Paleoclimatic Events Since 25 kyr B.P. and the Regional Differences Documented by Phytoliths in the Central Songnen Plain, NE China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection
2.3. Stratigraphic Dating
2.4. Experimentation and Data Processing
2.4.1. Phytolith Extraction and Identification
2.4.2. Data Processing
- (1)
- Calculation of the phytolith-based palaeoclimate index:
3. Results
3.1. Phytolith Identification Results
3.2. Phytolith Assemblage Zones
3.3. PCA Ordination of the Phytolith Assemblages
4. Discussion
4.1. Palaeoclimate Processes Indicated by Phytoliths
4.2. The Global Climate Events Discovered by Phytoliths
4.3. Differences in Climate Events
5. Conclusions
- In the central plain of Northeast China, the paleoclimate process indicated by phytoliths in the past 25,000 years was mixed coniferous–broadleaf forest in a semi-humid cool climate (25,165–22,180 cal aB.P.); cold and arid steppe (22,180–18,080 cal aB.P.); semi-humid and semi-arid steppe (18,080–11,380); semi-humid cool grassland (11,380–7790 cal aB.P.); humid, warm forest–steppe (7790–4300 cal aB.P.); and semi-arid and cool meadow–steppe (4300 cal aB.P. to the present).
- Rapid climate oscillations, including the Heinrich2 (H2), the Heinrich1 (H1), the Younger Dryas (YD), the 8.2 kyr event, and the 4.2 kyr event, were captured synchronously by the phytoliths from lacustrine sediments in the central Northeast China.
- During the YD period, the less severe humidity change in this profile might have been affected by the combined influence of the Okhotsk High and the topography around central Northeast China.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, G.Y.; Jiang, D.B.; Yan, Q. Characteristics, drivers and feedbacks of palaeo-climatic variations and the implications for modern climate change research. Quat. Sci. 2021, 41, 824–841. [Google Scholar] [CrossRef]
- Yang, S.L.; Dong, X.X.; Xiao, J.L. The East Asian Monsoon since the Last Glacial Maximum: Evidence from geological records in northern China. Sci. China Earth Sci. 2019, 62, 1181–1192. [Google Scholar] [CrossRef]
- Wu, H.N.; Zhang, C.X.; Zhao, H.K.; Zhang, L.L.; Zhao, L. Vegetation succession and its response to climate changes since the Last Glacial Maximum on the Loess Plateau of Central Gansu, Northwest China. Chin. J. Ecol. 2020, 39, 2488–2500. [Google Scholar] [CrossRef]
- Jiang, D.B.; Tian, Z.P. Last Glacial Maximum and mid-Holocene water vapor transport over East Asia: A modeling study. Quat. Sci. 2017, 37, 999–1008. [Google Scholar] [CrossRef]
- Kuang, X.Y.; Han, Y.C.; Wang, Z.Y. Dynamic downscaling simulation of millennial climate in China since the Last Glacial Maximum—Climate comparison of three typical periods. Quat. Sci. 2021, 41, 842–855. [Google Scholar] [CrossRef]
- Gobbo, C.D.; Gobbo, C.D.; Colucci, R.R.; Colucci, R.R.; Monegato, G.; Žebre, M.; Giorgi, F. Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps. Clim. Past 2023, 19, 1805–1823. [Google Scholar] [CrossRef]
- Wu, H.B.; Li, Q.; Yu, Y.Y.; Sun, A.Z.; Lin, Y.T.; Jiang, W.Q.; Luo, Y.L. Quantitative climatic reconstruction of the Last Glacial Maximum in China. Sci. China Earth Sci. 2019, 62, 1269–1278. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhao, C.; Zhou, X.Y. Vegetation pattern of Northeast China during the special periods since the Last Glacial Maximum. China Earth Sci. 2019, 62, 1224–1240. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Q.; Yong, X.Y.; Yu, M.Q. Quantitative reconstruction of palaeovegetation history in Northeast China and its response to climate change since the Last Glacial Maximum. Quat. Sci. 2024, 44, 805–822. [Google Scholar] [CrossRef]
- Qiu, S.W.; Jiang, P.; Li, F.H.; Xia, Y.M.; Wang, M.H.; Qang, P.F. A preliminary study on the evolution of the natural environment since the Late Glacial in Northeastern China. Acta Geogr. Sin. 1981, 36, 315–327. [Google Scholar] [CrossRef]
- Zhang, X.S.; Zhou, G.S.; Gao, Q.; Yang, D.A.; Ni, J.; Wang, Q.; Tang, H.P. Northeast China transect (NECT) for global change studies. Earth Sci. Front. 1997, 4, 145–152. [Google Scholar]
