; Nagel, R.; Uhl, E.; Pretzsch, H. Long-Term Productivity of Monospecific and Mixed Oak (Quercus petraea [Matt.] Liebl. and Quercus robur L.) Stands in Germany: Growth Dynamics and the Effect of Stand Structure. Forests 2022, 13, 724. [Google Scholar] [CrossRef]
- Kubrakov, S.; Porokhniach, I.; Kovalenko, I.; Melnyk, T.; Zhezhkun, A.M. Close-to-Nature Forestry Measures in East Polissia Region of Ukraine. South-East Eur. For. 2023, 14, 15–26. [Google Scholar] [CrossRef]
- Blattert, C.; Mutterer, S.; Thrippleton, T.; Diaci, J.; Fidej, G.; Bont, L.G.; Schweier, J. Managing European Alpine Forests with Close-to-Nature Forestry to Improve Climate Change Mitigation and Multifunctionality. Ecol. Indic. 2024, 165, 112154. [Google Scholar] [CrossRef]
- Chai, Z.; Zhu, J.; Zhao, Z. Close-to-Nature Management Alleviated Microbial P Limitation in Middle-Aged Masson Pine Plantations: Evidence Derived from Ecoenzymatic Stoichiometry. For. Ecol. Manag. 2025, 580, 122543. [Google Scholar] [CrossRef]
- Xu, J.; Tian, H.; Xiao, J.; Li, Z.; Xiao, W.; Yin, R. Effects of Close-to-Nature Forest Management on Carbon Stocks in Pinus Tabulaeformis Plantations in Northern China. Front. For. Glob. Chang. 2025, 7, 1495771. [Google Scholar] [CrossRef]
- Fichtner, A.; Sturm, K.; Rickert, C.; Härdtle, W.; Schrautzer, J. Competition Response of European Beech Fagus Sylvatica, L. Varies with Tree Size and Abiotic Stress: Minimizing Anthropogenic Disturbances in Forests. J. Appl. Ecol. 2012, 49, 1306–1315. [Google Scholar] [CrossRef]
- Pang, L.; Wang, G.; Sharma, R.P.; Lu, J.; Tang, X.; Fu, L. Simulation of Thinning by Integrating Tree Competition and Species Biodiversity for Target Tree-Based Management of Secondary Forests. Forests 2023, 14, 1896. [Google Scholar] [CrossRef]
Block | Dominant Species | Altitude (m) | Slope (°) | Aspect | Average DBH (cm) | Average Tree Hight (m) |
---|---|---|---|---|---|---|
Block 1 | Schimasuperba | 66 | 10.0 | W 15° S | 21.3 | 12.2 |
Block 2 | Schimasuperba | 69 | 14.0 | S 45° W | 18.5 | 12.1 |
Block 3 | Liquidambar formosana | 81 | 11.0 | S | 17.5 | 10.1 |
Block 4 | Liquidambar formosana | 75 | 13.0 | S 20° E | 14.6 | 9.7 |
Block | Treatment | Ratio for Future Crop Trees | Density (Plants·hm−2) | Stem Thinning Intensity (%) | Stock Volume (m3·hm−2) | Volume Thinning Intensity (%) | ||
---|---|---|---|---|---|---|---|---|
Pre-Thinning | Post-Thinning | Pre-Thinning | Post-Thinning | |||||
Block 1 | CK | 13.33% | 720 | / | / | 132.11 | / | / |
MGT | 14.28% | 1008 | 704 | 30.12% | 167.42 | 121.13 | 27.62% | |
Block 2 | CK | 9.37% | 1024 | / | / | 124.00 | / | / |
MGT | 3.07% | 1040 | 880 | 15.44% | 141.59 | 123.72 | 12.62% | |
Block 3 | CK | 6.67% | 960 | / | / | 171.94 | / | / |
MGT | 8.20% | 976 | 816 | 16.41% | 119.50 | 101.50 | 15.06% | |
Block 4 | CK | 9.83% | 976 | / | / | 134.86 | / | / |
MGT | 7.14% | 1344 | 1184 | 11.92% | 132.78 | 112.81 | 15.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Liu, H.; Yin, H.; Yang, Q.; Jiang, S.; Chen, R.; Qin, Y.; Yu, Q.; Wang, X. Dynamic Effects of Close-to-Nature Forest Management on the Growth Investment Strategies of Future Crop Trees. Forests 2025, 16, 523. https://doi.org/10.3390/f16030523
Zhou Z, Liu H, Yin H, Yang Q, Jiang S, Chen R, Qin Y, Yu Q, Wang X. Dynamic Effects of Close-to-Nature Forest Management on the Growth Investment Strategies of Future Crop Trees. Forests. 2025; 16(3):523. https://doi.org/10.3390/f16030523
Chicago/Turabian StyleZhou, Zhengkang, Heming Liu, Huimin Yin, Qingsong Yang, Shan Jiang, Rubo Chen, Yangyi Qin, Qiushi Yu, and Xihua Wang. 2025. "Dynamic Effects of Close-to-Nature Forest Management on the Growth Investment Strategies of Future Crop Trees" Forests 16, no. 3: 523. https://doi.org/10.3390/f16030523
APA StyleZhou, Z., Liu, H., Yin, H., Yang, Q., Jiang, S., Chen, R., Qin, Y., Yu, Q., & Wang, X. (2025). Dynamic Effects of Close-to-Nature Forest Management on the Growth Investment Strategies of Future Crop Trees. Forests, 16(3), 523. https://doi.org/10.3390/f16030523