Progress and Limitations in Forest Carbon Stock Estimation Using Remote Sensing Technologies: A Comprehensive Review
Abstract
:1. Introduction
2. Remote Sensing Data Sources
2.1. Optical Data
2.1.1. Multispectral Data
2.1.2. Hyperspectral Data
2.1.3. Progress in Forest Carbon Stock Estimation Based on Optical Data
2.2. SAR Data
2.2.1. Classification of SAR Data
- Polarization mode: Single polarization provides basic forest coverage and structural classification. Dual polarization improves vegetation type differentiation and biomass estimation, while full polarization enables precise biomass and carbon stock estimation, particularly in complex forests. Cross-polarization increases sensitivity to volume scattering, beneficial for dense forest structures [31].
- Frequency bands: The P-band and L-band are best for estimating biomass and tree trunk data due to their strong penetration capabilities [32]. The C-band and X-band are used for monitoring forest canopy structures [33], while the Ku-band and Ka-band, which are more suited for monitoring forest health, are less effective for direct carbon stock estimation [34].
- Scattering mechanisms: Volume scattering is key for evaluating forest density and biomass, while double scattering helps estimate trunk density in densely vegetated areas. The backscattering coefficient, influenced by forest structure, aids in inferring biomass and forest health [35].
2.2.2. Estimation of Forest Carbon Stocks Using Multi-Frequency SAR Data Synergy
2.2.3. Progress in Forest Carbon Stock Estimation Based on SAR Data
2.3. LiDAR Data
2.3.1. Airborne LiDAR
2.3.2. Spaceborne LiDAR
2.3.3. Progress in Forest Carbon Stock Estimation Based on LiDAR Data
2.4. Multi-Source Remote Sensing Data
3. Estimation Methods of Forest Carbon Stocks Based on Remote Sensing Technology
3.1. Empirical Models
- SAR data: The backscattering coefficient is a critical variable, providing insights into forest structure and biomass. Polarization modes (e.g., HH, HV, and VV) offer information about different canopy layers and forest density.
- LiDAR data: Key variables, such as canopy height, density, and three-dimensional structural metrics (from LiDAR point clouds) are used to estimate forest biomass and carbon stocks [96]. LiDAR data’s ability to capture detailed vertical and horizontal forest structure enhances the accuracy of these estimates [97].
3.1.1. Traditional Empirical Regression Model Methods
- Linear regression establishes a direct relationship between dependent and independent variables, but struggles with nonlinear relationships [98].
- Polynomial regression extends linear models to capture nonlinear patterns but may overfit with higher polynomial degrees [99].
- Stepwise regression automates variable selection, improving simplicity and explanatory power [102].
- GWR accounts for spatial heterogeneity by allowing local variations in regression coefficients, enhancing model accuracy in spatially diverse environments [103].
3.1.2. Machine Learning Methods
3.1.3. Limitations of Empirical Models
3.2. Estimation of Forest Carbon Stocks Using Process Models
3.2.1. Principles of Process Models
3.2.2. Common Process Models Applied in Forest Carbon Stock Estimation
3.2.3. Limitations of Process Models
3.3. Advancing Empirical and Process Models: Comparison, Uncertainty, and the Role of Artificial Intelligence
3.3.1. Comparison of Empirical and Process Models
3.3.2. Model Validation in Empirical and Process Models
3.3.3. Uncertainty in Empirical and Process Models
3.3.4. The Growing Importance of Artificial Intelligence in Both Model Types
4. Technological Innovation and the Latest Research Progress
4.1. Deep Learning
4.1.1. Introduction of Related Algorithms
- Convolutional Neural Networks (CNNs)
- CNNs are particularly effective for processing high-resolution optical images [144]. By automatically extracting features, like tree edges and crown shapes, CNNs enhance the accuracy of carbon stock estimations across various forest types [145]. Their ability to process large-scale, high-resolution images makes them adaptable for diverse environmental conditions and vital for forest management and carbon cycle research [146].
- Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks (LSTMs).
4.1.2. Applications and Limitations of Deep Learning in the Field of Forest Carbon Stocks
4.2. VOD
4.2.1. Acquisition Methods
4.2.2. Applications of VOD in Forest Monitoring
- Tropical forests: VOD correlates strongly with forest biomass, particularly in high-biomass areas, offering a more reliable estimate than optical indices. In some regions, like the Amazon and African tropical forests, L-band VOD has been validated as a key tool for biomass estimation.
- Boreal forests: In snow-covered areas where optical data are often compromised, VOD provides consistent measures of forest moisture, enabling year-round monitoring of forest health.
- Dryland ecosystems: VOD also serves as an indicator of drought stress and recovery, tracking changes in vegetation moisture to assess the impacts of water scarcity on forest ecosystems.
- Key advancements include the following:
- Relationship with forest biomass: VOD, particularly at L-band, shows a strong linear relationship with AGB, making it an effective tool for biomass estimation in regions with high forest density [156].
- Monitoring forest ecosystem functions: VOD is closely related to ecological processes, like photosynthesis and water-use efficiency [157]. Studies have demonstrated that VOD can be linked with metrics, such as primary productivity and light-use efficiency, enhancing the understanding of forest ecosystems’ response to climate change.
- Forest disturbance and restoration: VOD enables the detection of forest disturbances (e.g., fires, droughts) and the tracking of restoration efforts [158]. It provides real-time updates on vegetation recovery, making it invaluable for ecological restoration practices and forest management.
- Despite its promise, challenges remain with VOD usage. The complexity of inversion algorithms and varying results from different methods highlight the need for optimization and standardization. Additionally, VOD is influenced by various factors, like soil moisture, vegetation type, and topography, complicating its interpretation. To improve the reliability of VOD, future research should focus on refining algorithms, integrating multi-source data, and incorporating machine learning techniques to enhance its utility in forest carbon stock monitoring.
