Valuing Improved Firefighting Access for Wildfire Damage Prevention in Mediterranean Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Development of the Fire Probability Map
2.2.1. Fire Influencing Factors
2.2.2. Weighting of Memberships and Defuzzification
2.2.3. Accuracy of Fire Probability Maps
2.3. Determining Accessible Forest Areas
2.4. Determining the Economic Consequences of Improving Road Standards
2.4.1. Determining the Cost of Improving Road Standards
2.4.2. Determining the Quantity and Economic Value of Forest Products Saved from Fires
2.4.3. Determining the Net Economic Value Achieved by Improving Road Standards
3. Results
3.1. Additional Accessible Forest Areas
3.2. Cost of Improving Road Standards and the Net Economic Value Achieved
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ertuğrul, M. The Situation of forest fires in the world and in Turkey. ZKU Bartin Fac. For. J. 2005, 7, 43–50. [Google Scholar]
- Karya, D.; Hasan, H.; Kadir, E.A. Impact of forest fire to economic and environment in Riau Province Indonesia. Int. Bus. Manag. 2017, 11, 474–477. [Google Scholar]
- Muşat, E.C. Impact of forest fires on the trees and wood quality—A case study for a beech stand. Fire 2019, 7, 325. [Google Scholar] [CrossRef]
- Erkan, N.; Akay, A.E.; Bilici, E.; Uçar, Z.; Güney, C.O. Estimating the economic value of timber products potentially saved from wildfires by improving forest road standards. Int. J. For. Eng. 2024, 35, 179–188. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Trans. R. Soc. B 2016, 371, 20150345. [Google Scholar] [CrossRef]
- GDF. General Directorate of Forestry 2021 Activity Report; General Directorate of Forestry: Ankara, Türkiye, 2021.
- Küçük, Ö.; Bilgili, E.; Durmaz, B.D.; Sağlam, B.; Baysal, İ. The effect factors on transition from surface fire to crown fire. Kastamonu Univ. J. For. Fac. 2009, 9, 80–85. [Google Scholar]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Carmel, Y.; Paz, S.; Jahashan, F.; Shoshany, M. Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecol. Manag. 2009, 257, 370–377. [Google Scholar] [CrossRef]
- Gao, X.; Fei, X.; Xie, H. Forest fire risk zone evaluation based on high spatial resolution RS image in Liangyungang Huaguo Mountain Scenic Spot. In Proceedings of the IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services., Fuzhou, China, 29 June–1 July 2011. [Google Scholar]
- Gazzard, R. Risk Management Control Measure: Toolkit for Practitioners and Advisors. UK Vegetation Fire Risk Management. 2012; 24p. Available online: http://news.bbc.co.uk/2/shared/bsp/hi/pdfs/10_10_12_fire_control_measures.pdf (accessed on 12 July 2025).
- Colak, E.; Sunar, F. Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. Int. J. Disaster Risk Reduct. 2020, 45, 101479. [Google Scholar] [CrossRef]
- Saglam, B.; Bilgili, E.; Dincdurmaz, B.; Kadiogulari, A.I.; Kucuk, O. Spatio-temporal analysis of forest fire risk and danger using LANDSAT imagery. Sensors 2008, 8, 3970–3987. [Google Scholar] [CrossRef]
- Erten, E.; Kurgun, V.; Musaoğlu, N. Forest fire risk zone mapping by using satellite imagery and GIS. TMMO Chamb Surv Cadastre Eng. In Proceedings of the 10th Turkish Mapping Scientific and Technical Congress, Ankara, Türkiye, 28 March–1 April 2005. [Google Scholar]
- Jaiswal, R.K.; Mukherjee, S.; Raju, D.K.; Saxena, R. Forest fire risk zone mapping from satellite imagery and GIS. Int. J. Appl. Earth Obs. Geoinf. 2002, 4, 1–10. [Google Scholar] [CrossRef]
- Lin, J.; Sergio, R. A derivation of the statistical characteristics of forest fires. Ecol. Model. 2009, 220, 898–903. [Google Scholar] [CrossRef]
- Çanakçıoğlu, H. Forest Protection; İstanbul University Publications: İstanbul, Türkiye, 1993. [Google Scholar]
- Chandio, I.A.; Matori, A.N.B.; WanYusof, K.B.; Talpur, M.A.H.; Balogun, A.L.; Lawal, D.U. GIS- based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arab. J. Geosci. 2012, 6, 3059–3066. [Google Scholar] [CrossRef]
- Kahraman, C.; Cebeci, U.; Ulukan, Z. Multi-criteria supplier selection using fuzzy AHP. Logist. Inf. Manag. 2003, 16, 382–394. [Google Scholar] [CrossRef]
- Yalçın, C.; Sabah, L. Creation of earthquake hazard analysis of Adıyaman province via GIS-based fuzzy logic and AHP methods. Ady U Eng. Sci. J. 2018, 5, 101–113. [Google Scholar]
- Tafreshi, G.M.; Nakhaei, M.; Lak, R. Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal 2019, 86, 1203–1223. [Google Scholar] [CrossRef]
- Sönmez, O.; Bizimana, H. Flood hazard risk evaluation using fuzzy logic and weightage- based combination methods in geographic information system. Scie Iran. Trans. Civ. Eng. 2020, 27, 517–528. [Google Scholar] [CrossRef]
- GDF. Fire Action Plan; General Directorate of Forestry: Ankara, Türkiye, 2008; 106p.