- Cheng, J.M.; Jing, G.H.; Wei, L.; Jing, Z.B. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China. Ecol. Eng. 2016, 97, 170–178. [Google Scholar] [CrossRef]
- Li, B.; Huang, F.; Qin, L.J.; Qi, H.; Sun, N. Spatio-Temporal Variations of Carbon Use Efficiency in Natural Terrestrial Ecosystems and the Relationship with Climatic Factors in the Songnen Plain, China. Remote Sens. 2019, 11, 2513. [Google Scholar] [CrossRef]
- Li, C.J.; Fu, B.J.; Wang, S.; Stringer, L.C.; Wang, Y.P.; Li, Z.D.; Liu, Y.X.; Zhou, W.X. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Gui, Z.F.; Xue, B.; Yao, S.C.; Wei, W.J. Responses of lakes in the Songnen Plain to climate change. J. Lake Sci. 2010, 22, 852–861. [Google Scholar] [CrossRef]
- Yin, Z.Q.; Qin, X.G. The Yushu loess deposition in eastern Songnen Basin since the last glacial period and its environmental significance. Geol. China 2010, 37, 212–222. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Pancost, R.D.; Naafs, B.D.A.; Li, Q.Y.; Liu, Z.; Yang, H. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene. Earth Planet. Sci. Lett. 2018, 493, 36–46. [Google Scholar] [CrossRef]
- Zhang, X.R.; Ping, S.F.; Jiao, J.Y.; Liu, E.H. Characteristics of Magnetic Susceptibility, Grain Size and Chromaticity of Modern Sediments in the Southern Margin of Songnen Plain and Their Palaeoclimate Environment Significance. J. Jilin Univ. 2020, 50, 465–479. [Google Scholar] [CrossRef]
- Song, Y.H.; Liu, K.; Dai, H.M.; Xu, J.; Zhang, Z.H.; Liang, S. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and its implication for palaeoclimatic. Geol. Bull. China 2022, 41, 1528–1538. [Google Scholar] [CrossRef]
- Wang, P.F.; Xia, Y.M. Preliminary research of vegetational succession on the Song-nen Plain since Late Pleistocene. Bull. Bot. Res. 1988, 8, 87–96. [Google Scholar]
- Qiu, S.W.; Li, Q.S.; Xia, Y.M. Palaeosols of sandy lands and environmental changes in the western plain of northeast China during Holocene. Quat. Sci. 1992, 12, 224–232. [Google Scholar]
- Yuan, S.M.; Sun, X.J. The vegetational and environmental history at the west foot of Changbai Mountain, Northeast China during the last 10,000 years. Bull. Bot. 1990, 32, 558–568. [Google Scholar] [CrossRef]
- Hong, B.; Hong, Y.T.; Lin, Q.H.; Shibata, Y.; Uchida, M.; Zhu, Y.X.; Leng, X.T.; Wang, Y.; Cai, C.C. Anti-phase oscillation of Asian monsoons during the Younger Dryas period: Evidence from peat cellulose δ13C of Hani, Northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 297, 214–222. [Google Scholar] [CrossRef]
- You, H.; Liu, J. High-resolution climate evolution derived from the sediment records of Erlongwan Maar Lake since 14 ka BP. Chin. Sci. Bull. 2012, 57, 3610–3616. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q. Charcoal-recorded climate changes from Moon Lake in Late Glacial. Chin. J. Geol. 2013, 48, 860–869. [Google Scholar] [CrossRef]
- Meng, P.; Wang, Y.L.; Wang, Z.X.; Wang, G.; Wang, Y.X. Compound-specific Carbon Isotopic Characteristics of n-alkanes in Xianghai Lake Sediments of Northeast China and Their Palaeoenvironmental Implications. J. Earth Sci. Environ. 2014, 36, 110–120. [Google Scholar] [CrossRef]
- Mingram, J.; Stebich, M.; Schettler, G.; Hu, Y.Q.; Rioual, P.; Nowaczyk, N.; Dulski, P.; You, H.T.; Opitz, S.; Liu, Q.; et al. Millennial-scale East Asian monsoon variability of the last glacial deduced from annually laminated sediments from Lake Sihailongwan, N.E. China. Quat. Sci. Rev. 2018, 201, 57–76. [Google Scholar] [CrossRef]
- Sun, Q.; Chu, G.Q.; Xie, M.M.; Ling, Y.; Su, Y.L.; Zhu, Q.Z.; Shan, Y.L.; Liu, J.Q. Long-chain alkenone-inferred temperatures from the last deglaciation to the early Holocene recorded by annually laminated sediments of the maar lake Sihailongwan, northeastern China. Holocene 2018, 28, 1173–1180. [Google Scholar] [CrossRef]
- Sun, W.W.; Zhang, E.L.; Liu, E.F.; You, Y.; Li, J.J.; Ni, Z.Y.; Meng, X.Q.; Zhang, W.F.; Chen, R. Hydroclimate changes since the last glacial maximum from sedimentary biomarkers in a crater lake in the Great Khinggan Mountains, Northeast China. Quat. Sci. Rev. 2023, 312, 108175. [Google Scholar] [CrossRef]
