Fire Severity Outperforms Remote Sensing Indices in Exploring Post-Fire Vegetation Recovery Dynamics in Complex Plateau Mountainous Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Indices Generation
2.4. Forest Fire Severity Classification Samples Generation
2.5. Evaluation of ML Methods for Forest Fire Severity Classification
2.6. Analysis Method of Post-Fire Vegetation Recovery
3. Results
3.1. Classification Accuracy of Four ML Methods
3.2. Fire Severity Changes in the Post-Fire Vegetation Recovery in wq_2006_ba from 2005 to 2020
3.3. Indexes Changes in the Post-Fire Vegetation Recovery in wq_2006_ba from 2005 to 2020
3.4. Fire Severity Is Better in Reflection of the Post-Fire Vegetation Recovery than Indexes in Central Yunnan
4. Discussion
4.1. Integrated dNBR and Visual Interpretation Is Capable of Accurately and Quickly Collecting Abundant Classification Samples
4.2. RF Exhibits Excellent Performance in Precisely Mapping the Severity of Forest Fires Within Plateau Regions Characterized by a Complex Mountainous Environment
4.3. Dynamic Characteristics of Post-Fire Changes in Different Forest Fire Severity Zones
4.4. Limitations and Uncertainties
4.4.1. Limitations
4.4.2. Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Toivonen, J.; Kangas, A.; Maltamo, M.; Kukkonen, M.; Packalen, P. Assessing biodiversity using forest structure indicators based on airborne laser scanning data. For. Ecol. Manag. 2023, 546, 121376. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Li, S.; Fan, H. Post-fire forest recovery trajectory characterized by a modified LandTrendr recovery detection method: A case study of Pinus yunnanensis forests. Agric. For. Meteorol. 2024, 354, 110084. [Google Scholar] [CrossRef]
- Carta, F.; Zidda, C.; Putzu, M.; Loru, D.; Anedda, M.; Giusto, D. Advancements in Forest Fire Prevention: A Comprehensive Survey. Sensors 2023, 23, 6635. [Google Scholar] [CrossRef]
- Wu, C.; Xu, W.H.; Xiao, W.C.; Wang, Q.H.; Yuan, H.; Dong, J.; Huang, S.D.; Xiong, Y. Dynamic change of recovery rate of typical burned land in central Yunnan and its influencing factors. Resour. Sci. 2021, 43, 2465–2474. [Google Scholar]
- He, Y.; Xu, H.; Chen, J. Temporal and spatial distribution characteristics of forest fires in Yunnan Province. J. Cent. South Univ. For. Technol. 2017, 37, 36–41. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Ruiz, J.A.M.; Lazaro, J.R.G.; Cano, I.D.; Leal, P.H. Burned Area Mapping in the North American Boreal Forest Using Terra-MODIS LTDR (2001–2011): A Comparison with the MCD45A1, MCD64A1 and BA GEOLAND-2 Products. Remote Sens. 2014, 2014, 815–840. [Google Scholar] [CrossRef]
- Bond, J.G.P.W.J. On the Three Major Recycling Pathways in Terrestrial Ecosystems. Trends Ecol. Evol. 2020, 35, 767–775. [Google Scholar]
- Qiu, J.; Wang, H.; Shen, W.; Zhang, Y.; Li, M. Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. Remote Sens. 2021, 13, 792. [Google Scholar] [CrossRef]
- Llorens, R.; Sobrino, J.A.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Sun, F.; Qin, X.; Liu, C.; Li, X. Potential analysis of typical vegetation index for identifying burned areas. Remote Sens. Land Resour. 2019, 31, 204–211. [Google Scholar]
- Leisenheimer, L.; Wellmann, T.; Jänicke, C.; Haase, D. Monitoring drought impacts on street trees using remote sensing—Disentangling temporal and species-specific response patterns with Sentinel-2 imagery. Ecol. Inform. 2024, 82, 102659. [Google Scholar] [CrossRef]
- Lal, M.; Jatisankar, B.; Rubel, S.; Ismail, M.; Trong, N.T.; Cesare, L.G.F.; Tran, A.D. Estimation of agricultural burned affected area using NDVI and dNBR satellite-based empirical models. J. Environ. Manag. 2023, 343, 118226. [Google Scholar]
