Identification and Evolution of Exon Junction Complex Core Genes and Expression Profiles in Moso Bamboo
Abstract
1. Introduction
2. Methods
2.1. Genome-Wide Identification of EJC Core Genes in 17 Genomes
2.2. Multiple Sequence Alignment and Phylogenetic Analysis
2.3. Analysis of Conserved Polypeptide Motifs, Functional Domains, and Gene Structure
2.4. Physicochemical Property Analysis and Protein Subcellular Localization Prediction
2.5. Structure Prediction
2.6. Chromosomal Distribution and Gene Duplication Analysis
2.7. Gene Expression Analysis
2.8. Upstream Promoter Region Cis-Acting Element
3. Results
3.1. Identification of EJC Core Gene Family Members in Plant Kingdom
3.2. Multiple Alignment and Phylogenetic Analysis of the EJC Core Protein Families
3.3. Conserved Motifs, Functional Domains, and Gene Structure Determination of the EJC Core Protein Families
3.4. Physicochemical Properties, and Protein Structure of the EJC Core Protein Families in Moso Bamboo
3.5. ChroMosomal Distribution and Synteny Analysis of PedEJCs
3.6. Expression Profiles of PedEJCs in Different Tissues
3.7. Expression Profiles of PedEJCs at Different Growth Stages of Bamboo Shoots
3.8. Expression Profiles of PedEJCs at Postharvest Storage Periods of Bamboo Shoots
3.9. PedEJCs Expression Patterns in Response to Various Abiotic Stresses and Hormone Treatment
3.10. Cis-Acting Elements Present in the Promoters of the PedEJCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tange, T.; Nott, A.; Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 2004, 16, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.J. From birth to death: The complex lives of eukaryotic mRNAs. Science 2005, 309, 1514–1518. [Google Scholar] [CrossRef] [PubMed]
- Roignant, J.Y.; Treisman, J.E. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 2010, 143, 238–250. [Google Scholar] [CrossRef]
- Ghosh, S.; Marchand, V.; Gáspár, I.; Ephrussi, A. Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat. Struct. Mol. Biol. 2012, 19, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Le Hir, H.; Saulière, J.; Wang, Z. The exon junction complex as a node of post-transcriptional networks. Nat. Rev. Mol. Cell Biol. 2016, 17, 41–54. [Google Scholar] [CrossRef]
- Singh, G.; Kucukural, A.; Cenik, C.; Leszyk, J.D.; Shaffer, S.A.; Weng, Z.; Moore, M.J. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 2012, 151, 750–764. [Google Scholar] [CrossRef] [PubMed]
- Alachkar, A.; Jiang, D.; Harrison, M.; Zhou, Y.; Chen, G.; Mao, Y. An EJC factor RBM8a regulates anxiety behaviors. Curr. Mol. Med. 2013, 13, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Kervestin, S.; Jacobson, A. NMD: A multifaceted response to premature translational termination. Nat. Rev. Mol. Cell Biol. 2012, 13, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Chazal, P.E.; Daguenet, E.; Wendling, C.; Ulryck, N.; Tomasetto, C.; Sargueil, B.; Le Hir, H. EJC core component MLN51 interacts with eIF3 and activates translation. Proc. Natl. Acad. Sci. USA 2013, 110, 5903–5908. [Google Scholar] [CrossRef]
- He, P.C.; Wei, J.; Dou, X.; Harada, B.T.; Zhang, Z.; Ge, R.; Liu, C.; Zhang, L.S.; Yu, X.; Wang, S.; et al. Exon architecture controls mRNA m(6)A suppression and gene expression. Science 2023, 379, 677–682. [Google Scholar] [CrossRef]
- Yang, X.; Triboulet, R.; Liu, Q.; Sendinc, E.; Gregory, R.I. Exon junction complex shapes the m(6)A epitranscriptome. Nat. Commun. 2022, 13, 7904. [Google Scholar] [CrossRef] [PubMed]
- Uzonyi, A.; Dierks, D.; Nir, R.; Kwon, O.S.; Toth, U.; Barbosa, I.; Burel, C.; Brandis, A.; Rossmanith, W.; Le Hir, H.; et al. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell 2023, 83, 237–251.e237. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Ma, Q.; Sun, S.; Li, N.; Wang, H.; Ying, Z.; Ke, S. Exon-intron boundary inhibits m(6)A deposition, enabling m(6)A distribution hallmark, longer mRNA half-life and flexible protein coding. Nat. Commun. 2023, 14, 4172. [Google Scholar] [CrossRef] [PubMed]
