Mutual Water Supply Existed Between the Root Systems of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. Under Extreme Drought Stress
Abstract
:1. Introduction
2. Plant Community and Methods
2.1. Study Area
2.2. Species Selection
2.3. Data
2.3.1. Samples and Data Collection
- (1)
- Groundwater depths
- (2)
- Plant root distribution investigation and root sample collection
- (3)
- Soil samples
2.3.2. Hydrogen and Oxygen Stable Isotope
2.3.3. Determination of Soil Moisture Content
2.4. Data Analysis Methods
2.4.1. Soil Water Excess Method
2.4.2. Plant Water Source Tracing Method
2.5. Research Methods for Hydraulic Connections
3. Results
3.1. δD, δ18O Characteristics and D-Excess of T. ramosissima and A. sparsifolia
3.2. Water Sources of T. ramosissima and A. sparsifolia
3.3. Hydraulic Connection Between T. ramosissima and A. sparsifolia
4. Discussion
4.1. Water Sources of Symbiotic and Nonsymbiotic T. ramosissima and A. sparsifolia
4.2. Driving Mechanism of Water Sources of Symbiotic T. ramosissima and A. sparsifolia
4.3. Research Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forner, A.; Aranda, I.; Granier, A.; Valladares, F. Differential impact of the most extreme drought event over the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecol. 2014, 215, 703–719. [Google Scholar] [CrossRef]
- Kang, J.J.; Zhao, W.Z.; Zhao, M.; Zheng, Y.; Yang, F. NaCl and Na2SiO3 coexistence strengthens growth of the succulent xerophyte Nitraria tangutorum under drought. Plant Grow. Reg. 2015, 77, 223–232. [Google Scholar] [CrossRef]
- Tang, Y.K.; Wu, X.; Chen, C.M.; Chen, C.; Jia, C. Water source partitioning and nitrogen facilitation promote coexistence of nitrogen-fixing and neighbor species in mixed plantations in the semiarid Loess Plateau. Plant Soil. 2019, 445, 289–305. [Google Scholar] [CrossRef]
- Epstein, G.; Hawkins, S.; Smale, D.A. Identifying niche and fitness dissimilarities in invaded marine macroalgal canopies within the context of contemporary coexistence theory. Sci. Rep. 2019, 9, 8816. [Google Scholar] [CrossRef] [PubMed]
- García-Cervigón, A.I.; Quintana-Ascencio, P.F.; Escudero, A.; Ferrer-Cervantes, M.E.; Sánchez, A.M.; Iriondo, J.M.; Olano, J.M. Demographic effects of interacting species: Exploring stable coexistence under increased climatic variability in a semiarid shrub community. Sci. Rep. 2021, 11, 3099. [Google Scholar] [CrossRef]
- Garcia-Callejas, D.; Bartomeus, I.; Godoy, O. The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community. Nat. Com. 2021, 12, 6192. [Google Scholar] [CrossRef]
- Tubay, J.M.; Suzuki, K.; Uehara, T.; Kakishima, S.; Ito, H.; Ishida, A.; Yoshida, K.; Mori, S.; Rabajante, J.F.; Morita, S.; et al. Microhabitat locality allows multi-species coexistence in terrestrial plant communities. Sci. Rep. 2015, 5, 15376. [Google Scholar] [CrossRef]
- Levine, J.M.; Bascompte, J.; Adler, P.B.; Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 2017, 546, 56–64. [Google Scholar] [CrossRef]
- Rich, M.; Vigneron, N.; Libourel, C.; Keller, J.; Xue, L.; Hajheidari, M.; Radhakrishnan, G.V.; Leru, A.; Diop, S.I.; Potente, G.; et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 2021, 372, 864–868. [Google Scholar] [CrossRef]