- Lü, H.Y.; Liu, T.S.; Wu, N.Q.; Han, J.M.; Guo, Z.T. Phytolith record of vegetation succession in the southern Loess Plateau since Late Pleistocene. Quat. Sci. 1999, 19, 336–349. [Google Scholar]
- Lü, H.Y.; Jia, J.W.; Wang, W.M.; Liao, G.B. On the meaning of phytolith and its classification in Gramineae. Acta Micropalaeontologica Sin. 2002, 19, 389–396. [Google Scholar] [CrossRef]
- Lü, H.Y.; Liu, D.S.; Guo, Z.T. Geology of the Loess Plateau, the status of research on palaeovegetation during the historical period. Chin. Sci. Bull. 2003, 48, 2–7. [Google Scholar] [CrossRef]
- Hart, T.C. Issues and directions in phytolith analysis. J. Archaeol. Sci. 2016, 68, 24–31. [Google Scholar] [CrossRef]
- Wu, N.Q.; Lü, H.Y.; Nie, G.Z.; Wang, Y.J.; Meng, Y.; Guo, G.A. The study of phytoliths in C3 and C4 grasses and its palaeoecological significance. Quat. Sci. 1992, 12, 241–251+289–290. [Google Scholar]
- Piperno, D.R.; Becker, P. Vegetational History of a Site in the Central Amazon Basin Derived from Phytolith and Charcoal Records from Natural Soils. Quat. Res. 1996, 45, 202–209. [Google Scholar] [CrossRef]
- Alexandre, A.; Meunier, J.D.; Lézine, A.M.; Vincens, A.; Schwartz, D. Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 136, 213–229. [Google Scholar] [CrossRef]
- Strömberg, C.A.E.; McInerney, F.A. The Neogene transition from C3 to C4 grasslands in North America: Assemblage analysis of fossil phytoliths. Palaeobiology 2011, 37, 50–71. [Google Scholar] [CrossRef]
- Blinnikov, M.m.s.e.; Busacca, A.; Whitlock, C. Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 177, 77–101. [Google Scholar] [CrossRef]
- Zhang, X.R.; Hu, K.; Fang, S.; Wang, D.P. Phytolith Distribution in the Surface Peat Deposit of Northeast China. J. Jilin Univ. 2007, 37, 895–900. [Google Scholar] [CrossRef]
- Lu, H.Y.; Wu, N.Q.; Liu, K.B.; Jiang, H.; Liu, T.S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 2007, 26, 759–772. [Google Scholar] [CrossRef]
- Gao, G.Z.; Jie, D.M.; Wang, Y.; Liu, L.D.; Liu, H.Y.; Li, D.H.; Li, N.N.; Shi, J.C.; Leng, C.C. Do soil phytoliths accurately represent plant communities in a temperate region? A case study of Northeast China. Veg. Hist. Archaeobot. 2018, 27, 753–765. [Google Scholar] [CrossRef]
- Wang, H.L.; Lu, H.Y.; Zhang, H.Y.; Yi, S.W.; Gu, Y.; Liang, C.H. Grass habitat analysis and phytolith-based quantitative reconstruction of Asian monsoon climate change in the sand-loess transitional zone, northern China. Quat. Res. 2019, 92, 519–529. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.R.; Ping, S.F.; Jiao, J.Y.; Ma, C.M. Climate Background of Peat Swamp Evolution Recorded by Phytolith over Past 2 ka in Northern Mountainous Area in Dunhua. J. Jilin Univ. 2020, 50, 170–184. [Google Scholar] [CrossRef]
- Liu, L.D.; Jie, D.M.; Liu, H.Y.; Gao, G.Z.; Li, D.H.; Li, N.N. Representativeness of soil phytoliths for plant communities in the forest and grassland regions of Northeast China. Quat. Sci. 2020, 40, 1285–1300. [Google Scholar] [CrossRef]
- Rehman, I.U.; Qader, W.; Dar, R.A.; Rashid, I.; Shah, R.A. Phytolith based palaeoecological reconstruction from a loess-palaeosol sequence in the Kashmir Himalaya, India. Catena 2024, 245, 108318. [Google Scholar] [CrossRef]
- Lu, H.Y.; Wu, N.Q.; Liu, D.S.; Han, J.M.; Qin, X.G.; Sun, X.J.; Wang, Y.J. Seasonal climatic variation recorded by phytolith assemblages from the Baoji loess sequence in central China over the last 150 000 a. Sci. China Earth Sci. 1996, 39, 629–639. [Google Scholar] [CrossRef]
- Zhang, X.R.; Hu, K.; Fang, S.; Wang, D.P. Construction and application of phytolith-climate transfer function in peat surface deposits of Northeast China. Acta Sedimentol. Sin. 2008, 26, 676–682. [Google Scholar]
- Gao, G.Z.; Jie, D.M.; Li, D.H.; Li, N.N.; Liu, L.D.; Liu, H.Y.; Shi, J.C.; Leng, C.C.; Wang, J.Y.; Liu, B.J.; et al. Reliability of phytoliths for reconstructing vegetation dynamics in northern temperate forest regions: A case study in northeast China. Quat. Sci. Rev. 2018, 201, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.R.; Hu, K.; Wang, D.P.; Jie, D.M. Discussion on research and application. World Geol. 2004, 23, 112–117. [Google Scholar] [CrossRef]