4.3. Bidirectional Influences Between Climate and Forest Carbon Stocks
4.3.1. The Impact of Climate on Changes in Forest Carbon Stocks
4.3.2. The Impact of Forest Carbon Stocks on Changes in Climate
5. Discussion
5.1. Challenges
5.1.1. Data and Models
5.1.2. Forest Stand
5.1.3. Uncertainty
5.2. Future Prospects
5.2.1. Short-Term Implementable Solutions
5.2.2. Long-Term Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GCP | Global Carbon Project |
AGB | Aboveground biomass |
DBH | Tree diameter at breast height |
SAR | Synthetic aperture radar |
LiDAR | Light laser detection and ranging |
NIR | Near-infrared |
GF | China’s Gaofen series satellites |
NASA | National Aeronautics and Space Administration |
GEDI | Global Ecosystem Dynamics Investigation |
ICESat-2 | Ice, Cloud, and Land Elevation Satellite-2 |
SRTM | Shuttle Radar Topography Mission |
TLS | Terrestrial LiDAR system |
ULS | Unmanned Lidar system |
ALS | Airborne LiDAR system |
NDVI | Normalized difference vegetation index |
EVI | Enhanced vegetation index |
LASSO | Least absolute shrinkage and selection operator |
GWR | Geographically weighted regression |
ML | Machine learning |
XGBoost | Extreme gradient boosting |
PAR | Photosynthetically active radiation |
Biome-BGC | Biogeochemical cycles |
CASA | Carnegie–Ames–Stanford approach |
NPP | Net primary productivity |
DGVM | Dynamic global vegetation model |
CLM | Community land model |
NCAR | National Center for Atmospheric Research |
CNN | Convolutional neural network |
RNN | Recurrent neural network |
LSTM | Long short-term memory network |
VOD | Vegetation optical depth |
AI | Artificial intelligence |
References
- Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–28. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Li, H.; Luijkx, I.T.; Olsen, A. Global Carbon Budget 2024. Earth Syst. Sci. Data Discuss. 2024, 2024, 1–133. [Google Scholar]
- Anderegg, W.R.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Meir, P.; Brown, S. Forests, carbon and global climate. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1567–1591. [Google Scholar] [CrossRef] [PubMed]
- Musselman, R.C.; Fox, D.G. A review of the role of temperate forests in the global CO2 balance. J. Air Waste Manag. Assoc. 1991, 41, 798–807. [Google Scholar] [CrossRef]
- Bloom, A.A.; Exbrayat, J.-F.; Van Der Velde, I.R.; Feng, L.; Williams, M. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl. Acad. Sci. USA 2016, 113, 1285–1290. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q.; Dai, L.; Su, D.; Wang, X.; Qi, G.; Ye, Y. Application of China’s national forest continuous inventory database. Environ. Manag. 2011, 48, 1095–1106. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Magerl, A.; Le Noë, J.; Erb, K.-H.; Bhan, M.; Gingrich, S. A comprehensive data-based assessment of forest ecosystem carbon stocks in the US 1907–2012. Environ. Res. Lett. 2019, 14, 125015. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Gong, Z.; Ge, W.; Guo, J.; Liu, J. Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities. ISPRS J. Photogramm. Remote Sens. 2024, 217, 149–164. [Google Scholar] [CrossRef]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.-N.; DesRochers, A.; Kneeshaw, D. Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Panda, S.S.; Rao, M.N.; Thenkabail, P.S.; Misra, D.; Fitzgerald, J.P. Remote Sensing Systems—Platforms and Sensors: Aerial, Satellite, UAV, Optical, Radar, and LiDAR. In Remote Sensing Handbook, Volume I; CRC Press: Boca Raton, FL, USA, 2016; pp. 3–86. [Google Scholar]
- Teillet, P.; Staenz, K.; William, D. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- Gao, S.; Yan, K.; Liu, J.; Pu, J.; Zou, D.; Qi, J.; Mu, X.; Yan, G. Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration. Ecol. Indic. 2024, 162, 112001. [Google Scholar] [CrossRef]
- Tsitsi, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Li, D.; Wang, M.; Jiang, J. China’s high-resolution optical remote sensing satellites and their mapping applications. Geo-Spat. Inf. Sci. 2021, 24, 85–94. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and opportunities of multimodality and data fusion in remote sensing. Proc. IEEE 2015, 103, 1585–1601. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.-W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–43. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Advances in hyperspectral remote sensing of vegetation and agricultural crops. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation; CRC Press: Boca Raton, FL, USA, 2018; pp. 3–37. [Google Scholar]
- Halme, E.; Pellikka, P.; Mõttus, M. Utility of hyperspectral compared to multispectral remote sensing data in estimating forest biomass and structure variables in Finnish boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101942. [Google Scholar] [CrossRef]
- Verly, O.M.; Vieira Leite, R.; da Silva Tavares-Junior, I.; José Silva Soares da Rocha, S.; Garcia Leite, H.; Marinaldo Gleriani, J.; Paula Miranda Xavier Rufino, M.; de Fatima Silva, V.; Moreira Miquelino Eleto Torres, C.; Plata-Rueda, A.; et al. Atlantic forest woody carbon stock estimation for different successional stages using Sentinel-2 data. Ecol. Indic. 2023, 146, 109870. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Liu, J.; Li, Y.; Dai, Q. Comparative Analysis of Seasonal Landsat 8 Images for Forest Aboveground Biomass Estimation in a Subtropical Forest. Forests 2019, 11, 45. [Google Scholar] [CrossRef]
- Sa, R.; Fan, W. Estimation of Forest Parameters in Boreal Artificial Coniferous Forests Using Landsat 8 and Sentinel-2A. Remote Sens. 2023, 15, 3605. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Law, B.E.; Asner, G.P. Forest attributes from radar interferometric structure and its fusion with optical remote sensing. BioScience 2004, 54, 561–571. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef]
- Beaudoin, A.; Le Toan, T.; Goze, S.; Nezry, E.; Lopes, A.; Mougin, E.; Hsu, C.; Han, H.; Kong, J.; Shin, R. Retrieval of forest biomass from SAR data. Int. J. Remote Sens. 1994, 15, 2777–2796. [Google Scholar] [CrossRef]
- Frey, O.; Meier, E. Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3648–3659. [Google Scholar] [CrossRef]
- Neumann, M.; Saatchi, S.S.; Ulander, L.M.; Fransson, J.E. Assessing performance of L-and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass. IEEE Trans. Geosci. Remote Sens. 2012, 50, 714–726. [Google Scholar] [CrossRef]
- Stofan, E.R.; Evans, D.L.; Schmullius, C.; Holt, B.; Plaut, J.J.; van Zyl, J.; Wall, S.D.; Way, J. Overview of results of spaceborne imaging radar-C, X-band synthetic aperture radar (SIR-C/X-SAR). IEEE Trans. Geosci. Remote Sens. 1995, 33, 817–828. [Google Scholar] [CrossRef]
