Identifying Environmental Constraints on Pinus brutia Regeneration Using Remote Sensing: Toward a Screening Framework for Sustainable Forest Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Climatic Data
2.2.2. Terrain and Environmental Variables
2.3. Methods
2.3.1. Climatic and Environmental Situation Assessment
2.3.2. Similarity Mapping
3. Results
3.1. Climatic and Environmental Situation Assessment
3.2. Environmental-Analog Screening Map (Similarity Mapping)
4. Discussion
- i
- The distance metric is descriptive: it ranks how closely environments resemble the degraded reference but does not prove the same processes are operating. Treat high similarity as risk prioritization, not a failure verdict.
- ii
- The environmental signature comes from one degraded area. Thresholds are therefore conservative and intended for triage; transfer to dissimilar settings should be cautious until additional success/failure sites allow calibrated cutoffs.
- iii
- Key drivers—soils/seedbed, browsing/competition, post-harvest microsites—are not mapped, and harmonizing inputs to 100 m introduces resampling and scale mismatches. Percentile normalization yields a relative index, not probabilities.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VPD | Vapor Pressure Deficit (kPa) |
| NDVI | Normalized Difference Vegetation Index |
| EVI | Enhanced Vegetation Index |
| GEE | Google Earth Engine |
| HLI | Heat Load Index |
| LAI | Leaf Area Index |
| LST | Land Surface Temperature |
| MODIS | Moderate Resolution Imaging Spectroradiometer |
| PET | Potential Evapotranspiration (mm) |
| PR | Precipitation (mm) |
| SIF | Solar-Induced chlorophyll Fluorescence |
| SRTM | Shuttle Radar Topography Mission |
| Tmean | Mean Air Temperature (°C) |
References
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Shilong, Z.; Xiaowei, C.; Yang, Y. Reframing Adaptive Forest Management to Sustain Ecosystem Services Under Climate Change. Forests 2025, 16, 1377. [Google Scholar] [CrossRef]
- Aitken, S.N.; Bemmels, J.B. Time to get moving: Assisted gene flow of forest trees. Evol. Appl. 2016, 9, 271–290. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Frei, E.R.; Gossner, M.M.; Vitasse, Y.; Queloz, V.; Dubach, V.; Gessler, A.; Ginzler, C.; Hagedorn, F.; Meusburger, K.; Moor, M.; et al. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biol. 2022, 24, 1132–1145. [Google Scholar] [CrossRef]
- Valeriano, C.; Gazol, A.; Colangelo, M.; Camarero, J.J. Drought drives growth and mortality rates in three pine species under Mediterranean conditions. Forests 2021, 12, 1700. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Pretzsch, H.; Del Río, M.; Grote, R.; Klemmt, H.-J.; Ordóñez, C.; Bravo Oviedo, F. Tracing drought effects from the tree to the stand growth in temperate and Mediterranean forests. Eur. J. For. Res. 2022, 141, 727–751. [Google Scholar] [CrossRef]
- Melih, B.; Dirik, H.; Çalikoğlu, M. Kızılçamın (Pinus brutia Ten.) Biyolojisi ve Silvikültürü; Ankara Ogem-Vak: Ankara, Türkiye, 2006. [Google Scholar]
- Baykara, M.; Eşen, D. Post-fire natural regeneration and early growth of Turkish red pine (Pinus brutia) seedlings in western Türkiye. Forestist 2024, 20, 1–6. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Prichard, S.J.; Whitman, E.; Parisien, M.-A.; Meddens, A.J. Considering regeneration failure in the context of changing climate and disturbance regimes in western North America. Can. J. For. Res. 2022, 52, 1281–1302. [Google Scholar] [CrossRef]
- Petrie, M.D.; Hubbard, R.M.; Bradford, J.B.; Kolb, T.E.; Noel, A.; Schlaepfer, D.R.; Bowen, M.A.; Fuller, L.R.; Moser, W.K. Widespread regeneration failure in ponderosa pine forests of the southwestern United States. For. Ecol. Manag. 2023, 545, 121208. [Google Scholar] [CrossRef]
- Ganatsas, P.; Giannakaki, M.; Gouvas, A.; Tsakaldimi, M. Is the Reproduction Capacity of Pinus brutia Stands 20 Years after Wildfire Efficient to Secure Forest Restoration in the Case of a Fire Re-Occurrence? Forests 2021, 12, 991. [Google Scholar] [CrossRef]