- Piperno, D.R. Phytoliths: A Comprehensive Guide for Archaeologist and Paleoecologists; AltaMira Press: New York, NY, USA, 2006. [Google Scholar]
- Liu, G.M. Atlas of the Physical Geography of China; SinoMaps Press: Beijing, China, 2010; pp. 41–45. [Google Scholar]
- Li, J.D.; Yang, Y.F. Temporal-Spatial Variations and Databases on Plant Communities in Songnen Plain of China; Science Press: Beijing, China, 2011; pp. 6–295. [Google Scholar]
- Wang, P.X.; Jian, Z.M. Searching high-resolution palaeoenvironmental records: A review. Quat. Sci. 1999, 1, 1–17. [Google Scholar]
- He, Y.X. Lake palaeoclimate, palaeoenvironmental reconstruction, and biomarkers. Bull. Mineral. Petrol. Geochem. 2020, 39, 878–880. [Google Scholar] [CrossRef]
- Ahmad, S.M. IGBP-Pages Open Science Meeting. National Geophysical Research Institute Hyderabad. J. Geol. Soc. India 1998, 52, 363. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Streibig, J.C.; Ritz, C. Utilizing R Software Package for Dose-Response Studies: The Concept and Data Analysis. Weed Technol. 2007, 21, 840–848. [Google Scholar] [CrossRef]
- Ramsey, C.B. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Ramsey, C.B. Dealing with Outliers and Offsets in Radiocarbon Dating. Radiocarbon 2009, 51, 1023–1045. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible palaeoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Caracuta, V.; Fiorentino, G.; Turchiano, M.; Volpe, G. Dating Historical Contexts: Issues, Plant Material, and Methods to Date the Late Roman Site of Faragola, Apulia (SE Italy). Radiocarbon 2014, 56, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Heilongjiang Geology and Mineral Bureau. Geological Monographs of the Ministry of Geology and Minerals of the People’s Republic of China 1 Regional Geology No. 33 Regional Geology of Heilongjiang Province; Geology Press: Beijing, China, 1993; pp. 233–253. [Google Scholar]
- Lentfer, C.J.; Boyd, W.E. A Comparison of Three Methods for the Extraction of Phytoliths from Sediments. J. Archaeol. Sci. 1998, 25, 1159–1183. [Google Scholar] [CrossRef]
- Zhao, Z. Experiments for Improving Phytolith Extraction from Soils. J. Archaeol. Sci. 1998, 25, 587–598. [Google Scholar] [CrossRef]
- Jenkins, E. Phytolith taphonomy: A comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum. J. Archaeol. Sci. 2009, 36, 2402–2407. [Google Scholar] [CrossRef]
- Madella, M.; Alexandre, A.; Ball, T. International Code for Phytolith Nomenclature 1.0. Ann. Bot. 2005, 96, 253–260. [Google Scholar] [CrossRef]
- International Committee for Phytolith Taxonomy (ICPT). International Code for Phytolith Nomenclature (ICPN) 2.0. Ann. Bot. 2019, 124, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Lü, H.Y. Phytolith Study and Its Application; China Ocean Press: Beijing, China, 1993; pp. 50–110. [Google Scholar]
- Strömberg, C.A.E. Methodological concerns for analysis of phytolith assemblages: Does count size matter? Quat. Int. 2009, 193, 124–140. [Google Scholar] [CrossRef]
- Delhon, C.; Alexandre, A.; Berger, J.F.; Thiébault, S.t.; Brochier, J.L.é.; Meunier, J.D. Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quat. Res. 2003, 59, 48–60. [Google Scholar] [CrossRef]
- Wang, W.M.; Liu, J.L.; Zhou, X.D. Study on phytolith climate index of Homo erectus cave sediments in Nanjing. Chin. Sci. Bull. 2003, 48, 1205–1208. [Google Scholar] [CrossRef]
- Barboni, D.; Bremond, L.; Bonnefille, R. Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 246, 454–470. [Google Scholar] [CrossRef]
- Grimm, E.C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Bai, Y.; Dai, L.; Yeok, F.S. Vegetation indication of phytolith assemblages of topsoil on tropical mountains: A sample from Jerai Hill, Malaysia. Quat. Sci. 2020, 40, 1301–1311. [Google Scholar] [CrossRef]
- Li, R.C.; Fan, J.; Gao, C.H. Advances in modern phytolith research. Adv. Earth Sci. 2013, 28, 1287–1295. [Google Scholar] [CrossRef]