- Erdaş, O. Forst Roads; No: 187; Karadeniz Technical University Publications: Trabzon, Türkiye, 1997; Volume I–II. [Google Scholar]
- Akay, A.E.; Serin, H.; Sessions, J.; Bilici, E.; Pak, M. Evaluating the Effects of Improving Forest Road Standards on Economic Value of Forest Products. Croat. J. For. Eng. 2021, 42, 245–258. [Google Scholar] [CrossRef]
- Buğday, E.; Menemencioğlu, K. Assessment of Existing Forest Road Standards Conformity for Stumpage Sale in Turkey, II. In Proceedings of the National Mediterranean Forest and Environment Symposium, Isparta, Türkiye, 22–24 October 2014. [Google Scholar]
- Podolskaia, E.; Ershov, D.; Kovganko, K. GIS-analysis of ground transport accessibility of fire stations at regional scale. Abstr. Int. Cartogr. Assoc. 2019, 1, 301–306. [Google Scholar] [CrossRef]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.; Passas, N. A decision support system for managing forest fire casualties. J. Environ. Manag. 2007, 84, 412–418. [Google Scholar] [CrossRef]
- Ozkan, Y.; Sisman, A.; Yıldırım, R.E. Examining service area of fire stations in forest fire with network analysis. In Proceedings of the FIG Working Week 2017, Surveying the World of Tomorrow—From digitalization to Augmented Reality, Helsinki, Finland, 29 May–2 June 2017. [Google Scholar]
- Podolskaia, E.S.; Kovganko, K.K.; Ershov, D.V.; Shulyak, P.P.; Suchkov, A.I. Using of transport network model to estimate travelling time and distance for ground access a forest fire. For. Sci. Issues 2019, 2, 1–24. [Google Scholar] [CrossRef]
- Urfalı, T.; Eymen, A. Estimating Fire Response Times and Planning Optimal Routes Using GIS and Machine Learning Techniques. Geomatics 2025, 5, 58. [Google Scholar] [CrossRef]
- Uçar, Z.; Güney, C.O.; Akay, A.E.; Bilici, E.; Erkan, N. Mapping the Probability of Forest Fire in the Mediterranean Region of Türkiye Using the GIS-based Fuzzy-AHP Method. Hum. Ecol. Risk Assess. 2025, 31, 234–259. [Google Scholar] [CrossRef]
- GDF. Forestry Statistics 2022; Publications of General Directorate of Forestry: Ankara, Türkiye, 2023. [Google Scholar]
- Tülek, B.; Altuntaş, A. Investigation of tourism interaction with forest fire risk areas in Cirali Region. J. Bartin Fac. For. Bartın Orman Fakültesi Derg. 2021, 23, 9–17. [Google Scholar] [CrossRef]
- Eastman, J.R.; Jin, W.; Kyem, P.A.K.; Toledano, J. Raster procedures for multi-criteria/multi-objective decisions. Photogramm. Eng. Remote Sens. 1995, 61, 539–547. [Google Scholar]
- Helmy, S.E.; Eladl, G.H.; Eisa, M. Fuzzy analytical hierarchy process (FAHP) using geometric mean method to select best processing framework adequate to big data. J. Theor. Appl. Inf. Technol. 2021, 99, 207–226. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill, Inc.: New York, NY, USA, 1980; ISBN 0-07-054371-2. [Google Scholar]
- Mamdani, E.H. Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man. Mach. Stud. 1976, 8, 669–678. [Google Scholar] [CrossRef]
- Esri. ArcGIS Desktop. Available online: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-fuzzy-membership-works.htm (accessed on 11 December 2024).