- Labrière, N.; Davies, S.J.; Disney, M.I.; Duncanson, L.I.; Herold, M.; Lewis, S.L.; Phillips, O.L.; Quegan, S.; Saatchi, S.S.; Schepaschenko, D.G.; et al. Toward a forest biomass reference measurement system for remote sensing applications. Glob. Change Biol. 2023, 29, 827–840. [Google Scholar] [CrossRef]
- Martín-Alcón, S.; Coll, L.; de Cáceres, M. Combining aerial LiDAR and multispectral imagery to assess postfire regeneration types in a Mediterranean forest. Can. J. For. Res. 2015, 45, 856–866. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C.; Fernández-Manso, O. Assessing post-fire vegetation recovery using Landsat-8 time-series in Mediterranean pine forests. Int. J. Appl. Earth Obs. Geoinf. 2021, 99, 102342. [Google Scholar]
- Kavgacı, A.; Örtel, E.; Torres, I.; Safford, H. Early postfire vegetation recovery of Pinus brutia forests: Effects of fire severity, prefire stand age, and aspect. Turk. J. Agric. For. 2016, 40, 723–736. [Google Scholar] [CrossRef]
- Güzel, A.; Bıçaklı, K.; Bıçaklı, F.; Kaplan, G. Monitoring the regeneration process of areas destroyed by forest fires aided by Google Earth Engine. Kastamonu Univ. J. For. Fac. 2021, 21, 122–130. [Google Scholar] [CrossRef]
- Gibson, R.K.; White, L.A.; Hislop, S.; Nolan, R.H.; Dorrough, J. The post-fire stability index: A new approach to monitoring post-fire recovery by satellite imagery. Remote Sens. Environ. 2022, 280, 113151. [Google Scholar] [CrossRef]
- Söderberg, D.N.; Das, A.J.; Stephenson, N.L.; Meyer, M.D.; Brigham, C.A.; Flickinger, J. Assessing giant sequoia mortality and regeneration following high-severity wildfire. Ecosphere 2024, 15, e4789. [Google Scholar] [CrossRef]
- Murcia-García, U.G.; Sterling, A.; Rodríguez-Espinoza, J.; Carrero-Rincón, J.A.; Acosta-Salinas, M.I.; Rodríguez-León, C.H. Climate-Change Impacts on Distribution of Amazonian Woody Plant Species Key to Conservation, Restoration and Sustainable Use in the Colombian Amazon. Forests 2025, 16, 1640. [Google Scholar] [CrossRef]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from OCO-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Forkel, M.; Dorigo, W.; Lasslop, G.; Chuvieco, E.; Hantson, S.; Heil, A.; Teubner, I.; Thonicke, K.; Harrison, S.P. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 2019, 1, 051005. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km climate surfaces. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Zhang, Y. Soil moisture dominates the forest productivity decline during the 2022 China compound drought-heatwave event. Geophys. Res. Lett. 2023, 50, e2023GL104539. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Wolf, A.; Arango-Velez, A.; Choat, B.; Chmura, D.J.; Jansen, S.; Martínez-Vilalta, J. Plant water potential improves prediction of empirical drought mortality thresholds across trees. Proc. Natl. Acad. Sci. USA 2020, 117, 7542–7548. [Google Scholar]
- Ziegler, J.P.; Hoffman, C.M.; Fornwalt, P.J.; Sieg, C.H.; Battaglia, M.A.; Chambers, M.E.; Iniguez, J.M. Tree re-generation spatial patterns in ponderosa pine forests following stand-replacing fire. Forests 2017, 8, 391. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Gan, T.Y.; Zhang, G.; Zhang, S. Projected changes of precipitation extremes in North America using CMIP6 multi-climate model ensembles. J. Hydrol. 2023, 621, 129598. [Google Scholar] [CrossRef]
- Li, D.; Vose, R.S.; Wu, Z. Changes in U.S. surface temperature variability across climate regions. J. Clim. 2020, 33, 3345–3360. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Wilson, J.P.; Gallant, J.C. Terrain Analysis: Principles and Applications; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Glob. Change Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Serra-Diaz, J.M.; Franklin, J.; Ninyerola, M.; Davis, F.W.; Syphard, A.D.; Regan, H.M.; Ikegami, M. Bioclimatic velocity: The pace of species exposure to climate change. Divers. Distrib. 2013, 20, 169–180. [Google Scholar] [CrossRef]
- Quézel, P.; Médail, F. Ecology and Biogeography of Mediterranean Basin Forests; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Çolak, A.H.; Rotherham, I.D.; Çelik, D. Introduction of Pinus brutia Ten. into degraded forests of Turkey: Ecology, silviculture and management implications. Forestry 2009, 82, 555–568. [Google Scholar]