- Song, A.H.; Cheng, Y.J. Shared-aperture dual-polarized Ku-band and single-polarized Ka-band phased array antenna with scanning coverage enhancement. IEEE Trans. Antennas Propag. 2022, 70, 10426–10435. [Google Scholar] [CrossRef]
- Moghaddam, M.; Saatchi, S. Analysis of scattering mechanisms in SAR imagery over boreal forest: Results from BOREAS’93. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1290–1296. [Google Scholar] [CrossRef]
- Balzter, H. Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR). Prog. Phys. Geogr. 2001, 25, 159–177. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Modeling aboveground biomass in tropical forests using multi-frequency SAR data—A comparison of methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 5, 298–306. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Zhang, J.; Chen, H.; Chen, E.; Zhao, L.; Zhao, D. Tropical forest AGB estimation based on structure parameters extracted by TomoSAR. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103369. [Google Scholar] [CrossRef]
- Hu, Y.; Nie, Y.; Liu, Z.; Wu, G.; Fan, W. Improving the Potential of Coniferous Forest Aboveground Biomass Estimation by Integrating C- and L-Band SAR Data with Feature Selection and Non-Parametric Model. Remote Sens. 2023, 15, 4194. [Google Scholar] [CrossRef]
- Ali, N.; Khati, U. Forest Aboveground Biomass and Forest Height Estimation Over a Sub-tropical Forest Using Machine Learning Algorithm and Synthetic Aperture Radar Data. J. Indian Soc. Remote Sens. 2024, 52, 771–786. [Google Scholar] [CrossRef]
- Ramachandran, N.; Saatchi, S.; Tebaldini, S.; d’Alessandro, M.M.; Dikshit, O. Mapping tropical forest aboveground biomass using airborne SAR tomography. Sci. Rep. 2023, 13, 6233. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Chen, Q. LiDAR Remote Sensing and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Camarretta, N.; Harrison, P.A.; Bailey, T.; Potts, B.; Lucieer, A.; Davidson, N.; Hunt, M. Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches. New For. 2020, 51, 573–596. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Wang, Z.; Xie, X.; Li, D.; Xu, L. Airborne LiDAR: State-of-the-art of system design, technology and application. Meas. Sci. Technol. 2020, 32, 032002. [Google Scholar] [CrossRef]
- Shugart, H.; Saatchi, S.; Hall, F. Importance of structure and its measurement in quantifying function of forest ecosystems. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of remote sensing-based methods for forest aboveground biomass estimation: Progress, challenges, and prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Hancock, S.; McGrath, C.; Lowe, C.; Davenport, I.; Woodhouse, I. Requirements for a global lidar system: Spaceborne lidar with wall-to-wall coverage. R. Soc. Open Sci. 2021, 8, 211166. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 2011, 116, 4021. [Google Scholar] [CrossRef]
- Fatoyinbo, T.; Armston, J.; Simard, M.; Saatchi, S.; Denbina, M.; Lavalle, M.; Hofton, M.; Tang, H.; Marselis, S.; Pinto, N. The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions. Remote Sens. Environ. 2021, 264, 112533. [Google Scholar] [CrossRef]
- Bazezew, M.N.; Hussin, Y.A.; Kloosterman, E.H. Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 638–652. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Zhang, B.; Xuan, J.; Gong, Y.; Tan, C.; Huang, H.; Du, H. Estimating 3D Green Volume and Aboveground Biomass of Urban Forest Trees by UAV-Lidar. Remote Sens. 2022, 14, 5211. [Google Scholar] [CrossRef]
- Beyene, S.M.; Hussin, Y.A.; Kloosterman, H.E.; Ismail, M.H. Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia. Can. J. Remote Sens. 2020, 46, 130–145. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Li, X.; Yin, D.; Gong, H.; Nie, S.; Shi, C.; Zhong, R.; Liu, X.; Xu, R. Canopy Height Layering Biomass Estimation Model (CHL-BEM) with Full-Waveform LiDAR. Remote Sens. 2019, 11, 1446. [Google Scholar] [CrossRef]
- Shiney, S.A.; Geetha, R. Estimation of Above Ground Biomass Using Machine Learning and Deep Learning Algorithms: A Review. In International Conference on Advances in Artificial Intelligence and Machine Learning in Big Data Processinging; Springer: Cham, Switzerland, 2023; pp. 181–196. [Google Scholar]
- Li, H.; Kato, T.; Hayashi, M.; Wu, L. Estimation of Forest Aboveground Biomass of Two Major Conifers in Ibaraki Prefecture, Japan, from PALSAR-2 and Sentinel-2 Data. Remote Sens. 2022, 14, 468. [Google Scholar] [CrossRef]
- Han, H.; Wan, R.; Li, B. Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China. Remote Sens. 2021, 14, 176. [Google Scholar] [CrossRef]
- Qian, C.; Qiang, H.; Wang, F.; Li, M. Estimation of Forest Aboveground Biomass in Karst Areas Using Multi-Source Remote Sensing Data and the K-DBN Algorithm. Remote Sens. 2021, 13, 5030. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Sinha, S.; Mohan, S.; Das, A.K.; Sharma, L.K.; Jeganathan, C.; Santra, A.; Santra Mitra, S.; Nathawat, M.S. Multi-sensor approach integrating optical and multi-frequency synthetic aperture radar for carbon stock estimation over a tropical deciduous forest in India. Carbon Manag. 2019, 11, 39–55. [Google Scholar] [CrossRef]
- Yang, Q.; Niu, C.; Liu, X.; Feng, Y.; Ma, Q.; Wang, X.; Tang, H.; Guo, Q. Mapping high-resolution forest aboveground biomass of China using multisource remote sensing data. GIScience Remote Sens. 2023, 60, 2203303. [Google Scholar] [CrossRef]
- Wang, L.; Ju, Y.; Ji, Y.; Marino, A.; Zhang, W.; Jing, Q. Estimation of Forest Above-Ground Biomass in the Study Area of Greater Khingan Ecological Station with Integration of Airborne LiDAR, Landsat 8 OLI, and Hyperspectral Remote Sensing Data. Forests 2024, 15, 1861. [Google Scholar] [CrossRef]
- Hong, Y.; Xu, J.; Wu, C.; Pang, Y.; Zhang, S.; Chen, D.; Yang, B. Combining Multisource Data and Machine Learning Approaches for Multiscale Estimation of Forest Biomass. Forests 2023, 14, 2248. [Google Scholar] [CrossRef]
- Su, R.; Du, W.; Ying, H.; Shan, Y.; Liu, Y. Estimation of Aboveground Carbon Stocks in Forests Based on LiDAR and Multispectral Images: A Case Study of Duraer Coniferous Forests. Forests 2023, 14, 992. [Google Scholar] [CrossRef]
- Huang, H.; Wu, D.; Fang, L.; Zheng, X. Comparison of Multiple Machine Learning Models for Estimating the Forest Growing Stock in Large-Scale Forests Using Multi-Source Data. Forests 2022, 13, 1471. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, L.; Zhang, T.; Li, L.; Yu, Z.; Wu, R.; Bai, L.; Xiao, J.; Chen, L. Identification of Urban Green Space Types and Estimation of Above-Ground Biomass Using Sentinel-1 and Sentinel-2 Data. Forests 2022, 13, 1077. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, Z.; Lu, J.; Liu, J. Estimation of Forest Biomass in Beijing (China) Using Multisource Remote Sensing and Forest Inventory Data. Forests 2020, 11, 163. [Google Scholar] [CrossRef]