- Swets, J.A. Indices of discrimination or diagnostic accuracy: Their ROCs and implied models. Psychol. Bull. 1986, 99, 100–117. [Google Scholar] [CrossRef]
- Mol, T. Fire sensitivity classification of the forest enterprises in Turkey. İstanbul Univ. Fac. For. J. Ser. A 1994, 44, 17–33. [Google Scholar]
- GDF. Rehabilitation of Burned Forest Areas and Establishment of Fire-Resistant Forests Project; General Directorate of Forestry: Ankara, Türkiye, 2014.
- Bortoletto, G.J.; Moreschi, J.C. Physical-Mechanical Properties and Chemical Composition of Pinus Taeda Mature Wood Following a Forest Fire. Bioresour. Technol. 2003, 87, 231–238. [Google Scholar] [CrossRef]
- Küçükosmanoğlu, Y. Effects of the Forest Fires on the Physical and Mechanical Properties of Calabrian Pine (Pinus brutia Ten.). Master’s Thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, Trabzon, Türkiye, 2006; p. 130. [Google Scholar]
- Evcimen, B.S. The Economical Importance and the Management Principles of Cedar Forests in Turkey; Genral Directorate of Forestry Publications: Ankara, Türkiye, 1963; Volume 355, pp. 27–65. [Google Scholar]
- Kalıpsız, A. Research on the Natural Structure and Yield Capacity of Black Pine Stands in Turkey; Genral Directorate of Forestry Publications: Ankara, Türkiye, 1963; No: 349/8. (In Turkish) [Google Scholar]
- Eraslan, İ.; Evcimen, B.S. Complementary research on the volume and yield of oak forests in Thracer. İstanbul Univ. Fac. For. J. Ser. A 1967, 17, 31–56. (In Turkish) [Google Scholar]
- Asan, Ü. Research on the Yield and Management Principles of Kazdağı Fir (Abies equi-trojani Aschers. et Sinten.) Forests; İstanbul University Publications: İstanbul, Türkiye, 1984; No: 365. (In Turkish) [Google Scholar]
- Eler, Ü. Yield Research in Juniper (Juniperus excelsa L.) Forests in Turkey; Forestry Research Institute: Ankara, Türkiye, 1988; 70p, Technical Bulletin No: 192. (In Turkish) [Google Scholar]
- Sun, O.; Eren, M.E.; Orpak, M. Determination of Single Tree and Wood Type Ratios per Unit Area in Basic Tree Species; TUBITAK/TOVAG Project No: 288; TUBITAK: Ankara, Türkiye, 1977; p. 119.