- Hao, X.M.; Li, Y.; Deng, H.J. Assessment of hydraulic redistribution on desert riparian forests in an extremely arid area. Environ. Monit. Assess. 2013, 185, 10027–10038. [Google Scholar] [CrossRef]
- Liu, J.Z.; Chen, Y.N. Analysis on converse succession of plant communities at the lower reaches of Tarim River. Arid. Land. Geogr. 2002, 25, 231–236. [Google Scholar] [CrossRef]
- Dong, W.C.; Wang, G.X.; Sun, J.Y.; Guo, L.; Chang, R.Y.; Wang, W.Z.; Wang, Y.K.; Sun, X.Y. Plant water source effects on plant-soil feedback for primary succession of terrestrial ecosystems in a glacier region in China. Sci. Total Environ. 2024, 927, 172269. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.W.; Huang, L.M.; Shao, M.A.; Wang, J.; Zhang, Y.L. Patterns and drivers of seasonal water sources for artificial sand-fixing plants in the northeastern Mu Us sandy land, Northwest China. Pedosphere 2024, 34, 63–77. [Google Scholar] [CrossRef]
- Su, P.Y.; Zhang, M.J.; Qu, D.Y.; Wang, J.X.; Zhang, Y.; Yao, X.Z.; Xiao, H.Y. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water 2020, 12, 2791. [Google Scholar] [CrossRef]
- Dong, Z.W.; Li, S.Y.; Zhao, Y.; Lei, J.Q.; Wang, Y.D.; Li, C.J. Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China. J. Arid. Land. 2020, 12, 115–129. [Google Scholar] [CrossRef]
- Han, L.; Liu, L.L.; Peng, L.; Wang, N.N.; Zhou, P. Mixing of tree species with the same water use strategy might lead to deep soil water deficit. Forest Ecol. Manag. 2023, 534, 120876. [Google Scholar] [CrossRef]
- Liu, L.G.; Zhu, Z.Q.; Chen, X.; Liu, S.G. Ecological niche and interspecific association of dominant species in the initial stage of vegetation restoration in Zhongba village of Xide county. J. West. China For. Sci. 2022, 51, 110–117. [Google Scholar] [CrossRef]
- Liu, F.Y.; You, Q.G.; Xue, X.; Peng, F.; Huang, C.H.; Ma, S.X.; Pan, J.; Shi, Y.F.; Chen, X.J. The stem sap flow and water sources for Tamarix ramosissima in an artificial shelter belt with a deep groundwater table in Northwest China. Front. Plant Sci. 2022, 13, 794084. [Google Scholar]
- Long, R.W.; D’Antonio, C.M.; Dudley, T.L.; Hultine, K.R. Variation in salinity tolerance and water use strategies in an introduced woody halophyte (Tamarix spp.). J. Ecol. 2021, 109, 3808–3817. [Google Scholar] [CrossRef]
- Tang, G.L.; Li, X.Y.; Lin, L.S.; Zeng, F.J. Different causes of photosynthetic decline and water status in different stages of girding in Alhagi sparsifolia Shap (Fabaceae). Braz. J. Bot. 2016, 39, 519–529. [Google Scholar] [CrossRef]
- Yin, H. Study on adaptation characteristics of a desert phreatophyte Alhagi sparsifolia Shap. Ph.D. Thesis, Xinjiang University, Urumqi, China, 2022. [Google Scholar]
- Gao, W.L.; Chen, X.N.; Yilinuer, A.; Ma, X.D. Effect of double inoculation of AMF and Rhizobia on root growth of Alhagi sarsifolia under drought and rehydration conditions. Acta Bot. Boreal. Occident. Sin. 2022, 42, 1189–1197. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, H.L.; Liu, X.H.; Ling, H.B. Spatial distribution and ecological protection of the desert riparian forest along the Tarim River. J. Nat. Res. 2013, 28, 776–785. [Google Scholar]
- Yang, J.J.; Kasim, K.; Hao, Y.J.; Adil, ·T.; Ablitip, ·G. The impact of ecological water conveyance on vegetation restoration and desertification reversal in the lower reaches of the Tarim River. Bul. Soil. Water Conser. 2014, 34, 323–327. [Google Scholar] [CrossRef]