- Bourgoin, C.; Blanc, L.; Bailly, J.-S.; Cornu, G.; Berenguer, E.; Oszwald, J.; Tritsch, I.; Laurent, F.; Hasan, A.F.; Sist, P.; et al. The Potential of Multisource Remote Sensing for Mapping the Biomass of a Degraded Amazonian Forest. Forests 2018, 9, 303. [Google Scholar] [CrossRef]
- Wu, Y.; Mao, Z.; Guo, L.; Li, C.; Deng, L. Forest Volume Estimation Method Based on Allometric Growth Model and Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8900–8912. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Sakkan, M.; Pappula, S.; Parmar, A. Forest aboveground biomass estimation by GEDI and multi-source EO data fusion over Indian forest. Int. J. Remote Sens. 2024, 45, 1304–1338. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.; Su, Y.; Shao, J. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Goïta, K.; Mouloungou, J.; Bénié, G.B. Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data. Geocarto Int. 2017, 34, 243–259. [Google Scholar] [CrossRef]
- Li, J.; Bao, W.; Wang, X.; Song, Y.; Liao, T.; Xu, X.; Guo, M. Estimating Aboveground Biomass of Boreal Forests in Northern China Using Multiple Datasets. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4408410. [Google Scholar] [CrossRef]
- Ayushi, K.; Babu, K.N.; Ayyappan, N.; Nair, J.R.; Kakkara, A.; Reddy, C.S. A comparative analysis of machine learning techniques for aboveground biomass estimation: A case study of the Western Ghats, India. Ecol. Inform. 2024, 80, 102479. [Google Scholar] [CrossRef]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Du, Y.; Chen, D.; Li, H.; Liu, C.; Liu, S.; Zhang, N.; Fan, J.; Jiang, D. Research on Estimating and Evaluating Subtropical Forest Carbon Stocks by Combining Multi-Payload High-Resolution Satellite Data. Forests 2023, 14, 2388. [Google Scholar] [CrossRef]
- Li, H.; Kato, T.; Hayashi, M.; Liu, J. Using multisource satellite products to estimate forest aboveground biomass in Oita prefecture: A novel approach with improved accuracy and computational efficiency. Geocarto Int. 2022, 38, 1–20. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, H. Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data. IEEE Access 2020, 8, 178870–178885. [Google Scholar] [CrossRef]
- Zhang, D.; Ni, H. Inversion of Forest Biomass Based on Multi-Source Remote Sensing Images. Sensors 2023, 23, 9313. [Google Scholar] [CrossRef] [PubMed]
- Ometto, J.P.; Gorgens, E.B.; de Souza Pereira, F.R.; Sato, L.; de Assis, M.L.R.; Cantinho, R.; Longo, M.; Jacon, A.D.; Keller, M. A biomass map of the Brazilian Amazon from multisource remote sensing. Sci. Data 2023, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Sa, R.; Nie, Y.; Chumachenko, S.; Fan, W. Biomass Estimation and Saturation Value Determination Based on Multi-Source Remote Sensing Data. Remote Sens. 2024, 16, 2250. [Google Scholar] [CrossRef]
- Fan, W.; Tian, J.; Knoke, T.; Yang, B.; Liang, F.; Dong, Z. Investigating Dual-Source Satellite Image Data and ALS Data for Estimating Aboveground Biomass. Remote Sens. 2024, 16, 1804. [Google Scholar] [CrossRef]
- Lyu, G.; Wang, X.; Huang, X.; Xu, J.; Li, S.; Cui, G.; Huang, H. Toward a More Robust Estimation of Forest Biomass Carbon Stock and Carbon Sink in Mountainous Region: A Case Study in Tibet, China. Remote Sens. 2024, 16, 1481. [Google Scholar] [CrossRef]
- Li, X.; Ye, Z.; Long, J.; Zheng, H.; Lin, H. Inversion of Coniferous Forest Stock Volume Based on Backscatter and InSAR Coherence Factors of Sentinel-1 Hyper-Temporal Images and Spectral Variables of Landsat 8 OLI. Remote Sens. 2022, 14, 2754. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Li, Y.; Shi, J.; Yan, M.; Ji, Y. Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sens. 2022, 14, 1608. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Chen, Z.; Luo, X.; Wang, P.; Shi, M.; Wang, X. A new method for estimating forest stand carbon stock: Segmentation and modeling based on forest aboveground imagery. Ecol. Indic. 2024, 167, 112697. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Li, M.; Xu, D. Assessing Forest-Change-Induced Carbon Storage Dynamics by Integrating GF-1 Image and Localized Allometric Growth Equations in Jiangning District, Nanjing, Eastern China (2017–2020). Forests 2024, 15, 506. [Google Scholar] [CrossRef]
- Yang, F.; Marino, A.; Ji, Y.; Shi, J.; Zhao, H.; Zhang, W. Component and Total Forest Aboveground Biomass Estimation Using GF-1/3 Images. In Proceedings of the IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 4899–4902. [Google Scholar]
- Vandendaele, B.; Fournier, R.A.; Vepakomma, U.; Pelletier, G.; Lejeune, P.; Martin-Ducup, O. Estimation of northern hardwood forest inventory attributes using UAV laser scanning (ULS): Transferability of laser scanning methods and comparison of automated approaches at the tree-and stand-level. Remote Sens. 2021, 13, 2796. [Google Scholar] [CrossRef]
- Karim, S.; Tong, G.; Li, J.; Qadir, A.; Farooq, U.; Yu, Y. Current advances and future perspectives of image fusion: A comprehensive review. Inf. Fusion 2023, 90, 185–217. [Google Scholar] [CrossRef]
- Miehle, P.; Battaglia, M.; Sands, P.J.; Forrester, D.I.; Feikema, P.M.; Livesley, S.J.; Morris, J.D.; Arndt, S.K. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecol. Model. 2009, 220, 734–746. [Google Scholar] [CrossRef]
- Vicharnakorn, P.; Shrestha, R.P.; Nagai, M.; Salam, A.P.; Kiratiprayoon, S. Carbon stock assessment using remote sensing and forest inventory data in Savannakhet, Lao PDR. Remote Sens. 2014, 6, 5452–5479. [Google Scholar] [CrossRef]
- Newell, J.P.; Vos, R.O. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities. Environ. Impact Assess. Rev. 2012, 37, 23–36. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying forest biomass carbon stocks from space. Curr. For. Rep. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tetuko, J.; Tateishi, R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery. Int. J. Remote Sens. 2008, 29, 3417–3456. [Google Scholar] [CrossRef]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef]
- Ayrey, E.; Fraver, S.; Kershaw Jr, J.A.; Kenefic, L.S.; Hayes, D.; Weiskittel, A.R.; Roth, B.E. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can. J. Remote Sens. 2017, 43, 16–27. [Google Scholar] [CrossRef]
- Poole, M.A.; O’Farrell, P.N. The assumptions of the linear regression model. Trans. Inst. Br. Geogr. 1971, 145–158. [Google Scholar] [CrossRef]