- Şahin, A.; Özdemir, E.; Aylak Özdemir, G.; Biricik, Y.; Saraçoğlu, Ö. Yield of Hungarian Oak (Quercus frainetto Ten.) Stands; Final Project Report; Marmara Forestry Research Institute: İstanbul, Türkiye, 2020; 237p. [Google Scholar]
- Plucinski, M.P. Contain and control: Wildfire suppression effectiveness at incidents and across landscapes. Curr. Rep. 2019, 5, 20–40. [Google Scholar] [CrossRef]
- Reimer, J.; Thompson, D.K.; Povak, N. Measuring initial attack suppression effectiveness through burn probability. Fire 2019, 2, 60. [Google Scholar] [CrossRef]
- Podolskaia, E.; Ershov, D.; Kovganko, K. Comparison of data sources on transport infrastructure for the regional forest fire management. In Proceedings of the Managing Forests in the 21st Century Conference at the Potsdam Institute for Climate Impact Research, Potsdam, Germany, 3–5 March 2020. [Google Scholar]
- Van, L.A.; Akça, A. Forest Mensuration; Springer: Dordrecht, The Netherlands, 2007; Volume 13. [Google Scholar]
- Stephenson, C.; Handmer, J.; Betts, R. Estimating the economic social and environmental impacts of wildfires in Australia. Environ. Hazards 2013, 12, 93–111. [Google Scholar] [CrossRef]
- Butry, D.T.; Mercer, E.D.; Prestemon, J.P.; Pye, J.M.; Holmes, T.P. What is the price of catastrophic wildfire? J. For. 2001, 99, 9–17. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Brenkert-Smith, H.; Hall, T.; Smith, A.M. Understanding social impact from wildfires: Advancing means for assessment. Int. J. Wildland Fire 2015, 24, 212–224. [Google Scholar] [CrossRef]
- Durán-Medraño, R.; Varela, E.; Garza-Gil, D.; Prada, A.; Vázquez, M.X.; Solino, M. Valuation of terrestrial and marine biodiversity losses caused by forest wildfires. J. Behav. Exp. Econ. 2017, 71, 88–95. [Google Scholar] [CrossRef]
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Chen, H.; Xie, Y.; Gu, H.; Lian, H. A cross-view intelligent person search method based on multi-feature constraints. Int. J. Digit. Earth 2024, 17, 2346259. [Google Scholar] [CrossRef]
- Xie, Y.; Zhan, N.; Zhu, J.; Xu, B.; Chen, H.; Mao, W.; Luo, X.; Hu, Y. Landslide extraction from aerial imagery considering context association characteristics. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103950. [Google Scholar] [CrossRef]




| Main Criteria | Sub-Criteria | Membership Function | Normalized Weight | Description/Influence on Fire Probability |
|---|---|---|---|---|
| Stand characteristics | Tree species | Large | 0.2835 | Coniferous species are more flammable due to higher resin and lower moisture content. |
| Canopy closure | Large | 0.0995 | Dense canopy increases surface fuel accumulation and continuity. | |
| Stand age | Small | 0.2075 | Younger stands are more vulnerable to fire due to thinner bark and smaller diameters. | |
| Topographic factors | Slope | Large | 0.0562 | Fire spreads faster on steep slopes. |
| Aspect | Near | 0.0203 | South-facing slopes are drier and more fire-prone. | |
| Climatic parameters | Fire Weather Index (FWI) | Near | 0.0326 | Combined indicator of temperature, humidity, wind, and precipitation influencing fire danger. |
| Proximity to anthropogenic structures | Distance to roads | Linear | 0.1827 | Proximity to roads increases human-related fire ignition. |
| Distance to settlements | Linear | 0.0317 | Increased human activity elevates fire probability. | |
