Urban Greening Strategies and Ecosystem Services: The Differential Impact of Street-Level Greening Structures on Housing Prices
Abstract
1. Introduction
- (O1)
- Identify and quantify the relationships between multi level visibility and proportional composition and housing prices, clarifying the direction and magnitude of capitalization after controlling for structural, neighborhood, and locational attributes.
- (O2)
- Reveal nonlinear thresholds, scenario dependence, and spatial heterogeneity in the relationship between greening structure and prices.
- (O3)
- Translate threshold ranges and contextual conditions of street-greening structure into implementation guidelines for street segment micro upgrades.
| Study | Area | Green Metric | Model |
|---|---|---|---|
| Zhang [1] | Beijing (parcel/segment) | GVI from SVI (single number) | Hedonic OLS (global) |
| What’s new: Move from single GVI to a visibility plus hierarchy framework; use explicit canopy-understory ratios; learn thresholds and spatial nonstationarity within one model. | |||
| Wu [11] | Multi-city (CN) | Visual contact / ML features from SVI | ML + Hedonic (integrated) |
| What’s new: Define actionable structure ratios (G_TBR, G_BGR) and quantify effective bands. | |||
| Su [34] | Shanghai (street) | Daily accessed greenery (exposure) | Hedonic (linear regression) |
| What’s new: Distinguish canopy from near-ground layering and show context-gated returns. | |||
| Lin [41] | NYC (building) | Tree abundance / management proxies | Spatial hedonic (SAR/SEM) |
| What’s new: Provide visibility indices and ratio structure; identify nonlinear thresholds using local SHAP maps. | |||
| Xu [17] | Chinese city | ML greenness + urban visual intelligence | Random Forest (global) + AHP |
| What’s new: Apply Geographical-XGBoost to learn nonlinearity and spatial nonstationarity with interpretable SHAP. | |||
| Donovan [6] | Portland (US) | Street trees (counts/presence) | Hedonic (price) + TOM model |
| What’s new: Translate results into SVI visibility bands and ratio thresholds for segment-level upgrades. | |||
| Sander [23] | Twin Cities (US) | Tree canopy cover (TCC) | Hedonic (SAR error) |
| What’s new: Reveal plateaus and penalties, and show how near-ground layering modifies gains. | |||
2. Study Area and Data
2.1. Research Framework
2.2. Study Area
2.3. Data
3. Methodology
3.1. Street-Greening Structure Indicators
3.2. Housing-Price Model
3.3. Geographical-XGBoost
4. Results
4.1. Validation and Spatial Analysis of Street-Greening Indicators
4.2. Spatial Housing-Price Modeling Results
4.3. Contributions and Interaction Effects of Street-Greening Structure on Housing Prices
5. Discussion
5.1. Effects of Street-Greening Structure on Housing Prices
5.2. Comparing Street-Greening Structure Effects
5.3. Mechanisms and Planning Implications
5.4. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Dong, R. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive Street View Image Dataset in Beijing. ISPRS Int. J.-Geo-Inf. 2018, 7, 104. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Liu, R.; Li, T.; Greene, R. Migration and inequality in rental housing: Affordability stress in the Chinese cities. Appl. Geogr. 2020, 115, 102138. [Google Scholar] [CrossRef]
- Geng, B.; Bao, H.; Liang, Y. A study of the effect of a high-speed rail station on spatial variations in housing price based on the hedonic model. Habitat Int. 2015, 49, 333–339. [Google Scholar] [CrossRef]
- Su, S.; He, S.; Sun, C.; Zhang, H.; Hu, L.; Kang, M. Do landscape amenities impact private housing rental prices? A hierarchical hedonic modeling approach based on semantic and sentimental analysis of online housing advertisements across five Chinese megacities. Urban For. Urban Green. 2021, 58, 126968. [Google Scholar] [CrossRef]
- Donovan, G.H.; Landry, S.; Winter, C. Urban trees, house price, and redevelopment pressure in Tampa, Florida. Urban For. Urban Green. 2019, 38, 330–336. [Google Scholar] [CrossRef]
- Stubbings, P.; Peskett, J.; Rowe, F.; Arribas-Bel, D. A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning. Remote Sens. 2019, 11, 1395. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, F.; Gao, S.; Lin, H.; Liu, Y. A review of urban physical environment sensing using street view imagery in public health studies. Ann. Gis 2020, 26, 261–275. [Google Scholar] [CrossRef]
- Siriwardena, S.D.; Boyle, K.J.; Holmes, T.P.; Wiseman, P.E. The implicit value of tree cover in the U.S.: A meta-analysis of hedonic property value studies. Ecol. Econ. 2016, 128, 68–76. [Google Scholar] [CrossRef]
- Mell, I.C.; Henneberry, J.; Hehl-Lange, S.; Keskin, B. To green or not to green: Establishing the economic value of green infrastructure investments in The Wicker, Sheffield. Urban For. Urban Green. 2016, 18, 257–267. [Google Scholar] [CrossRef]