- Ostertagová, E. Modelling using polynomial regression. Procedia Eng. 2012, 48, 500–506. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO regression. J. Br. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Derksen, S.; Keselman, H.J. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Santos, F.; Graw, V.; Bonilla, S. A geographically weighted random forest approach for evaluate forest change drivers in the Northern Ecuadorian Amazon. PLoS ONE 2019, 14, e0226224. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, F.; Zhang, J.; Liu, H. Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models. Remote Sens. 2024, 16, 1859. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef]
- Singh, C.; Karan, S.K.; Sardar, P.; Samadder, S.R. Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. J. Environ. Manag. 2022, 308, 114639. [Google Scholar] [CrossRef]
- Fararoda, R.; Reddy, R.S.; Rajashekar, G.; Chand, T.R.K.; Jha, C.S.; Dadhwal, V.K. Improving forest above ground biomass estimates over Indian forests using multi source data sets with machine learning algorithm. Ecol. Inform. 2021, 65, 101392. [Google Scholar] [CrossRef]
- Qadeer, A.; Shakir, M.; Wang, L.; Talha, S.M. Evaluating machine learning approaches for aboveground biomass prediction in fragmented high-elevated forests using multi-sensor satellite data. Remote Sens. Appl. Soc. Environ. 2024, 36, 101291. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef] [PubMed]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Vera, D.; Wang, X.; Mesbah, M. A review of machine learning techniques in agroclimatic studies. Agriculture 2024, 14, 481. [Google Scholar] [CrossRef]
- Luckai, N.; Larocque, G.R. Challenges in the application of existing process-based models to predict the effect of climate change on C pools in forest ecosystems. Clim. Chang. 2002, 55, 39–60. [Google Scholar] [CrossRef]
- Ciais, P.; Dolman, A.J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P.J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 2014, 11, 3547–3602. [Google Scholar] [CrossRef]
- Wu, R.-Q.; Jia, J.-B.; Yan, W.-D.; Hu, L.; Wang, Y.-F.; Chen, Y. Characteristics of canopy conductance and environmental driving mechanism in three monsoon climate regions of China. Front. Environ. Sci. 2022, 10, 935926. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Gower, S.T.; Ahl, D.E. Improved simulation of poorly drained forests using Biome-BGC. Tree Physiol. 2007, 27, 703–715. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, M.; Hu, Y.; Wang, G. Estimation of net primary productivity of forests by modified CASA models and remotely sensed data. Int. J. Remote Sens. 2018, 39, 1092–1116. [Google Scholar] [CrossRef]
- Purves, D.; Pacala, S. Predictive models of forest dynamics. Science 2008, 320, 1452–1453. [Google Scholar] [CrossRef]
- Wu, L.; Kato, T.; Sato, H.; Hirano, T.; Yazaki, T. Sensitivity analysis of the typhoon disturbance effect on forest dynamics and carbon balance in the future in a cool-temperate forest in northern Japan by using SEIB-DGVM. For. Ecol. Manag. 2019, 451, 117529. [Google Scholar] [CrossRef]
- Lawrence, P.J.; Chase, T.N. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res. Biogeosci. 2007, 112, G01023. [Google Scholar] [CrossRef]
- Dos Santos, T.; Keppel-Aleks, G.; De Roo, R.; Steiner, A. Can land surface models capture the observed soil moisture control of water and carbon fluxes in temperate-to-boreal forests? J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005999. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, J.; Zeng, X.; Zhang, M.; Dai, Y.; Ji, D.; Zhang, H. Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2. Adv. Atmos. Sci. 2022, 39, 1285–1298. [Google Scholar] [CrossRef]
- Srinet, R.; Nandy, S.; Patel, N.R.; Padalia, H.; Watham, T.; Singh, S.K.; Chauhan, P. Simulation of forest carbon fluxes by integrating remote sensing data into biome-BGC model. Ecol. Model. 2023, 475, 110185. [Google Scholar] [CrossRef]
- Bai, Y.; Pang, Y.; Kong, D. Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation. For. Ecosyst. 2024, 11, 100213. [Google Scholar] [CrossRef]
- Wang, R.-Y.; Mo, X.; Ji, H.; Zhu, Z.; Wang, Y.-S.; Bao, Z.; Li, T. Comparison of the CASA and InVEST models’ effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities. Sci. Rep. 2024, 14, 5456. [Google Scholar] [CrossRef]
- Pretzsch, H.; Hilmers, T. Structural diversity and carbon stock of forest stands: Tradeoff as modified by silvicultural thinning. Eur. J. For. Res. 2024, 1–22. [Google Scholar] [CrossRef]
- Larocque, G.R.; Komarov, A.; Chertov, O.; Shanin, V.; Liu, J.; Bhatti, J.S.; Wang, W.; Peng, C.; Shugart, H.H.; Xi, W. Process-Based Models: A Synthesis of Models and Applications to Address Environmental and Management Issues 1. In Ecological Forest Management Handbook; CRC Press: Boca Raton, FL, USA, 2024; pp. 209–246. [Google Scholar]
- Adhikari, D.; Singh, P.P.; Tiwary, R.; Barik, S.K. Forest carbon stock-based bioeconomy: Mixed models improve accuracy of tree biomass estimates. Biomass Bioenergy 2024, 183, 107142. [Google Scholar] [CrossRef]
- García-Soria, J.L.; Morata, M.; Berger, K.; Pascual-Venteo, A.B.; Rivera-Caicedo, J.P.; Verrelst, J. Evaluating epistemic uncertainty estimation strategies in vegetation trait retrieval using hybrid models and imaging spectroscopy data. Remote Sens. Environ. 2024, 310, 114228. [Google Scholar] [CrossRef]
- Lei, Q.; Zhang, T.; An, M.; Luo, J.; Qin, L.; Zhu, A.-X.; Qiu, W.; Du, X.; Liu, H. Sensitivity analysis of SWAT streamflow and water quality to the uncertainty in soil properties generated by the SoLIM model. J. Hydrol. 2024, 642, 131879. [Google Scholar] [CrossRef]
- Güler, S. The role of artificial intelligence and remote sensing technologies in forest ecosystems and their importance in determining carbon capture potential. SilvaWorld 2024, 3, 44–51. [Google Scholar] [CrossRef]
- Schneider, T.; Leung, L.R.; Wills, R.C. Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence. Atmos. Chem. Phys. 2024, 24, 7041–7062. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Liu, Y.Y.; De Jeu, R.A.; McCabe, M.F.; Evans, J.P.; Van Dijk, A.I. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 2011, 38, L18402. [Google Scholar] [CrossRef]