- Gu, Y.S.; Ji, Y.B.; Liu, H.Y.; Mi, Y.C.; Wang, H.L.; Li, R.C. An introduction to the research and application of phytolith morphometrics. Quat. Sci. 2019, 39, 12–23. [Google Scholar] [CrossRef]
- Liu, H.Y.; Gu, Y.S.; Tang, Q.Q.; Cheng, D.D.; Gui, F.K. Phytolith records of modern plant communities and surface soils on the Qingbang Island, Zhejiang Province, East China and its environmental significances. Acta Micropalaeontologica Sin. 2017, 34, 77–83. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Prentice, I.C. A Theory of Gradient Analysis. Adv. Ecol. Res. 2004, 34, 235–282. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Lu, X. Vegetation Change and Its Response to Climate Change between 2000 and 2016 in Marshes of the Songnen Plain, Northeast China. Sustainability 2020, 12, 3569. [Google Scholar] [CrossRef]
- Niu, H.H.; Marquer, L.; Sack, D.; Gao, G.Z.; Wang, J.Y.; Meng, M.; Jie, D.M. Middle to late Holocene plant cover variation in relation to climate, fire, and human activity in the Songnen grasslands of northeastern China. Front. Plant Sci. 2023, 13, 1071273. [Google Scholar] [CrossRef] [PubMed]
- Diester, H.L.; Schrader, H.J.; Thiede, J. Sedimentological and palaeoclimatological investigation of two sediment cores off Cape Barbas, North-West Africa. Pangaea 1973, 16, 19. [Google Scholar] [CrossRef]
- Twiss, P.C. Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene; Kansas Geological Survey: Lawrence, KS, USA, 1987; pp. 179–188. [Google Scholar]
- Thorn, V.C. Phytolith evidence for C4-dominated grassland since the early Holocene at Long Pocket, northeast Queensland, Australia. Quat. Res. 2004, 61, 168–180. [Google Scholar] [CrossRef]
- Liu, L.D.; Jie, D.M.; Liu, H.Y.; Gao, G.Z.; Li, D.H.; Li, N.N. Preservation of common soil phytoliths in the northern temperate region: A case study from northeast China. Boreas 2020, 49, 751–768. [Google Scholar] [CrossRef]
- Bird, M.I.; Taylor, D.; Hunt, C. Environments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland? Quat. Sci. Res. 2005, 24, 2228–2242. [Google Scholar] [CrossRef]
- Ma, X.Y.; Wei, Z.F.; Wang, Y.L.; Wang, G.; Gong, J.C.; Zhang, T.; He, W.; Yu, X.L. C3/C4 vegetation evolution recorded by lake sediments in the Huola basin, Northeast China since the Last Glacial Maximum. Quat. Sci. 2018, 38, 1193–1202. [Google Scholar] [CrossRef]
- Stebich, M.; Mingram, J.; Han, J.; Liu, J. Late Pleistocene spread of (cool-)temperate forests in Northeast China and climate changes synchronous with the North Atlantic region. Glob. Planet Chang. 2009, 65, 56–70. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, K.; Wang, Y.J.; Chen, J.; Liang, Y.J.; Cui, Y.F.; Shao, Q.F.; Zhai, X.M.; Zhang, Z.Q.; Kong, X.G.; et al. Orbital- and millennial-scale hydroclimate changes in central China during the last glacial period. Quat. Sci. Res. 2024, 337, 108802. [Google Scholar] [CrossRef]
- Demezhko, D.Y.; Ryvkin, D.G.; Outkin, V.I.; Duchkov, A.D.; Balobaev, V.T. Spatial Distribution of Pleistocene/holocene Warming Amplitudes in Northern Eurasia Inferred from Geothermal Data. Clim. Past 2007, 3, 559–568. [Google Scholar] [CrossRef]
- Sergio, B.; Federico, L.A.; Marcos, C.; Daniel, T.; Adrián, G. A Pleistocene Freshwater Ichthyofaunal Assemblage From Central Argentina: What Kind of Fishes Lived in the Pampean Lagoons Before the Extinction of the Megafauna? PLoS ONE 2020, 15, e0235196. [Google Scholar] [CrossRef]
- Wang, Y.X.; Kai, N.; He, Q.H.; Jie, D.M.; Guan, Q.Y. Holocene paleotemperature reconstruction based on phytolith records of lacustrine sediments in the Badain Jaran Desert, northwestern China. Front. Earth Sci. 2022, 10, 998061. [Google Scholar] [CrossRef]
- Zhang, W.C.; Wu, H.B.; Cheng, J.; Geng, J.Y.; Li, Q.; Sun, Q.; Lu, H.Y.; Guo, Z.T. Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass. Nat. Commun. 2022, 13, 53341. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, Y.Z.; Li, J.F. Mid- To Late Holocene Moisture Evolution In China And Surroundings: Spatial Patterns And Possible Mechanisms. Quat. Sci. 2022, 42, 1058–1077. [Google Scholar] [CrossRef]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Herzschuh, U.; Böhmer, T.; Chevalier, M.; Hébert, R.; Dallmeyer, A.; Li, C.Z.; Cao, X.Y.; Peyron, O.; Nazarova, L.; Novenko, E.Y.; et al. Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends. Clim. Past 2023, 19, 1481–1506. [Google Scholar] [CrossRef]