- Swidzinski, J.A.; Zaplachinski, S.T.; Chuong, S.D.; Wong, J.F.; Muench, D.G. Molecular characterization and expression analysis of a highly conserved rice mago nashil homolog. Genome 2001, 44, 394–400. [Google Scholar] [CrossRef]
- Boothby, T.C.; Wolniak, S.M. Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of Mago nashi. BMC Cell Biol. 2011, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Park, N.I.; Yeung, E.C.; Muench, D.G. Mago Nashi is involved in meristem organization, pollen formation, and seed development in Arabidopsis. Plant Sci. 2009, 176, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, H.; Khan, M.R.; Ajmal, W.; Ali, G.M. WsMAGO2, a duplicated MAGO NASHI protein with fertility attributes interacts with MPF2-like MADS-box proteins. Planta 2015, 241, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Fribourg, S.; Gatfield, D.; Izaurralde, E.; Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 2003, 10, 433–439. [Google Scholar] [CrossRef]
- Gong, P.; Zhao, M.; He, C. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS ONE 2014, 9, e84842. [Google Scholar] [CrossRef]
- Gong, P.; He, C. Uncovering Divergence of Rice Exon Junction Complex Core Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and Reproduction. Plant Physiol. 2014, 165, 1047–1061. [Google Scholar] [CrossRef]
- Gong, P.; Quan, H.; He, C. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Plant J. 2014, 80, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.P.; Li, H.L.; Guo, D.; Peng, S.Q. Identification and characterization of MAGO and Y14 genes in Hevea brasiliensis. Genet. Mol. Biol. 2016, 39, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.; Ballut, L.; Johansen, J.S.; Chamieh, H.; Nielsen, K.H.; Oliveira, C.L.; Pedersen, J.S.; Séraphin, B.; Le Hir, H.; Andersen, G.R. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 2006, 313, 1968–1972. [Google Scholar] [CrossRef]
- Chan, C.C.; Dostie, J.; Diem, M.D.; Feng, W.; Mann, M.; Rappsilber, J.; Dreyfuss, G. eIF4A3 is a novel component of the exon junction complex. RNA 2004, 10, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Bono, F.; Ebert, J.; Lorentzen, E.; Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 2006, 126, 713–725. [Google Scholar] [CrossRef]
- Koroleva, O.A.; Calder, G.; Pendle, A.F.; Kim, S.H.; Lewandowska, D.; Simpson, C.G.; Jones, I.M.; Brown, J.W.; Shaw, P.J. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: Fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 2009, 21, 1592–1606. [Google Scholar] [CrossRef]
- Cui, P.; Chen, T.; Qin, T.; Ding, F.; Wang, Z.; Chen, H.; Xiong, L. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis. Plant Cell 2016, 28, 770–785. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.K.; Sie, Y.S.; Chen, Y.F.; Huang, T.S.; Lu, C.A. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. BMC Plant Biol. 2016, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.; Parihar, V.; Malik, G.; Kalra, V.; Kapoor, S.; Kapoor, M. The DEAD-box RNA helicase eIF4A regulates plant development and interacts with the hnRNP LIF2L1 in Physcomitrella patens. Mol. Genet. Genom. 2020, 295, 373–389. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, J.; Li, X.; Wang, J.; Ma, M.; Jiang, W.; Shen, W.H.; Yu, Y.; Dong, A. The Arabidopsis histone methylation reader MRG2 interacts with eIF4A3 to regulate alternative splicing and circadian rhythms. Plant Cell 2025, 37, koaf209. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Quan, H.; He, W.; Wu, L.; Chen, Z.; Yong, B.; Liu, X.; He, C. Rice BARENTSZ genes are required to maintain floral developmental stability against temperature fluctuations. Plant J. 2024, 120, 637–657. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, L.; He, W.; Zhang, S.; He, C. Salinity Stress Induces Phase Separation of Plant BARENTSZ to Form Condensates. Rice 2025, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K.; et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 2013, 45, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Zhu, Q.; Gao, Y.; Wang, H.; Zhao, L.; Wang, Y.; Xi, F.; Wang, W.; Yang, Y.; et al. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. BMC Plant Biol. 2018, 18, 125. [Google Scholar] [CrossRef]