- Yi, X.B. Spatial and temporal variations of soil water content and modeling of soil physical properties in arid regions of Northwest China. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2017. [Google Scholar]
- Fu, A.H.; Wang, W.H.; Li, W.H.; Chen, Y.P. Resistance and resilience of desert riparian communities to extreme droughts. Forests 2022, 13, 1032. [Google Scholar] [CrossRef]
- Liu, J.Z.; Chen, Y.N.; Li, W.H.; Chen, Y.P. Analysis on the distribution and degraded succession of plant communities at lower reaches of Tarim River. Acta Ecol. Sin. 2004, 24, 379–383. [Google Scholar]
- Roden, J.S.; Ehleringer, J.R. Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions. Plant Physiol. 1999, 120, 1165–1174. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wu, C.; Huang, J.X.; Xiong, D.C. Effects of warming on fine root phenology of forests: A review. Chin. J. Plant Ecol. 2023, 47, 1471–1482. [Google Scholar] [CrossRef]
- Barbeta, F.; Floriancic, M.G.; Treydte, K.; Gessler, A.; Kirchner, J.W.; Meusburger, K. Tree- and stand-scale variability of xylem water stable isotope signatures in mature beech, oak and spruce. Ecohydrology 2024, 17, e2614. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Javaux, M. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences 2017, 14, 2199–2224. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, Y.P.; Li, W.H.; Wang, R.Z.; Zhou, Y.Y.; Zhang, J.P. Water sources of typical desert riparian plants in the lower reaches of Tarim River. J. Des. Res. 2017, 37, 1150–1157. [Google Scholar]
- Rao, W.B.; Chen, X.; Meredith, K.T.; Tan, H.B.; Gao, M.; Liu, J.T. Water uptake of riparian plants in the lower Lhasa River Basin, South Tibetan Plateau using stable water isotopes. Hydrol. Proc. 2020, 34, 3492–3505. [Google Scholar] [CrossRef]
- Ran, M.L.; Xue, L.Q.; Tian, H.; Gao, Y.L.; Liu, B.; Li, Y.; Yang, G.; Li, X.L.; Kong, C.X.; Tian, L.J.; et al. Source water apportionment using stable isotopes for typical riparian plants along the Manas River in Xinjiang, Northwest China. Water 2023, 15, 927. [Google Scholar] [CrossRef]
- Ma, H.Y.; Ma, H.Y.; Yang, X.D.; He, X.M.; Zhang, X.N.; Wang, X.Y.; Li, Y. Water sources of dominant desert species in Ebinur lake wetland nature reserve, Xinjiang China. Acta Ecol. Sin. 2017, 37, 829–840. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Zhou, H.H.; Chen, Y.P.; Hao, X.M.; Fu, A.H.; Ma, J.X. Field experiment on water transport in desert riparian forests downstream of the Heihe River. J. Beijing Nor. Univ. (Nat. Sci.) 2016, 52, 271–276. [Google Scholar]
- Zhou, J.; Yang, X.D.; Wang, Y.Y.; Long, Y.X.; Wang, Y.; Li, B.R.; Sun, Q.X.; Sun, N. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought. Chin. J. Plant Ecol. 2022, 46, 1064–1076. [Google Scholar] [CrossRef]
- Wang, Y.Y. Responses of water transportation and carbon metabolism characteristics in Haloxylon ammodendron and Alhagi sparsifolia to Drought Stress. Master’s Thesis, Xinjiang University, Urumqi, China, 2021. [Google Scholar]
- Brooks, J.R.; Meinzer, F.C.; Warren, J.M.; Domec, J.C.; Coulombe, R. Hydraulic redistribution in a douglas-fir forest: Lessons from system manipulations. Plant Cell Environ. 2006, 9, 138–150. [Google Scholar] [CrossRef]