- Zhang, K.; Zhu, C.; Li, J.; Shi, K.; Zhang, X. Reconstruction of dense time series high spatial resolution NDVI data using a spatiotemporal optimal weighted combination estimation model based on Sentinel-2 and MODIS. Ecol. Inform. 2024, 82, 102725. [Google Scholar] [CrossRef]
- Rozario, P.F.; Madurapperuma, B.D.; Wang, Y. Remote sensing approach to detect burn severity risk zones in Palo Verde National Park, Costa Rica. Remote Sens. 2018, 10, 1427. [Google Scholar] [CrossRef]
- Giddey, B.L.; Baard, J.A.; Kraaij, T. Verification of the differenced Normalised Burn Ratio (dNBR) as an index of fire severity in Afrotemperate Forest. South Afr. J. Bot. 2022, 146, 348–353. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Pandey, A.C.; Parida, B.R. Forest Fire Characterization Using Landsat-8 Satellite Data in Dalma Wildlife Sanctuary. Remote Sens. Earth Syst. Sci. 2022, 5, 11–16. [Google Scholar] [CrossRef]
- Chen, D.; Loboda, T.V.; Hall, J.V. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS J. Photogramm. Remote Sens. 2020, 159, 63–77. [Google Scholar] [CrossRef]
- Wagtendonk, J.W.v.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ. 2003, 92, 397–408. [Google Scholar] [CrossRef]
- Kou, W.; Liang, C.; Wei, L.; Hernandez, A.; Yang, X. Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery. Forests 2017, 8, 34. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R.; Bian, X.; Wang, R.; Yu, C. Development of a New Phenology Algorithm for Fine Mapping of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 587. [Google Scholar] [CrossRef]
- Steiner, J.L.; Wetter, J.; Robertson, S.; Teet, S.; Wang, J.; Wu, X.; Zhou, Y.; Brown, D.; Xiao, X. Grassland wildfires in the Southern Great Plains: Monitoring ecological impacts and recovery. Remote Sens. 2020, 12, 619. [Google Scholar] [CrossRef]
- Han, L.; Bi, H.; Wang, Q.; Gao, L. The influence of image selection and threshold on dNBR extraction of fire-scarred land. Remote Sens. Inf. 2023, 38, 47–55. [Google Scholar] [CrossRef]
- Xu, H.; Chen, J.; He, G.; Lin, Z.; Bai, Y.; Ren, M.; Zhang, H.; Yin, H.; Liu, F. Immediate assessment of forest fire using a novel vegetation index and machine learning based on multi-platform, high temporal resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104210. [Google Scholar] [CrossRef]
- Guria, R.; Mishra, M.; Silva, R.M.d.; Mishra, M.; Santos, C.A.G. Predicting forest fire probability in Similipal Biosphere Reserve (India) using Sentinel-2 MSI data and machine learning. Remote Sens. Appl. Soc. Environ. 2024, 36, 101311. [Google Scholar] [CrossRef]
- Tahri, M.; Badr, S.; Mohammadi, Z.; Kašpar, J.; Berčák, R.; Holuša, J.; Surový, P.; Marušák, R.; Yousfi, N. New forest fire assessment model based on artificial neural network and analytic hierarchy process or fuzzy-analytic hierarchy process methodology for fire vulnerability map. Eng. Appl. Artif. Intell. 2024, 138, 109399. [Google Scholar] [CrossRef]
- Dastour, H.; Hassan, Q.K. A multidimensional machine learning framework for LST reconstruction and climate variable analysis in forest fire occurrence. Ecol. Inform. 2024, 83, 102849. [Google Scholar] [CrossRef]