- Ma, P.F.; Liu, Y.L.; Guo, C.; Jin, G.; Guo, Z.H.; Mao, L.; Yang, Y.Z.; Niu, L.Z.; Wang, Y.J.; Clark, L.G.; et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 2024, 56, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Zhang, Z. KaKs_Calculator 3.0: Calculating Selective Pressure on Coding and Non-coding Sequences. Genom. Proteom. Bioinform. 2022, 20, 536–540. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.H.; Chamieh, H.; Andersen, C.B.; Fredslund, F.; Hamborg, K.; Le Hir, H.; Andersen, G.R. Mechanism of ATP turnover inhibition in the EJC. RNA 2009, 15, 67–75. [Google Scholar] [CrossRef]
- Lau, C.K.; Diem, M.D.; Dreyfuss, G.; Van Duyne, G.D. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol. 2003, 13, 933–941. [Google Scholar] [CrossRef]
- Shi, H.; Xu, R.M. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes. Dev. 2003, 17, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Pozzoli, O.; Gilardelli, C.N.; Sordino, P.; Doniselli, S.; Lamia, C.L.; Cotelli, F. Identification and expression pattern of mago nashi during zebrafish development. Gene Expr. Patterns 2004, 5, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.H.; Chen, Y.R.; Lee, C.H.; Chang, T.T. Molecular characterization and expression analysis of Acmago and AcY14 in Antrodia cinnamomea. Mycol. Res. 2009, 113, 577–582. [Google Scholar] [CrossRef]
- Degot, S.; Le Hir, H.; Alpy, F.; Kedinger, V.; Stoll, I.; Wendling, C.; Seraphin, B.; Rio, M.C.; Tomasetto, C. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J. Biol. Chem. 2004, 279, 33702–33715. [Google Scholar] [CrossRef]
- Rong, J.; Zheng, Y.; Zhang, Z.; Zhang, J.; Gu, Y.; Hua, T.; Zhao, M.; Fan, L.; Deng, Z.; Pan, Y.; et al. De novo Whole-Genome Assembly of the 10-Gigabase Fokienia Hodginsii Genome to Reveal Differential Epigenetic Events Between Callus and Xylem. Adv. Sci. 2024, 11, e2402644. [Google Scholar] [CrossRef]
- Niu, S.; Li, J.; Bo, W.; Yang, W.; Zuccolo, A.; Giacomello, S.; Chen, X.; Han, F.; Yang, J.; Song, Y.; et al. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2022, 185, 204–217.e214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, L.; Mu, L.; Wang, Y.; Zhao, M.; Wang, H.; Li, X.; Zhao, L.; Lin, C.; Zhang, H.; et al. Evolution and post-transcriptional regulation insights of m(6)A writers, erasers, and readers in plant epitranscriptome. Plant J. 2024, 120, 505–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, H.; Cai, D.; Gao, Y.; Zhang, H.; Wang, Y.; Lin, C.; Ma, L.; Gu, L. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). Plant J. 2017, 91, 684–699. [Google Scholar] [CrossRef] [PubMed]
- Gamuyao, R.; Nagai, K.; Ayano, M.; Mori, Y.; Minami, A.; Kojima, M.; Suzuki, T.; Sakakibara, H.; Higashiyama, T.; Ashikari, M.; et al. Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. Plant Cell Physiol. 2017, 58, 702–716. [Google Scholar] [CrossRef]
- Tao, G.Y.; Ramakrishnan, M.; Vinod, K.K.; Yrjälä, K.; Satheesh, V.; Cho, J.; Fu, Y.; Zhou, M. Multi-omics analysis of cellular pathways involved in different rapid growth stages of moso bamboo. Tree Physiol. 2020, 40, 1487–1508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Zhang, H.; Wang, H.; Liu, X.; Xu, X.; Zhang, Z.; Kohnen, M.V.; Hu, K.; Wang, H.; et al. Genome-Wide Profiling of Circular RNAs in the Rapidly Growing Shoots of Moso Bamboo (Phyllostachys edulis). Plant Cell Physiol. 2019, 60, 1354–1373. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, H.; Zhang, Y.; Wang, H.; Zhang, Z.; Liu, X.; Zhang, Z.; Liu, K.; Yang, D.; Zhang, H.; et al. Comprehensive profiling of epigenetic modifications in fast-growing Moso bamboo shoots. Plant Physiol. 2023, 191, 1017–1035. [Google Scholar] [CrossRef]