- Du, X.; Lei, X.; He, X.; Lan, J.; Guo, H.; Xu, Q. Ecosystem service multifunctionality of mixed conifer-broad-leaved forests under climate change and forest management based on matrix growth modelling. For. Ecosyst. 2024, 11, 100231. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 2014, 42, 11–24. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Zhao, H.; Morgenroth, J.; Pearse, G.; Schindler, J. A systematic review of individual tree crown detection and delineation with convolutional neural networks (CNN). Curr. For. Rep. 2023, 9, 149–170. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; Muñoz-Marí, J.; Mosavi, A.; Camps-Valls, G. Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Inf. Fusion 2020, 63, 256–272. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using Landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information 2024, 15, 517. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, X.; Peng, B. An Approach to Predicting Urban Carbon Stock Using a Self-Attention Convolutional Long Short-Term Memory Network Model: A Case Study in Wuhan Urban Circle. Remote Sens. 2024, 16, 4372. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Zhang, F.; Zhang, H.; Jiang, M. Forest Aboveground Biomass Estimation Using Multisource Remote Sensing Data and Deep Learning Algorithms: A Case Study over Hangzhou Area in China. Remote Sens. 2024, 16, 1074. [Google Scholar] [CrossRef]
- Reiersen, G.; Dao, D.; Lütjens, B.; Klemmer, K.; Amara, K.; Steinegger, A.; Zhang, C.; Zhu, X. ReforesTree: A dataset for estimating tropical forest carbon stock with deep learning and aerial imagery. Proc. AAAI Conf. Artif. Intell. 2022, 36, 12119–12125. [Google Scholar] [CrossRef]
- Oehmcke, S.; Li, L.; Revenga, J.C.; Nord-Larsen, T.; Trepekli, K.; Gieseke, F.; Igel, C. Deep learning based 3D point cloud regression for estimating forest biomass. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 1–4 November 2022; pp. 1–4. [Google Scholar]
- Sudha, S.; Aji, S. Exploring the advancements in high-performance computing paradigm for remote sensing big data analytics. Cloud Comput. Data Sci. 2024, 5, 50–61. [Google Scholar]
- Frappart, F.; Wigneron, J.-P.; Li, X.; Liu, X.; Al-Yaari, A.; Fan, L.; Wang, M.; Moisy, C.; Le Masson, E.; Aoulad Lafkih, Z. Global monitoring of the vegetation dynamics from the Vegetation Optical Depth (VOD): A review. Remote Sens. 2020, 12, 2915. [Google Scholar] [CrossRef]
- Chaparro, D.; Duveiller, G.; Piles, M.; Cescatti, A.; Vall-llossera, M.; Camps, A.; Entekhabi, D. Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: A comparison to higher frequencies and optical indices. Remote Sens. Environ. 2019, 232, 111303. [Google Scholar] [CrossRef]
- Vittucci, C.; Laurin, G.V.; Tramontana, G.; Ferrazzoli, P.; Guerriero, L.; Papale, D. Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 151–161. [Google Scholar] [CrossRef]
- Wang, H.; Wigneron, J.-P.; Ciais, P.; Yao, Y.; Fan, L.; Liu, X.; Li, X.; Green, J.K.; Tian, F.; Tao, S.; et al. Seasonal variations in vegetation water content retrieved from microwave remote sensing over Amazon intact forests. Remote Sens. Environ. 2023, 285, 113409. [Google Scholar] [CrossRef]
- Li, F.; Diop, S.; Hirwa, H.; Maesho, S.; Ning, X.; Tian, C.; Qiao, Y.; Faye, C.; Cissé, B.; Guisse, A. Dryland Social-Ecological Systems in Africa. In Dryland Social-Ecological Systems in Changing Environments; Springer Nature: Singapore, 2024; pp. 273–323. [Google Scholar]
- Anderson-Teixeira, K.J.; Miller, A.D.; Mohan, J.E.; Hudiburg, T.W.; Duval, B.D.; DeLucia, E.H. Altered dynamics of forest recovery under a changing climate. Glob. Change Biol. 2013, 19, 2001–2021. [Google Scholar] [CrossRef]
- Benzing, D.H. Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. Clim. Change 1998, 39, 519–540. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, P.G. Atmospheric carbon dioxide and forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989, 324, 369–392. [Google Scholar]
- Jenkins, M.; Schaap, B. Forest ecosystem services. Backgr. Anal. Study 2018, 1. [Google Scholar]
- Thom, D.; Rammer, W.; Seidl, R. The impact of future forest dynamics on climate: Interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 2017, 87, 665–684. [Google Scholar] [CrossRef]
- Sheil, D. Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. For. Ecosyst. 2018, 5, 19. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Kobe, R.K. Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr. 1996, 66, 181–201. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P.A. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jönsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.-D.; Bugmann, H. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote sensing in forestry: Current challenges, considerations and directions. For. Int. J. For. Res. 2024, 97, 11–37. [Google Scholar] [CrossRef]
- Nehrbass-Ahles, C.; Babst, F.; Klesse, S.; Nötzli, M.; Bouriaud, O.; Neukom, R.; Dobbertin, M.; Frank, D. The influence of sampling design on tree-ring-based quantification of forest growth. Glob. Change Biol. 2014, 20, 2867–2885. [Google Scholar] [CrossRef] [PubMed]
- Rejou-Mechain, M.; Muller-Landau, H.C.; Detto, M.; Thomas, S.C.; Le Toan, T.; Saatchi, S.S.; Barreto-Silva, J.S.; Bourg, N.A.; Bunyavejchewin, S.; Butt, N. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 2014, 11, 6827–6840. [Google Scholar] [CrossRef]
- Sengupta, A. FOREST: Future-Oriented AI Systems for Enhancing Plant Health Monitoring and Sustainable Treatments in Precision Agriculture. In Proceedings of the 2024 IEEE International Symposium on Technology and Society (ISTAS), Puebla, Mexico, 18–20 September 2024; pp. 1–8. [Google Scholar]
- Kuzu, R.S.; Antropov, O.; Molinier, M.; Dumitru, C.O.; Saha, S.; Zhu, X.X. Forest disturbance detection via self-supervised and transfer learning with sentinel-1&2 images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4751–4767. [Google Scholar]
- Samadzadegan, F.; Toosi, A.; Dadrass Javan, F. A critical review on multi-sensor and multi-platform remote sensing data fusion approaches: Current status and prospects. Int. J. Remote Sens. 2024, 46, 1327–1402. [Google Scholar] [CrossRef]
- Schlickmann, M.B.; Bueno, I.T.; Valle, D.; Hammond, W.M.; Prichard, S.J.; Hudak, A.T.; Klauberg, C.; Karasinski, M.A.; Brock, K.M.; Rocha, K.D.; et al. Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery. Remote Sens. 2025, 17, 320. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, K.; Liu, Z.; Xu, J.; Zhang, Z.; Sun, C. Combination of Multiple Variables and Machine Learning for Regional Cropland Water and Carbon Fluxes Estimation: A Case Study in the Haihe River Basin. Remote Sens. 2024, 16, 3280. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, Y.; Fu, H.; Wang, C. Penetration Mapping of Forest Cover Using Spaceborne P-band SAR: A Review of the European Space Agency’s BIOMASS Mission. Geomat. Inf. Sci. Wuhan Univ. 2024. [Google Scholar] [CrossRef]
- O’Mara, T.; Meador, A.S.; Colavito, M.; Waltz, A.; Barton, E. Navigating the evolving landscape of wildfire management: A systematic review of decision support tools. Trees For. People 2024, 16, 100575. [Google Scholar] [CrossRef]
Study | Study Area | Data Source | Highlight | Accuracy | Mothed |