- Pu, Q.Y. Evolution of natural environment in China since the Last Glacial Period and its position in the global change. Quat. Sci. 1991, 11, 245–259. [Google Scholar]
- Qin, B.Q.; Harrison, S.P.; Yu, G.; Tarasov, P.E.; Damnati, B. The geological evidence of the global moisture condition changes since the last glacial maximum: The construction of global lake status data base & the synthesis in the large spatio-temporal scale. J. Lake Sci. 1997, 9, 203–210. [Google Scholar] [CrossRef]
- Zhang, S.R.; Xiao, J.L.; Xu, Q.H. Regional precipitation variations during Heinrich events and Dansgaard-Oeschger cycles in the northern margin of the East Asian summer monsoon region. Quat.Sci. Rev. 2022, 278, 107380. [Google Scholar] [CrossRef]
- Ziemen, F.A.; Kapsch, M.L.; Klockmann, M.; Mikolajewicz, U. Heinrich events show two-stage climate response in transient glacial simulations. Clim. Past 2019, 15, 153–168. [Google Scholar] [CrossRef]
- Dong, X.Y.; Cheng, H.; Kathayat, G.; Zhang, F.; Li, H.Y.; Zhang, H.W.; Zhao, J.Y.; Ning, Y.F.; Li, X.L.; Cheng, X.; et al. The termination period of Heinrich 2 Event recorded by stalagmite in Indian monsoon domain. Quat. Sci. 2019, 39, 878–893. [Google Scholar] [CrossRef]
- Shao, K.H.; Lu, H.Y.; Chen, J.Y.; Gu, X.J.; Chu, B.W.; Wu, J.; Yi, S.W. East Asian monsoon precipitation variations over the past 80 ka revealed by carbonate and dolomite content in loess deposit at Zhengzhou(Central China) and forcing mechanism. Qua. Sci. 2020, 40, 1622–1630. [Google Scholar] [CrossRef]
- Dong, X.Y.; Kathayat, G.; Rasmussen, S.O.; Svensson, A.; Severinghaus, J.P.; Li, H.Y.; Sinha, A.; Xu, Y.; Zhang, H.W.; Shi, Z.G.; et al. Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2. Nat. Commun. 2022, 13, 5867. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.C.; An, Z.S. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 1995, 375, 305–308. [Google Scholar] [CrossRef]
- Zhang, S.R.; Xiao, J.L.; Wen, R.H.; Fan, W.J.; Huang, Y.; Li, M.Y.; Xu, Q.H. The character and impact of the Heinrich event 1 in the middle-high latitude of East Asia: Pollen records from the Hulun Lake. Quat. Sci. 2019, 39, 905–915. [Google Scholar] [CrossRef]
- Zhao, Y.T.; An, C.B.; Zhao, J.J.; Li, Y.; Duan, F.T.; Miao, Y.F. Vegetation and climate history in the arid inland area during the H1: Multi-proxy data of the Balikun Lake. Quat. Sci. 2019, 39, 916–926. [Google Scholar] [CrossRef]
- Yi, S.Y.; Sheng, M.; Li, Z.Y.; Wang, X.S. Centennial-resolution East Asian winter monsoon variations recorded by loess deposits in the eastern Hexi Corridor over the last 110 ka. Quat. Sci. 2022, 42, 1517–1528. [Google Scholar] [CrossRef]
- Yang, S.L.; Ding, Z.L. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment. Quat. Sci. 2017, 37, 934–944. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Mao, L.M.; Zhu, Z.Y.; Wang, L.; Chu, G.Q.; Liu, J.Q. Characteristics of the Younger Drays event in the Great Khingan Mountains area. Quat. Sci. 2019, 39, 985–993. [Google Scholar] [CrossRef]
- Sun, Q.; Xie, M.M.; Lin, Y.; Shan, Y.B.; Zhu, Q.Z.; Xu, D.K.; Su, Y.L.; Rioual, P.; Chu, G.Q. An n-alkane and carbon isotope record during the last deglaciation from annually laminated sediment in Lake Xiaolongwan, northeastern China. J. Paleolimnol. 2016, 56, 189–203. [Google Scholar] [CrossRef]
- Liu, J.L. Vegetational and climatic changes at Gushantun Bog in Jinlin, NE China since 13 000 Y.BP. Acta Palaeontol. Sin. 1989, 28, 495–511. [Google Scholar] [CrossRef]
- Liu, D.S. Loess, Quaternary Geology, and Global Change Part II; Science Press: Xi’an, China, 1990; pp. 108–115. [Google Scholar]
- Liu, Y.Y.; Liu, J.Q.; Han, J.T. Pollen Record, and Climate Changing Since12.0 ka B.P. in Erlongwan Maar Lake Jilin Province. J. Jilin Univ. 2009, 39, 93–98. [Google Scholar] [CrossRef]