- Zhang, J.H. Study on the eco-hydrological indicators and water source of Tamarix laxa in the Mega-Dunes of the Badain Jaran Desert. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Cui, Y.Q.; Ma, J.Y.; Sun, W.; Sun, J.H.; Duan, Z.H. A preliminary study of water sue strategy of desert plants in Dunhuang, China. J. Arid. Land. 2015, 7, 73–81. [Google Scholar] [CrossRef]
- Li, W.J.; Lv, G.H.; Zhang, L.; Wang, H.F.; Li, Z.K.; Wang, J.L.; Ma, H.Y.; Liu, Z.D. Analysis of potential water source differences and utilization strategies of desert plants in arid regions. Ecol. Environ. Sci. 2019, 28, 1557–1566. [Google Scholar] [CrossRef]
- Zhu, J.F.; Liu, J.T.; Sun, J.K.; Zhao, Y.Y.; Lu, Z.H.; Li, J.S. Water sources for Tamarix chinensis Lour. in different habitats on Chenier Island. Chin. J. Ecol. 2017, 36, 2367–2374. [Google Scholar] [CrossRef]
- Su, L.; Dong, B.T.; Sun, J.; Zhao, X.M.; Wu, C.H.; Xia, J.B. Effect of groundwater depth on root growth of Tamarix chinensis in the Yellow River Delta. Acta Ecol. Sin. 2021, 41, 3794–3804. [Google Scholar] [CrossRef]
- Song, X.J.; Li, S.N.; Wei, W.; Guo, J.; Yu, Y.L.; Liu, Z.W. Distribution characteristics of root system of Tamarix chinensis in Yellow River Delta and its influence factors. Wetland Sci. 2018, 15, 716–723. [Google Scholar] [CrossRef]
Samples | Groundwater Levels (m) | Isotope Values | Numbers | Minimum Values (‰) | Maximum Values (‰) | Average Values (‰) | Standard Deviation (‰) | Variations |
---|---|---|---|---|---|---|---|---|
T. ramosissima roots | <4 | 26 | −73.17 | −50.57 | −66.13 | 5.15 | 26.53 | |
26 | −7.90 | 0.13 | −3.84 | 3.53 | 12.44 | |||
Soil moisture near T. ramosissima roots | 2.5−3.0 | 65 | −67.15 | −33.81 | −59.11 | 6.97 | 48.64 | |
65 | −8.12 | 4.74 | −1.62 | 3.19 | 10.0 | |||
4 | 52 | −79.71 | −39.54 | −59.19 | 8.36 | 69.81 | ||
52 | −8.97 | 0.39 | −2.64 | 3.79 | 14.38 | |||
A. sparsifolia roots | <4 | 20 | −79.88 | −66.93 | −73.02 | 3.33 | 11.06 | |
20 | −8.99 | −7.26 | −8.48 | 0.43 | 0.19 | |||
Soil moisture near A. sparsifolia roots | 2.5−3.0 | 41 | −76.75 | −31.08 | −56.94 | 10.49 | 110.06 | |
41 | −8.28 | 4.48 | −2.12 | 3.51 | 12.34 | |||
4 | 40 | −79.71 | −45.37 | −60.11 | 7.19 | 51.67 | ||
40 | −8.97 | 0.31 | −3.54 | 3.93 | 15.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, A.; Yang, Y.; Zhu, C.; Ye, Z. Mutual Water Supply Existed Between the Root Systems of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. Under Extreme Drought Stress. Forests 2025, 16, 482. https://doi.org/10.3390/f16030482
Fu A, Yang Y, Zhu C, Ye Z. Mutual Water Supply Existed Between the Root Systems of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. Under Extreme Drought Stress. Forests. 2025; 16(3):482. https://doi.org/10.3390/f16030482
Chicago/Turabian StyleFu, Aihong, Yuhai Yang, Chenggang Zhu, and Zhaoxia Ye. 2025. "Mutual Water Supply Existed Between the Root Systems of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. Under Extreme Drought Stress" Forests 16, no. 3: 482. https://doi.org/10.3390/f16030482
APA StyleFu, A., Yang, Y., Zhu, C., & Ye, Z. (2025). Mutual Water Supply Existed Between the Root Systems of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. Under Extreme Drought Stress. Forests, 16(3), 482. https://doi.org/10.3390/f16030482