---|---|---|---|---|---|
Halme et al. [24] | Hyytialä Station, Finland (boreal coniferous forest) | AISA: 0.7 m; Sentinel-2: 10 m | Hyperspectral data improve LAI estimates, while Sentinel-2 provides similar accuracy for height, basal area, and biomass. | R2 = 0.63 RMSE = 21.46 | SVR, GPR, 120 plots, 5-fold cv |
Verly et al. [25] | Federal University of Viçosa, Brazil (montane semi-deciduous forest) | Sentinel-2: 10 m | Vegetation indices did not improve carbon prediction, but rainy-season spectral variables (blue, green, red, NIR) enhanced accuracy. | R = 0.9871 RMSE = 4.1696 | Artificial neural networks selection, 30 plots |
Li et al. [26] | Hunan Province, China (subtropical evergreen broadleaf forest) | Landsat 8 OLI: 30 m | Seasonal Landsat 8 imagery yielded varied forest AGB estimates and highlighted uncertainties in biomass estimation. | R2 = 0.55 RMSE = 19.45 | Stepwise regression, 5-fold cv, 303 plots |
Sa et al. [27] | Saihanba Forest, Hebei, China (temperate coniferous forest) | Sentinel-2: 10 m; Landsat 8 OLI: 30 m | The new vegetation and texture ratio indices outperform traditional methods in accurately reflecting forest changes and estimating canopy closure, basal area, and AGB. | R2 = 0.6991 RMS = 3.2687 | Linear regression, 65 plots |
Study | Study Area | Data Source | Accuracy | Highlight | Parameters | Verification |
---|---|---|---|---|---|---|
Li et al. [38] | Monda test site near the equator | F-SAR | R2 = 0.947 | Developed a TomoSAR-based approach to estimate tropical forest AGB by extracting vertical structural parameters, including under-canopy terrain, vertical backscatter power, canopy height, and total canopy backscatter power. | HH, HV, VV | Existing inventory data |
Hu et al. [39] | Saihanba Forest, Hebei, China | GF-3, ALOS-PALSAR | R2 = 0.93 | Combining C- and L-band data provides a more comprehensive representation of forest canopy information, enhancing the saturation point in biomass estimation. | HH, HV, VH, VV; wavelength = 5.5 cm, incidence angle = 21.3°; wavelength = 23.6 cm, incidence angle = 27.8° | Field data from 50 plots |
Ali et al. [40] | Hardevan Forest, India | TanDEM-X, ALOS-PALSAR | R2 = 0.704 | Utilized time series L-band backscatter data to assess the impact of different polarizations on the accuracy of AGB and forest height estimates, enabling their joint inversion. | HH, HV, VH, VV | Field data from 60 plots |
Ramachandran et al. [41] | Palaku Moist Tropical Forest, French Guiana | TropiSAR | R2 = 0.89 | TomoSAR is promising for AGB estimation compared to LiDAR; their combination facilitates regional and global AGB mapping. | HH, HV, VH, VV; wavelength = 0.75 cm, incidence angle = 24–62° | Airborne LiDAR and inventory data |
Study | Study Area | Data Source | Accuracy | Highlight | LiDAR Parameters | LiDAR-Derived Metrics |
---|---|---|---|---|---|---|
Bazezew et al. [50] | Aye Xitan Tropical Rainforest Reserve, Malaysia | ALS, TLS | R2 = 0.96 | Integrating ALS and TLS data estimates tropical forest AGB more accurately than traditional field methods, reducing underestimation and improving carbon stock assessments. | Pulse rate = 70 kHz and 240 kHz, scan angle = 60°, laser points/m2 = 5 to 6 points with 808 m to 1155 swath width | CHM |
Zhou et al. [51] | Zhejiang A&F University, China | ULS | R2 = 0.85 | Proposed a voxel-coupled convex hull slicing algorithm to calculate individual tree 3D foliage volume by splitting crown point clouds by height and applying distinct volume calculations, enhancing estimation accuracy. | ----------- | Height-related metrics, density-related metrics, canopy-related metrics |
Beyene et al. [52] | Pudu, Selangor, Malaysia | TLS | R2 = 0.98 | TLS surpasses optical remote sensing and traditional methods in acquiring tropical forest parameters by offering higher tree detection rates, precise DBH and tree height measurements, and reliable AGB estimations. | Laser wavelengths (1550 nm) and has a measurement ranging from 1.5 to 600 m. | CHM, DBH |
Tian et al. [53] | Ejina Banner, Inner Mongolia, China | ICESat, Geoscience Laser Altimeter System | R2 = 0.741 | Developed the CHL-BEM biomass estimation model, which integrates vertical canopy structure and horizontal canopy cover information, outperforming traditional models that use only average or maximum tree height. | Laser wavelengths = 1064 nm (near-infrared, NIR), 532 nm (green light); pulse repetition rate: 40 Hz | CTH, CC |
Feature | Optical Data | SAR Data | LiDAR Data |
---|---|---|---|
Strengths | High spatial resolution, suitable for capturing spectral information and vegetation indices | Effective in all weather conditions, can penetrate clouds, suitable for nighttime | Provides accurate 3D forest structure measurements, including canopy height and density |
Limitations | Limited penetration ability, struggles with dense vegetation, affected by atmospheric conditions (e.g., clouds) | Lower spatial resolution, data interpretation is challenging, less effective in dense forests | High data acquisition cost, limited by scanning angles, requires specialized equipment |
Sensitivity to vegetation structure | Sensitive to canopy characteristics (e.g., leaf area index, canopy coverage, and biomass) | Sensitive to surface roughness and vegetation structure, including biomass | Sensitive to canopy height, vertical structure, and topography |
Applicable forest types | Suitable for open woodlands, low-density forests, grasslands, and agricultural areas (e.g., tropical and temperate forests) | Suitable for dense forests, wetlands, forest edges, humid regions, effective in subtropical and high-latitude forests | Suitable for high-density forests, tropical rainforests, coniferous forests, and regions with complex forest structures |
Technical requirements | Moderate, typically requires image processing and atmospheric correction | High, requires radar signal processing, polarization handling, and efficient interpretation techniques | High, requires LiDAR equipment, point cloud processing, and 3D modeling software |
Data acquisition cost | Low, many satellite data available for free (e.g., Landsat, Sentinel) | Moderate, mainly relies on satellite or dedicated radar platforms, some data available publicly | High, requires specialized equipment (airborne or satellite LiDAR), high data acquisition and processing costs |
Study | Study Area | Data Source | Accuracy | Highlight | Fusion Method | Verification |
---|---|---|---|---|---|---|
Han et al. [56] | Dabie Mountain Region, China | GF-1, Sentinel-1, SRTM | R2 = 0.70 | GF1’s NDVI, blue band, and red band texture were significantly correlated with AGB, and elevation was significantly positively correlated with AGB. | Feature-level integration | 10-fold cv |