- Cai, W.J.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.S.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Taschetto, A.S.; et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628–644. [Google Scholar] [CrossRef]
- Ruth, U.; Barnola, J.M.; Beer, J.; Bigler, M.; Blunier, T.; Castellano, E.; Fischer, H.; Fundel, F.; Huybrechts, P.; Kaufmann, P.; et al. “EDML1”: A chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Clim. Past 2007, 3, 475–484. [Google Scholar] [CrossRef]
- North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Svensson, A.; Andersen, K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Davies, S.M.; Johnsen, S.J.; Muscheler, R.; Parrenin, F.; Rasmussen, S.O.; et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 2008, 4, 47–57. [Google Scholar] [CrossRef]
- Marcott, S.A.; Bauska, T.K.; Buizert, C.; Steig, E.J.; Rosen, J.L.; Cuffey, K.M.; Fudge, T.J.; Severinghaus, J.P.; Ahn, J.; Kalk, M.L.; et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 2014, 514, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Broecker, W.S.; Denton, G.H.; Edwards, R.L.; Cheng, H.; Alley, R.B.; Putnam, A.E. Putting the Younger Dryas cold event into context. Quat. Sci. Rev. 2010, 29, 1078–1081. [Google Scholar] [CrossRef]
- Hu, M.J.; Li, S.; Gao, S.Y.; Zhang, D.S. Evolution Process of Land Desertification around Qinghai Lake since 32 ka BP Reflected by Sediment Grain-size Features. J. Desert Res. 2012, 32, 1240–1247. [Google Scholar]
- Li, Q.; Pan, B.T.; Gao, H.S.; Xu, S.J. Desert Evolution and Climate Change of Southern Margin of Tengger Desert since Last Glacial Maximum. J. Desert Res. 2006, 26, 875–879. [Google Scholar]
- Wang, T.; Long, Y.L.; Liu, X.X.; Sun, Y.B. Sedimentary environment evolutions in the Weihe Basin since Last Glacial Maximum. Quat. Sci. 2019, 39, 579–588. [Google Scholar] [CrossRef]
- Liang, X.; Yang, P.G.; Yao, J.; Zhang, P.; Zhang, J.H.; Sun, P.F.; Ao, H. Environmental magnetic record of East Asian summer monsoon variability on the Chinese Loess Plateau since 16 ka BP. Acta Geogr. Sin. 2021, 76, 539–549. [Google Scholar] [CrossRef]
- Wang, X.S.; Chu, G.Q.; Sheng, M.; Zhang, S.Q.; Li, J.H.; Chen, Y.; Tang, L.; Su, Y.L.; Pei, J.L.; Yang, Z.Y. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation. Earth Planet. Sci. Lett. 2016, 451, 22–30. [Google Scholar] [CrossRef]
- Wang, S.M. Records of the Younger Dryas event in sediments of Zhainuoer Lake in Inner Mongolia. Chin. Sci. Bull. 1994, 39, 348–351. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Chu, G.Q.; Wang, L.; Liu, J.Q. Vegetation history and climate change recorded by stomata evidence during the late glacial in the Great Khingan Mountain Region, Northeastern China. Chin. Sci. Bull. 2016, 61, 3940–3945. [Google Scholar] [CrossRef]
- Parplies, J.; Lucke, A.; Vos, H.; Mingram, J.; Stebich, M.; Radtke, U.; Han, J.T.; Schleser, G.H. Late glacial environment and climate development in northeastern China derived from geochemical and isotopic investigations of the varved sediment record from Lake Sihailongwan (Jilin Province). J. Paleolimnol. 2008, 40, 471–487. [Google Scholar] [CrossRef]
- An, Z.S.; Porte, S.C.; Zhou, W.J.; Lu, Y.C.; Donahue, D.J.; Head, M.J.; Wu, X.H.; Ren, J.Z.; Zheng, H.B. Episode of Strengthened Summer Monsoon Climate of Younger Dryas Age on the Loess Plateau of Central China. Quat. Res. 1993, 39, 45–54. [Google Scholar] [CrossRef]
- Liu, J.L.; Liu, Q.; Chu, G.Q.; Wu, J.; Liu, J.Q. Sediment record at Lake Sifangshan in the central northern part of the Great Xing’an Range, Northeast China since 15.4ka B.P. Quat. Sci. 2015, 35, 901–912. [Google Scholar] [CrossRef]
- Zhou, W.J.; Zheng, Y.H.; Meyers, P.A.; Jull, A.J.T.; Xie, S.C. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China. Earth Planet. Sci. Lett. 2010, 294, 37–46. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhou, X.; Zhan, T.; Zhou, X.Y.; Wu, H.B.; Jiang, S.W.; Tu, L.Y.; Oyebanji, D.; Shen, Y.N. Pollen evidence for a wet Younger Dryas in northern NE China. Catena 2023, 220, 106667. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Sinha, A.; Spötl, C.; Yi, L.; Chen, S.T.; Kelly, M.; Kathayat, G.; Li, X.L.; Wang, X.F.; et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 2016, 534, 640–646. [Google Scholar] [CrossRef]