- Wu, C.; Du, Y.; Li, S.; Liu, P.; Ye, X. Does visual contact with green space impact housing prices? An integrated approach of machine learning and hedonic modeling based on the perception of green space. Land Use Policy 2022, 115, 106048. [Google Scholar] [CrossRef]
- Dai, J.; Lv, P.; Ma, Z.; Bi, J.; Wen, T. Environmental risk and housing price: An empirical study of Nanjing, China. J. Clean. Prod. 2020, 252, 119828. [Google Scholar] [CrossRef]
- Grum, B.; Govekar, D.K. Influence of Macroeconomic Factors on Prices of Real Estate in Various Cultural Environments: Case of Slovenia, Greece, France, Poland and Norway. Procedia Econ. Financ. 2016, 39, 597–604. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Liu, Y.; Zhu, Y.; Chen, W.; Zhao, X.; Chi, T. Measuring Impacts of Urban Environmental Elements on Housing Prices Based on Multisource Data—A Case Study of Shanghai, China. ISPRS Int. J. -Geo-Inf. 2020, 9, 106. [Google Scholar] [CrossRef]
- Kovacs, K.; West, G.; Nowak, D.J.; Haight, R.G. Tree cover and property values in the United States: A national meta-analysis. Ecol. Econ. 2022, 197, 107424. [Google Scholar] [CrossRef]
- Li, W.; Saphores, J.D.M.; Gillespie, T.W. A comparison of the economic benefits of urban green spaces estimated with NDVI and with high-resolution land cover data. Landsc. Urban Plan. 2015, 133, 105–117. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, R.; Du, H.; Chen, M.; Fu, C.; Li, Y. Evaluation of green space influence on housing prices using machine learning and urban visual intelligence. Cities 2025, 158, 105661. [Google Scholar] [CrossRef]
- Lin, J. Developing a composite indicator to prioritize tree planting and protection locations. Sci. Total Environ. 2020, 717, 137269. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.G.; Xiao, Q.; van Doorn, N.S.; de Goede, J.; Bjorkman, J.; Hollander, A.; Boynton, R.M.; Quinn, J.F.; Thorne, J.H. The structure, function and value of urban forests in California communities. Urban For. Urban Green. 2017, 28, 43–53. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Khalili, S.; Halios, C.H.; Sahani, J.; Aghamohammadi, N.; de Fatima Andrade, M.; Athanassiadou, M.; Bhui, K.; Calvillo, N.; et al. Urban heat mitigation by green and blue infrastructure: Drivers, effectiveness, and future needs. Innovation 2024, 5, 100588. [Google Scholar] [CrossRef]
- Łowicki, D.; Fornal-Pieniak, B.; Schwerk, A. Urban greenery services for noise attenuation, pollutant filtration, and temperature lowering: Supply potential, demand, and budgets in Poznań, Poland. Ecosyst. Serv. 2025, 73, 101713. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Lau, K.; Shek, Y.T.; Liu, Z.; Ng, E. Evaluation on the performance of tree view factor in a high-density subtropical city: A case study in Hong Kong. Build. Environ. 2023, 239, 110431. [Google Scholar] [CrossRef]
- Sander, H.; Polasky, S.; Haight, R.G. The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA. Ecol. Econ. 2010, 69, 1646–1656. [Google Scholar] [CrossRef]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green streets – Quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.; Sharma, K. Urban Neighborhood Green Index–A measure of green spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Xia, Y.; Yabuki, N.; Fukuda, T. Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning. Urban For. Urban Green. 2021, 59, 126995. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, Z.; Liu, X.; Li, W.; Li, X.; Xu, X.; Huang, X. Subjective or objective measures of street environment, which are more effective in explaining housing prices? Landsc. Urban Plan. 2022, 221, 104358. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, H. Spatial differentiation characteristics and influencing factors of the green view index in urban areas based on street view images: A case study of Futian District, Shenzhen, China. Urban For. Urban Green. 2024, 93, 128219. [Google Scholar] [CrossRef]
- Panduro, T.E.; Veie, K.L. Classification and valuation of urban green spaces—A hedonic house price valuation. Landsc. Urban Plan. 2013, 120, 119–128. [Google Scholar] [CrossRef]
- Czembrowski, P.; Kronenberg, J. Hedonic pricing and different urban green space types and sizes: Insights into the discussion on valuing ecosystem services. Landsc. Urban Plan. 2016, 146, 11–19. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wu, J.; Li, P.; Dong, J.; Wang, T. Decoding urban green spaces: Deep learning and google street view measure greening structures. Urban For. Urban Green. 2023, 87, 128028. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- McCord, M.; McCord, J.; Lo, D.; Brown, L.; MacIntyre, S.; Squires, G. The value of green and blue space: Walkability and house prices. Cities 2024, 154, 105377. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, H.; Fang, J.; Jiang, H.; Wang, D. Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data. Sustainability 2019, 11, 1741. [Google Scholar] [CrossRef]