- Sarkar, M.S.; Majhi, B.K.; Pathak, B.; Biswas, T.; Mahapatra, S.; Kumar, D.; Bhatt, I.D.; Kuniyal, J.C.; Nautiyal, S. Ensembling machine learning models to identify forest fire-susceptible zones in Northeast India. Ecol. Inform. 2024, 81, 102598. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C.; Moghimi, A.; Foroughnia, F.; Swain, S.K. Integrating geospatial, remote sensing, and machine learning for climate-induced forest fire susceptibility mapping in Similipal Tiger Reserve, India. For. Ecol. Manag. 2024, 555, 121729. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Milanović, S.; Kaczmarowski, J.; Ciesielski, M.; Trailović, Z.; Mielcarek, M.; Szczygieł, R.; Kwiatkowski, M.; Bałazy, R.; Zasada, M.; Milanović, S.D. Modeling and mapping of forest fire occurrence in the Lower Silesian Voivodeship of Poland based on Machine Learning methods. Forests 2023, 14, 46. [Google Scholar] [CrossRef]
- Llopis, M.P.; Vastaranta, M.; Saarinen, N.; Olabarria, J.R.G.; Gonzalo, J.G.; Yudego, B.M. Post-fire vegetation dynamics and location as main drivers of fire recurrence in Mediterranean forests. For. Ecol. Manag. 2024, 568, 122126. [Google Scholar] [CrossRef]
- Tingting, H.; Jiwang, G.; Wu, X.; Suchen, X.; Hang, C. A novel method for identification of disturbance from surface coal mining using all available Landsat data in the GEE platform. ISPRS J. Photogramm. Remote Sens. 2023, 205, 17–33. [Google Scholar]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Z.; Wen, Q.; Ma, L.; Guo, J.; Chen, A.; Zhang, M.; Xing, X.; Yuan, Y.; Lan, X.; et al. Dynamic monitoring of aboveground biomass in inner Mongolia grasslands over the past 23 Years using GEE and analysis of its driving forces. J. Environ. Manag. 2024, 354, 120415. [Google Scholar] [CrossRef]
- Liang, R.; Jiao, B.; Tian, P.; Yang, F. Analysis on two prediction methods of forest fire in Anning City. For. Constr. 2021, 20–25. [Google Scholar]
- Wang, Q.; Xiao, H.; Xu, S.; Li, S.; Lin, S. Study on the burning property of shrubbery in the burned land of the “March 29” major forest fire in Anning, central Yunnan Province. J. Saf. Environ. 2016, 16, 138–141. [Google Scholar] [CrossRef]
- Duan, Y.; Zhou, R.; Zhou, Z. Fire area assessment of Anning “3.29” in Yunnan based on CBERS remote sensing data. Study Geogr. Environ. Yunnan 2009, 21, 89–92+83+112. [Google Scholar]
- Yin, X.; Kou, W.; Yun, T.; Gu, X.; Lai, H.; Chen, Y.; Wu, Z.; Chen, B. Tropical Forest Disturbance Monitoring Based on Multi-Source Time Series Satellite Images and the LandTrendr Algorithm. Forests 2022, 13, 2038. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Rui, P.; Feng, R.; Yu, W.; Zhang, Y. Research progress and prospect of remote sensing extraction of burned land information. Disaster Sci. 2020, 35, 151–156. [Google Scholar]
- Liu, Y. Forest Fire Identification and Post Fire Vegetation Restoration Assessment Based on Gee. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.; Vermote, E.F.; Yan, L.; Kumar, S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W. Research on Remote Sensing Monitoring of Cultivated Land Changes in Yunnan Province Based on GEE in the Past 10 Years. Master’s Thesis, Yunnan Normal University, Kunming, China, 2020. [Google Scholar]
- Quintero, N.; Viedma, O.; Urbieta, I.R.; Moreno, J.M. Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests 2019, 10, 518. [Google Scholar] [CrossRef]
- Delcourt, C.J.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D. Evaluating the differenced normalized burn ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian Larch Forests. Remote Sens. 2021, 13, 2311. [Google Scholar] [CrossRef]
- Wang, A. NDVI Time Series Reconstruction and Spatio-Temporal Dynamic Analysis of Forest Recovery After Fire. Master’s Thesis, Harbin Normal University, Harbin, China, 2018. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Oman. Research and Application of Naive Bayes Classification Algorithm. Master’s Thesis, Dalian University of Technology, Dalian, China, 2014.