- Höhl, M.; Ahimbisibwe, V.; Stanturf, J.A.; Elsasser, P.; Kleine, M.; Bolte, A. Forest landscape restoration—What generates failure and success? Forests 2020, 11, 938. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Zou, S. Optimal Phenology Windows for Discriminating Populus euphratica and Tamarix chinensis in the Tarim River Desert Riparian Forests with PlanetScope Data. Forests 2025, 16, 1560. [Google Scholar] [CrossRef]
- Ribeiro, S.; Cerveira, A.; Soares, P.; Fonseca, T. Natural regeneration of maritime pine: A review of the influencing factors and proposals for management. Forests 2022, 13, 386. [Google Scholar] [CrossRef]
- Tíscar, P.A.; Linares, J.C. Large-scale regeneration patterns of Pinus nigra subsp. salzmannii: Poor evidence of increasing facilitation across a drought gradient. Forests 2014, 5, 1–20. [Google Scholar] [CrossRef]







| Variable | Why It Matters | Metric/Season | Resolution | Pre-Processing Notes |
|---|---|---|---|---|
| PR | Primary water input to soil; affects germination success | Sum; annual + spring (Mar–Jun) | ~4–5 km | Per-year sums; no scaling |
| PET | Represents atmospheric demand and soil drying | Sum; annual + spring | ~4–5 km | Multiplied by 0.1 to convert to mm |
| VPD | Indicates air dryness and transpiration stress | Mean; annual + spring | ~4–5 km | Multiplied by 0.01 to convert to kPa |
| Tmean | Controls PET and VPD; measures thermal stress | Mean; annual + spring | ~4–5 km | Converted to °C: (Tmax + Tmin)/2 |
| PET − PR | Net soil moisture stress controlling regeneration | Annual + spring (derived) | — | Computed after scaling PET; mm |
| Spring VPD exceedance count | Number of spring months above stress threshold | Count of months with VPD > 1.2 kPa (Mar–Jun), per year | ~4–5 km | vpd × 0.01 → kPa; monthly boolean > 1.2 kPa summed per spring |
| Variable | Why It Matters | Metric/Period | Native Res. | Pre-Processing Notes |
|---|---|---|---|---|
| Elevation | Base for terrain and microclimate patterns | Mean | 30 m | Resampled to 100 m |
| Slope | Affects runoff and soil water holding capacity | Degrees | 30 m | Resampled to 100 m |
| Aspect—Northness/Eastness | Controls radiation exposure | Unitless (cos/sin) | 30 m | Derived from aspect; resampled to 100 m |
| LST | Surface thermal stress indicator | Median (2019–2024, summer) | 30 m | Converted to °C; resampled to 100 m |
| HLI | Proxy for solar heat exposure | Unitless (static) | 30 m | Trigonometric formulation from slope & aspect |
| BIO1 | Regional climatic background | °C | 1 km | Divided by 10 |
| BIO12 | Long-term rainfall pattern | mm | 1 km | Used directly |
| BIO4 | Reflects thermal variability | Std. dev. × 100 | 1 km | Used directly |
| BIO15 | Captures rainfall variability | % | 1 km | Used directly |
| Similarity Index | Combined environmental similarity metric | Normalized Euclidean distance | 100 m | Standardized (median − IQR); scaled 0–1 |
| CLC mask (forest & semi-natural) | Ensures comparable land context | Mask (3xx classes kept) | 100 m (CLC 2018) | Mask non-forest and elev > 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, G.; Özbey, A.A. Identifying Environmental Constraints on Pinus brutia Regeneration Using Remote Sensing: Toward a Screening Framework for Sustainable Forest Management. Forests 2025, 16, 1816. https://doi.org/10.3390/f16121816
Kaplan G, Özbey AA. Identifying Environmental Constraints on Pinus brutia Regeneration Using Remote Sensing: Toward a Screening Framework for Sustainable Forest Management. Forests. 2025; 16(12):1816. https://doi.org/10.3390/f16121816
Chicago/Turabian StyleKaplan, Gordana, and Alper Ahmet Özbey. 2025. "Identifying Environmental Constraints on Pinus brutia Regeneration Using Remote Sensing: Toward a Screening Framework for Sustainable Forest Management" Forests 16, no. 12: 1816. https://doi.org/10.3390/f16121816
APA StyleKaplan, G., & Özbey, A. A. (2025). Identifying Environmental Constraints on Pinus brutia Regeneration Using Remote Sensing: Toward a Screening Framework for Sustainable Forest Management. Forests, 16(12), 1816. https://doi.org/10.3390/f16121816