| Distance to agricultural areas | Linear | 0.0859 | Burning agricultural residues may cause nearby forest fires. | |
| — | Consistency ratio (CR) | — | 0.0372 | Indicates acceptable consistency (CR < 0.1). |
| Fire Sensitivity Levels | |||||
|---|---|---|---|---|---|
| I | II | III | IV | V | |
| Critical response times | 20 min | 30 min | 40 min | 50 min | 50 min |
| Construction Activities | Unit | Unit Price (€) |
|---|---|---|
| Excavation and use of all types of soil ground with a bulldozer | m3 | 0.51 |
| Excavation and use of all kinds of hard soil ground with a bulldozer | m3 | 1.03 |
| Excavation and use of all kinds of soft rock with an excavator | m3 | 1.96 |
| Excavation and use of all kinds of hard rock with an excavator | m3 | 2.38 |
| Leveling on all soil ground except hard soil | km | 77.10 |
| Leveling on hard soil ground | km | 96.38 |
| Leveling on all rocky ground | km | 154.21 |
| Construction Activities | Unit | Unit Price (€) |
|---|---|---|
| Road surface irrigation with a water tank | ton | 2.83 |
| Compression with a rubber-tired roller (7–8 tons) | hour | 24.11 |
| Subbase and base material supply with unbroken and non-sieved gravel material | m3 | 1.89 |
| Material spreading with machines | m3 | 0.38 |
| Material loading and unloading with machine | m3 | 2.04 |
| Material transportation (long distance) | m3 | 30.06 |
| Tree Species | Forests Allocated to Wood Production | Forests Allocated to Other (Non-Wood) Purposes Sociocultural Functions |
|---|---|---|
| Brutian pine | 60 | 120 |
| Black pine | 120 | 150 |
| Cedar | 120 | 150 |
| Juniper | 120 | 150 |
| Taurus fir | 60 | 100 |
| Oak | 120 | 200 |
| FEDs | Tree Species * | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Çz | Çk | S | Ar | G | M | Mak | Dy | Total | |
| Akseki | 707.30 | 1671.98 | 1427.77 | 2696.75 | 4911.17 | 96.77 | 267.99 | 153.16 | 11,932.89 |
| Alanya | 4584.66 | 2169.37 | 1347.16 | 147.71 | 1508.40 | 66.30 | 43.60 | 1.03 | 9868.22 |
| Antalya | 1138.34 | 0.00 | 0.00 | 0.00 | 0.00 | 50.91 | 723.52 | 25.51 | 1938.28 |
| Elmalı | 0.05 | 0.00 | 1665.95 | 1588.36 | 0.00 | 217.99 | 0.00 | 0.00 | 3472.36 |
| Finike | 59.97 | 0.00 | 272.31 | 45.20 | 0.00 | 19.64 | 0.00 | 0.00 | 397.13 |
| Gazipaşa | 2832.69 | 375.61 | 415.97 | 9.14 | 263.57 | 463.52 | 144.96 | 4.45 | 4509.92 |
| Gündoğmuş | 40.42 | 54.61 | 124.23 | 561.82 | 151.73 | 43.33 | 0.00 | 0.00 | 976.14 |
| Kaş | 3271.67 | 256.84 | 3999.81 | 107.54 | 0.00 | 3286.21 | 0.00 | 205.67 | 11,127.75 |
| Konyaaltı | 3005.27 | 2.76 | 81.14 | 78.96 | 0.00 | 49.68 | 1116.25 | 10.34 | 4344.40 |
| Korkuteli | 1607.47 | 715.59 | 896.04 | 4442.56 | 0.00 | 1269.94 | 0.00 | 0.00 | 8931.60 |
| Kumluca | 2844.63 | 2.78 | 303.51 | 0.00 | 0.00 | 307.72 | 0.00 | 2.60 | 3461.25 |
| Manavgat | 8678.68 | 468.39 | 0.00 | 866.03 | 383.66 | 19.34 | 0.00 | 1148.36 | 11,564.46 |
| Serik | 2498.91 | 30.47 | 10.45 | 90.95 | 0.00 | 0.00 | 0.00 | 49.53 | 2680.31 |
| Taşağıl | 4272.27 | 1420.16 | 50.84 | 654.16 | 0.36 | 121.21 | 0.00 | 143.83 | 6662.82 |
| Total | 35,542.34 | 7168.55 | 10,595.18 | 11,289.20 | 7218.88 | 6012.56 | 2296.33 | 1744.49 | 81,867.53 |
| FEDs | Tree Species * | ||||||
|---|---|---|---|---|---|---|---|
| Çz | Çk | S | Ar | G | M | Total | |
| Akseki | 5101.76 | 89,840.39 | 7668.27 | −3259.92 | 41,941.70 | −588.41 | 140,703.79 |