- Hamunyela, E.; Brandt, P.; Shirima, D.; Do, H.T.T.; Herold, M.; Roman-Cuesta, R.M. Space-time detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102063. [Google Scholar] [CrossRef]
- Al-Shalabi, E.; Sepehrnoori, K.; Delshad, M. Numerical simulation of the LSWI effect on hydrocarbon recovery from carbonate rocks. Pet. Sci. Technol. 2015, 33, 595–603. [Google Scholar] [CrossRef]
- Prasetyo, Y.; Sukmono, A.; Aziz, K.W.; Prakosta Santu Aji, B.J. Rice Productivity Prediction Model Design Based On Linear Regression of Spectral Value Using NDVI and LSWI Combination On Landsat-8 Imagery. IOP Conf. Ser. Earth Environ. Sci. 2018, 165, 012002. [Google Scholar] [CrossRef]
- Iban, M.C.; Aksu, O. SHAP-Driven Explainable Artificial Intelligence Framework for Wildfire Susceptibility Mapping Using MODIS Active Fire Pixels: An In-Depth Interpretation of Contributing Factors in Izmir, Türkiye. Remote Sens. 2024, 16, 2842. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.G.; Cary, G.J.; Yebra, M.; Leavesley, A.J.; Van Dijk, A.I. Comparison of contrasting optical and LiDAR fire severity remote sensing methods in a heterogeneous forested landscape in south-eastern Australia. Int. J. Remote Sens. 2022, 43, 2538–2559. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2006, 109, 66–80. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Lei, Z. Research on Random Forest and Its Application in Remote Sensing Image Processing. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2012. [Google Scholar]
- Shi, L.; Dech, J.P.; Liu, H.; Zhao, P.; Bayin, D.; Zhou, M. Post-fire vegetation recovery at forest sites is affected by permafrost degradation in the Da Xing’an Mountains of northern China. J. Veg. Sci. 2019, 30, 940–949. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Zhuang, W.; Kou, W.; Wang, L.; Wang, Q.; Deng, Z. Fire Severity Outperforms Remote Sensing Indices in Exploring Post-Fire Vegetation Recovery Dynamics in Complex Plateau Mountainous Regions. Forests 2025, 16, 263. https://doi.org/10.3390/f16020263
Liu P, Zhuang W, Kou W, Wang L, Wang Q, Deng Z. Fire Severity Outperforms Remote Sensing Indices in Exploring Post-Fire Vegetation Recovery Dynamics in Complex Plateau Mountainous Regions. Forests. 2025; 16(2):263. https://doi.org/10.3390/f16020263
Chicago/Turabian StyleLiu, Pengfei, Weiyu Zhuang, Weili Kou, Leiguang Wang, Qiuhua Wang, and Zhongjian Deng. 2025. "Fire Severity Outperforms Remote Sensing Indices in Exploring Post-Fire Vegetation Recovery Dynamics in Complex Plateau Mountainous Regions" Forests 16, no. 2: 263. https://doi.org/10.3390/f16020263
APA StyleLiu, P., Zhuang, W., Kou, W., Wang, L., Wang, Q., & Deng, Z. (2025). Fire Severity Outperforms Remote Sensing Indices in Exploring Post-Fire Vegetation Recovery Dynamics in Complex Plateau Mountainous Regions. Forests, 16(2), 263. https://doi.org/10.3390/f16020263