- Li, X.; Xie, L.; Zheng, H.; Cai, M.; Cheng, Z.; Bai, Y.; Li, J.; Gao, J. Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. Tree Physiol. 2019, 39, 2027–2044. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Hu, X.; Gao, H.; Wang, Y.; Luo, H.; Cai, S.; Li, G.; Zheng, Y.; Lin, C.; et al. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiol. 2020, 40, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Vasupalli, N.; Hou, D.; Stalin, A.; Wei, H.; Zhang, H.; Lin, X. Genome-wide identification and evolution of WNK kinases in Bambusoideae and transcriptional profiling during abiotic stress in Phyllostachys edulis. PeerJ 2022, 10, e12718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, X.; Cheng, L.; Guo, Z.; Wang, H.; Wu, W.; Shin, K.; Zhu, J.; Zheng, X.; Bian, J.; et al. Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. Planta 2020, 252, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gu, L.; Ye, S.; Zhang, H.; Cai, C.; Xiang, M.; Gao, Y.; Wang, Q.; Lin, C.; Zhu, Q. Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genom. 2017, 18, 870. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, J.; He, C. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. Plant Mol. Biol. 2018, 98, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, W.; Hu, X.; Liu, H.; Lin, Y. W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci. Rep. 2016, 6, 20881. [Google Scholar] [CrossRef]











| Name | ID | Length (aa) | MW (kDa) | PI | GRAVY | Subcellular Localization |
|---|---|---|---|---|---|---|
| PedEIF4A3a-D | Ped02Dg30880.1 | 405 | 45.8 | 6.15 | −0.157 | Nucleus |
| PedEIF4A3b-D | Ped12Dg11830.1 | 404 | 45.7 | 6.22 | −0.149 | Nucleus |
| PedY14a-D | Ped01Dg25930.2 | 201 | 22.0 | 4.69 | −0.544 | Cytoplasm |
| PedY14b-C | Ped03Cg03200.1 | 202 | 22.1 | 5.75 | −0.356 | Cytoplasm |
| PedY14b-D | Ped03Dg03160.1 | 208 | 22.8 | 5.18 | −0.479 | Cytoplasm/Nucleus |
| PedY14c-D | Ped05Dg18550.1 | 205 | 22.6 | 5.43 | −0.757 | Cytoplasm/Nucleus |
| PedY14d-C | Ped09Cg23730.1 | 207 | 22.6 | 5 | −0.787 | Cytoplasm/Nucleus |
| PedMAGO1-D | Ped02Dg09160.1 | 171 | 19.8 | 5.86 | −0.64 | Cytoplasm/Nucleus |
| PedMAGO2-C | Ped05Cg20270.1 | 163 | 18.7 | 5.84 | −0.521 | Cytoplasm/Nucleus |
| PedMAGO3-D | Ped08Dg00860.1 | 163 | 18.6 | 5.61 | −0.547 | Cytoplasm/Nucleus |
| PedBTZ1-C | Ped01Cg29980.1 | 692 | 74.7 | 5.67 | −1.052 | Nucleus |
| PedBTZ1-D | Ped01Dg22680.1 | 701 | 75.8 | 5.19 | −1.11 | Nucleus |
| PedBTZ2-C | Ped05Cg09280.1 | 710 | 78.0 | 6.04 | −1.012 | Nucleus |
| PedBTZ2-D | Ped05Dg03920.2 | 708 | 77.3 | 6.17 | −0.968 | Nucleus |
| Gene Name | Gene Name | Ka | Ks | Ka/Ks | Selection Pressure | Time (Mya) |
|---|---|---|---|---|---|---|
| PedY14b-C | PedY14b-D | 0.027 | 0.123 | 0.220 | Purifying selection | 9.46 |
| PedY14a-D | PedY14d-C | 0.127 | 0.655 | 0.193 | Purifying selection | 50.38 |
| PedY14c-D | PedY14d-C | 0.024 | 0.116 | 0.209 | Purifying selection | 8.92 |
| PedMAGO2-C | PedMAGO3-D | 0.024 | 0.067 | 0.362 | Purifying selection | 5.15 |
| PedBTZ1-C | PedBTZ1-D | 0.038 | 0.116 | 0.328 | Purifying selection | 8.92 |
| PedBTZ2-C | PedBTZ2-D | 0.042 | 0.109 | 0.387 | Purifying selection | 8.39 |
| PedBTZ1-C | PedBTZ2-D | 0.406 | 1.225 | 0.332 | Purifying selection | 94.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, J.; Zhao, M.; Liu, X.; Wang, M.; Zhong, W.; Yang, J.; Hua, T.; Xiang, S.; Zhao, L.; et al. Identification and Evolution of Exon Junction Complex Core Genes and Expression Profiles in Moso Bamboo. Forests 2025, 16, 1822. https://doi.org/10.3390/f16121822
Wang Y, Zhang J, Zhao M, Liu X, Wang M, Zhong W, Yang J, Hua T, Xiang S, Zhao L, et al. Identification and Evolution of Exon Junction Complex Core Genes and Expression Profiles in Moso Bamboo. Forests. 2025; 16(12):1822. https://doi.org/10.3390/f16121822
Chicago/Turabian StyleWang, Yuhua, Jun Zhang, Mengna Zhao, Xiaoyu Liu, Mingzhe Wang, Wenwen Zhong, Jiajie Yang, Tian Hua, Shengcai Xiang, Liangzhen Zhao, and et al. 2025. "Identification and Evolution of Exon Junction Complex Core Genes and Expression Profiles in Moso Bamboo" Forests 16, no. 12: 1822. https://doi.org/10.3390/f16121822
APA StyleWang, Y., Zhang, J., Zhao, M., Liu, X., Wang, M., Zhong, W., Yang, J., Hua, T., Xiang, S., Zhao, L., Zhang, Y., & Gu, L. (2025). Identification and Evolution of Exon Junction Complex Core Genes and Expression Profiles in Moso Bamboo. Forests, 16(12), 1822. https://doi.org/10.3390/f16121822