| Alanya | 60,937.80 | −38,336.68 | −13,732.57 | −0.74 | 324.89 | −540.92 | 8651.78 |
| Antalya | 41,479.22 | 0.00 | 0.00 | 0.00 | 0.00 | 4898.10 | 46,377.32 |
| Elmalı | 1.86 | 0.00 | 32,735.32 | −215.95 | 0.00 | −25.83 | 32,495.40 |
| Finike | 790.82 | 0.00 | −825.31 | −30.25 | 0.00 | 0.00 | −64.74 |
| Gazipaşa | 70,801.53 | −3744.18 | −2011.08 | 0.00 | 4473.61 | −18,498.32 | 51,021.56 |
| Gündoğmuş | 0.16 | 5.69 | −852.68 | −19.00 | 6.00 | 38.23 | −821.60 |
| Kaş | 186,465.37 | 10,409.05 | −26,477.76 | −46.82 | 0.00 | −155.32 | 170,194.52 |
| Konyaaltı | −12,785.61 | 271.50 | 742.02 | −0.25 | 0.00 | −3039.89 | −14,812.23 |
| Korkuteli | 42,231.41 | 9672.30 | 51,234.80 | −4654.91 | 0.00 | −0.46 | 98,483.14 |
| Kumluca | 141,922.80 | 0.00 | 216.04 | 0.00 | 0.00 | 10,083.60 | 152,222.44 |
| Manavgat | 37,645.94 | 1956.70 | 0.00 | −145.74 | 0.00 | 578.86 | 40,035.76 |
| Serik | 81,999.00 | 2472.16 | −11.98 | −0.74 | 0.00 | 0.00 | 84,458.44 |
| Taşağıl | 74,512.10 | 88,181.02 | −443.13 | −0.02 | 0.00 | 0.00 | 162,249.97 |
| Total | 731,104.16 | 160,727.95 | 48,241.94 | −8374.34 | 46,746.20 | −7250.36 | 971,195.55 |
| FEDs | Tree Species * | ||||||
|---|---|---|---|---|---|---|---|
| Çz | Çk | S | Ar | G | M | Total | |
| Akseki | 153,196 | 4,489,950 | 364,154 | −236,447 | 2,274,486 | −61,861 | 6,983,479 |
| Alanya | 536,381 | −3,495,315 | −1,438,837 | −55 | 33,303 | −29,995 | −4,394,518 |
| Antalya | 1,930,972 | 0 | 0 | 0 | 0 | 285,163 | 2,216,135 |
| Elmalı | 67 | 0 | 1,573,949 | −16,046 | 0 | −2106 | 1,555,863 |
| Finike | 43,644 | 0 | −98,421 | −2251 | 0 | 0 | −57,027 |
| Gazipaşa | 2,507,014 | −637,882 | −181,669 | 0 | 246,395 | −1,666,370 | 267,488 |
| Gündoğmuş | 4 | −5098 | −72,296 | −1396 | 331 | 2233 | −76,224 |
| Kaş | 9,658,889 | 720,734 | −3,314,249 | −3531 | 0 | −12,391 | 7,049,452 |
| Konyaaltı | −1,761,200 | 21,919 | 25,180 | −19 | 0 | −196,730 | −1,910,849 |
| Korkuteli | 1,335,238 | 266,335 | 2,821,888 | −381,716 | 0 | −27 | 4,041,718 |
| Kumluca | 9,277,166 | 0 | −5432 | 0 | 0 | 588,047 | 9,859,781 |
| Manavgat | 169,352 | −117,186 | 0 | −10,875 | 0 | 33,808 | 75,099 |
| Serik | 4,236,980 | 198,675 | −1191 | −55 | 0 | 0 | 4,434,410 |
| Taşağıl | 3,147,676 | 4,543,801 | −46,980 | −2 | 0 | 0 | 7,644,496 |
| Total | 31,235,380 | 5,985,931 | −373,903 | −652,392 | 2,554,515 | −1,060,229 | 37,689,301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akay, A.E.; Erkan, N.; Bilici, E.; Ucar, Z.; Güney, C.O. Valuing Improved Firefighting Access for Wildfire Damage Prevention in Mediterranean Forests. Forests 2025, 16, 1755. https://doi.org/10.3390/f16121755
Akay AE, Erkan N, Bilici E, Ucar Z, Güney CO. Valuing Improved Firefighting Access for Wildfire Damage Prevention in Mediterranean Forests. Forests. 2025; 16(12):1755. https://doi.org/10.3390/f16121755
Chicago/Turabian StyleAkay, Abdullah Emin, Neşat Erkan, Ebru Bilici, Zennure Ucar, and Coşkun Okan Güney. 2025. "Valuing Improved Firefighting Access for Wildfire Damage Prevention in Mediterranean Forests" Forests 16, no. 12: 1755. https://doi.org/10.3390/f16121755
APA StyleAkay, A. E., Erkan, N., Bilici, E., Ucar, Z., & Güney, C. O. (2025). Valuing Improved Firefighting Access for Wildfire Damage Prevention in Mediterranean Forests. Forests, 16(12), 1755. https://doi.org/10.3390/f16121755