Mohite et al. [69] | Forest of India | GEDI, Sentinel-2, Sentinel-1, SRTM | R2 = 0.74 | Combined GEDI LiDAR with multi-source satellite and forest soil data to achieve large-scale spatial mapping of forest AGB in India, enhancing forest carbon stock monitoring. | Feature-level integration | 5-fold cv |
Li et al. [72] | Daxinganling Region, China | Sentinel-1, Sentinel-2, ALOS-PALSAR, SRTM | R2 = 0.67 | Compared four data types and their combinations. Found that combining optical and microwave remote sensing with terrain data were most effective for AGB estimation. | Feature-level integration | 10-fold cv |
Ayushi et al. [73] | Tropical forests of the BRT Tiger Reserve, Indian | Sentinel-1, Sentinel-2, SRTM | R2 = 0.82 | Emphasized integrating multi-source auxiliary datasets, providing new approaches for biomass mapping in heterogeneous landscapes. | Feature-level integration | 10-fold cv |
Feature | Traditional Empirical Regression Models | Machine Learning Models |
---|---|---|
Model assumptions | Assumes fixed relationships between independent and dependent variables, usually linear or simple nonlinear | Does not require explicit assumptions about the relationship between variables, capable of capturing complex nonlinearities |
Flexibility and adaptability | Less flexible, inadequate for capturing complex, nonlinear dynamics in forest ecosystems | Highly flexible, adaptable to complex, dynamic data, capable of modeling nonlinear and time-varying patterns |
Data requirements | High-quality data required, sensitive to outliers | Lower data quality requirements, can handle missing values and outliers |
Computational complexity | Relatively low, simple computation, suitable for small datasets | High computational complexity, especially when dealing with large datasets, may require more computational resources |
Applicability | Typically suited for smaller datasets or simpler scenarios, often used for standard forest carbon stock estimation | More suitable for large datasets and complex problems, such as multi-source remote sensing data and varying forest types |
Study | Study Area | Algorithm | Accuracy | Highlight | Verification |
---|---|---|---|---|---|
Singh et al. [110] | Dhanbad Region, Jharkhand, India | GAMM, K-NN, SVM, ANN, RF | RF: adjusted R2 = 0.91 | Integrated machine learning and field surveys enable finer-scale AGB estimation, highlighting new spectral bands’ benefits and the importance of uncertainty mapping for enhanced prediction accuracy. | Field data from 106 plots, 5-fold CV |
Fararoda et al. [111] | Forests of India | RF | R2 = 0.89 | First use of multi-source data and machine learning to estimate aboveground biomass in Indian forests, overcoming single-sensor saturation in high biomass areas and improving accuracy. | Inventory data, 10-fold CV |
Qadeer et al. [112] | Diamir District, Gilgit-Baltistan, Pakistan | RF, GTB, CatBoost, LightGBM, XGBoost | LightGBM: R2 = 0.734 | Assessed ML algorithms for AGB prediction in complex terrains. LightGBM and XGBoost performed best with specific datasets, handling nonlinearities and improving accuracy. | Field data from 171 plots |
Li et al. [113] | Chenzhou, Hunan, China | LR, RF, XGBoost | XGBoost: R2 = 0.75 | Examined the importance of parameter optimization in machine learning algorithms. | Inventory data, 10-fold CV |
Study | Study Area | Model | Highlight | Input Parameters | Scale of Study Area |
---|---|---|---|---|---|
Gao et al. [127] | Global vegetation | IAP-DVGM | Simulated global vegetation and carbon flux responses to warming. Analysis indicates that carbon flux is influenced by leaf area index, temperature, and precipitation. | Meteorological data, vegetation data | Global |
Srinet et al. [128] | Himalayan Foothills, India | Biome-BGC | Studied climate impacts on carbon flux and showed forest carbon sink potential. | Meteorological data, site characteristics, ecophysiological parameters | Regional |
Bai et al. [129] | Mengjiagang Forest Farm, Heilongjiang Province, China | 3-PG | Used a 3-PG model and remote sensing to predict larch DBH and biomass, generating carbon storage maps for artificial plantations. | Meteorological data, soil data, vegetation data | Regional |
Wang et al. [130] | Shenzhen, China | CASA | CASA outperforms InVEST spatially. From 2008–2022, Shenzhen’s construction land increased, green and other land uses decreased, and green carbon storage declined. | Meteorological data, NDVI, SR, vegetation data | Regional |
Model Type | Required Data | Strengths | Limitations | Forest Type Sensitivity |
---|---|---|---|---|
Empirical models | - Remote sensing data (e.g., optical, SAR, LiDAR); - Ground-truth data (e.g., biomass samples, field surveys). | High efficiency and simplicity in biomass and carbon stock estimations. | Limited adaptability to complex and heterogeneous forest ecosystems. | - Sensitive to forest structure and spectral characteristics; - Performance may vary across different forest types due to spectral homogeneity. |
Process models | - Remote sensing data; - Meteorological data (e.g., temperature, precipitation); - Soil and vegetation data (e.g., nutrient content, leaf area index). | Provide a more holistic, dynamic understanding of carbon cycling. | Require more detailed input data and complex simulations, which may not always be available. | - Better suited for forests with diverse ecological conditions (e.g., tropical, boreal); - More sensitive to environmental variables (e.g., climate, soil, nutrient cycles) compared to empirical models. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Cheng, Y.; Luo, M.; Mai, X.; Wang, W.; Zhang, W.; Wang, Y. Progress and Limitations in Forest Carbon Stock Estimation Using Remote Sensing Technologies: A Comprehensive Review. Forests 2025, 16, 449. https://doi.org/10.3390/f16030449
Xu W, Cheng Y, Luo M, Mai X, Wang W, Zhang W, Wang Y. Progress and Limitations in Forest Carbon Stock Estimation Using Remote Sensing Technologies: A Comprehensive Review. Forests. 2025; 16(3):449. https://doi.org/10.3390/f16030449
Chicago/Turabian StyleXu, Weifeng, Yaofei Cheng, Mengyuan Luo, Xuzhi Mai, Wenhuan Wang, Wei Zhang, and Yinghui Wang. 2025. "Progress and Limitations in Forest Carbon Stock Estimation Using Remote Sensing Technologies: A Comprehensive Review" Forests 16, no. 3: 449. https://doi.org/10.3390/f16030449
APA StyleXu, W., Cheng, Y., Luo, M., Mai, X., Wang, W., Zhang, W., & Wang, Y. (2025). Progress and Limitations in Forest Carbon Stock Estimation Using Remote Sensing Technologies: A Comprehensive Review. Forests, 16(3), 449. https://doi.org/10.3390/f16030449