- Max, L.; Riethdorf, J.R.; Tiedemann, R.; Smirnova, M.; Lembke-Jene, L.; Fahl, K.; Nrnberg, D.; Matul, A.; Mollenhauer, G. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. Palaeoceanogr. Palaeoclimatol. 2012, 27, PA3213–PA3232. [Google Scholar] [CrossRef]
- Maher, B.A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quat. Sci. Rev. 2016, 154, 23–84. [Google Scholar] [CrossRef]
- An, Z.S. The history and variability of the East Asian palaeomonsoon climate. Quat. Sci. Rev. 2000, 19, 171–187. [Google Scholar] [CrossRef]
- Liu, J.Q.; Ni, Y.Y.; Chu, G.Q. Main palaeoclimatic events in the Quaternary. Quat. Sci. 2001, 21, 239–248. [Google Scholar] [CrossRef]
- Chen, D.; Gao, Y.; Sun, J.Q.; Wang, H.J.; Ma, J.H. Interdecadal Variation and Causes of Drought in Northeast China in Recent Decades. J. Geophys. Res.-Atmos. 2020, 125, e2019JD032069. [Google Scholar] [CrossRef]
- Zhang, M.M.; Bu, Z.J.; Wang, S.Z.; Jiang, M. Moisture changes in Northeast China since the last deglaciation: Spatiotemporal out-of-phase patterns and possible forcing mechanisms. Earth Sci. Rev. 2020, 201, 102984. [Google Scholar] [CrossRef]
- National Climate Center. China Climate Impact Assessment; China Meteorological Press: Beijing, China, 2022; pp. 32–34. [Google Scholar]
- Chu, G.Q.; Sun, Q.; Xie, M.M.; Lin, Y.; Shang, W.Y.; Zhu, Q.Z.; Shan, Y.B.; Xu, D.K.; Rioual, P.; Wang, L.; et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China. Quat. Sci. Rev. 2014, 102, 85–95. [Google Scholar] [CrossRef]
- Zhou, X.; Zhan, T.; Tan, N.; Tu, L.Y.; Smol, J.P.; Jiang, S.; Zeng, F.; Liu, X.; Li, X.; Liu, G.; et al. Inconsistent patterns of Holocene rainfall changes at the East Asian monsoon margin compared to the core monsoon region. Quat. Sci. Rev. 2023, 301, 107952. [Google Scholar] [CrossRef]
- Gorbarenko, S.A.; Artemova, A.V.; Goldberg, E.L.; Vasilenko, Y.P. The response of the Okhotsk Sea environment to the orbital-millennium global climate changes during the Last Glacial Maximum, deglaciation, and Holocene. Glob. Planet. Change 2014, 116, 76–90. [Google Scholar] [CrossRef]
Sample Code | Depth/cm | Analyzed Material | AMS14C Age Dating Results/a B.P. | δ13C/‰ | Age-Corrected/a B.P. | Probability |
---|---|---|---|---|---|---|
LM-1-45 | 44–45 | Organic sediment | 9020 ± 30 | −21.7 | 10,242–10,171 | 95.4% |
LM-1-95 | 94–95 | Organic sediment | 9950 ± 30 | −23.8 | 11,406–11,251 | 79.5% |
LM-1-145 | 144–145 | Organic sediment | 11,570 ± 30 | −24.6 | 13,500–13,342 | 95.4% |
LM-1-224 | 223–224 | Plant material | 10,220 ± 30 | −27.6 | 11,975–11,813 | 91.6% |
LM-1-419 | 418–419 | Organic sediment | 16,390 ± 50 | −24.6 | 19,910–19,580 | 95.4% |
LM-1-558 | 557–558 | Organic sediment | 20,700 ± 60 | −25.5 | 25,165–24,705 | 95.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, X.; Wang, J.; Fang, S.; Huo, Y.; Liu, J. Paleoclimatic Events Since 25 kyr B.P. and the Regional Differences Documented by Phytoliths in the Central Songnen Plain, NE China. Forests 2025, 16, 275. https://doi.org/10.3390/f16020275
Li Y, Zhang X, Wang J, Fang S, Huo Y, Liu J. Paleoclimatic Events Since 25 kyr B.P. and the Regional Differences Documented by Phytoliths in the Central Songnen Plain, NE China. Forests. 2025; 16(2):275. https://doi.org/10.3390/f16020275
Chicago/Turabian StyleLi, Yaran, Xinrong Zhang, Jiayu Wang, Shi Fang, Yuanbo Huo, and Jiakang Liu. 2025. "Paleoclimatic Events Since 25 kyr B.P. and the Regional Differences Documented by Phytoliths in the Central Songnen Plain, NE China" Forests 16, no. 2: 275. https://doi.org/10.3390/f16020275
APA StyleLi, Y., Zhang, X., Wang, J., Fang, S., Huo, Y., & Liu, J. (2025). Paleoclimatic Events Since 25 kyr B.P. and the Regional Differences Documented by Phytoliths in the Central Songnen Plain, NE China. Forests, 16(2), 275. https://doi.org/10.3390/f16020275