- Zhu, J.; Gong, Y.; Liu, C.; Du, J.; Song, C.; Chen, J.; Pei, T. Assessing the Effects of Subjective and Objective Measures on Housing Prices with Street View Imagery: A Case Study of Suzhou. Land 2023, 12, 2095. [Google Scholar] [CrossRef]
- Julius, M.; Sanderson, A.; Le Roux, P.; Matsvai, S.; Mahlangu, Z. Effects of Environmental Quality on Urban Housing Prices: A Hedonic Multiple Linear Regression Model Approach. J. Environ. Assess. Policy Manag. 2020, 22, 2250003. [Google Scholar] [CrossRef]
- Willberg, E.; Fink, C.; Klein, R.; Heinonen, R.; Toivonen, T. ‘Green or short: Choose one’-A comparison of walking accessibility and greenery in 43 European cities. Comput. Environ. Urban Syst. 2024, 113, 102168. [Google Scholar] [CrossRef]
- Xie, Y.; Nhu, A.N.; Song, X.P.; Jia, X.; Skakun, S.; Li, H.; Wang, Z. Accounting for spatial variability with geo-aware random forest: A case study for US major crop mapping. Remote Sens. Environ. 2025, 319, 114585. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, L.; Li, X.; Ke, Y.; Huang, Y.; Chen, B.; Yu, H.; Li, H.; Feng, H. Estimation of the soil arsenic concentration using a geographically weighted XGBoost model based on hyperspectral data. Sci. Total Environ. 2023, 858, 159798. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, Y.; Liu, X.; Yin, C.; Jones, C.A. Examining the nonlinear and spatial heterogeneity of housing prices in urban Beijing: An application of GeoShapley. Habitat Int. 2025, 162, 103439. [Google Scholar] [CrossRef]
- Lin, J.; Huang, B.; Wang, Q.; Chen, M.; Lee, H.F.; Kwan, M.P. Impacts of street tree abundance, greenery, structure and management on residential house prices in New York City. Urban For. Urban Green. 2024, 94, 128288. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, N.; Zhao, X.; Gao, X.; Zhuang, S.; Li, M. Evaluating Urban Vitality of Street Blocks Based on Multi-Source Geographic Big Data: A Case Study of Shenzhen. Int. J. Environ. Res. Public Health 2023, 20, 3821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, H.; Long, Y. CMAB: A Multi-Attribute Building Dataset of China. Sci. Data 2025, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.F.; Silva, C.; Seisenberger, S.; Büttner, B.; McCormick, B.; Papa, E.; Cao, M. Classifying 15-min Cities: A review of worldwide practices. Transp. Res. Part A Policy Pract. 2024, 189, 104234. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Li, B.; Xing, H.; Cao, D.; Yang, G.; Zhang, H. Exploring the Effects of Roadside Vegetation on the Urban Thermal Environment Using Street View Images. Int. J. Environ. Res. Public Health 2022, 19, 1272. [Google Scholar] [CrossRef] [PubMed]
- LeSage, J.P.; Pace, R.K. The Biggest Myth in Spatial Econometrics. Econometrics 2014, 2, 217–249. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. SPectrochimica Acta Part Mol. Biomol. Spectrosc. 2022, 268, 120652. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Lin, Q.; Li, H.; Chen, J.; Ni, H.; Li, P.; Hu, Y.; Wang, H. Unraveling Spatial Nonstationary and Nonlinear Dynamics in Life Satisfaction: Integrating Geospatial Analysis of Community Built Environment and Resident Perception via MGWR, GBDT, and XGBoost. ISPRS Int. J. -Geo-Inf. 2025, 14, 131. [Google Scholar] [CrossRef]
- Grekousis, G. Geographical-XGBoost: A new ensemble model for spatially local regression based on gradient-boosted trees. J. Geogr. Syst. 2025, 27, 169–195. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Cheng, M.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, F.; Hu, Y.; Zhang, L.; Guo, Y. Shaping greener mobility: Impact of urban greening structure on time-dependent bike-sharing usage. Transp. Res. Part D Transp. Environ. 2025, 141, 104657. [Google Scholar] [CrossRef]
- Carlo, O.S.; Fellini, S.; Palusci, O.; Marro, M.; Salizzoni, P.; Buccolieri, R. Influence of obstacles on urban canyon ventilation and air pollutant concentration: An experimental assessment. Build. Environ. 2024, 250, 111143. [Google Scholar] [CrossRef]
- Alivio, M.B.; Radinja, M.; Šraj, M.; Bezak, N. An evaluation of the stormwater runoff reduction of two distinct tree species to support urban greening as nature-based solutions. Urban For. Urban Green. 2025, 107, 128792. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T. Trees in the city: Valuing street trees in Portland, Oregon. Landsc. Urban Plan. 2010, 94, 77–83. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Zhang, X. Higher greenery visibility is not necessarily better: A quantitative approach to evaluating window view quality in residential buildings. Build. Environ. 2025, 285, 113563. [Google Scholar] [CrossRef]
- Kilani, O.; Gouda, M.; Weiß, J.; El-Basyouny, K. Safety Assessment of Urban Intersection Sight Distance Using Mobile LiDAR Data. Sustainability 2021, 13, 9259. [Google Scholar] [CrossRef]
- Liu, J.; Slik, F. Are street trees friendly to biodiversity? Landsc. Urban Plan. 2022, 218, 104304. [Google Scholar] [CrossRef]
- Rodriguez, A.; Wood, S.; Carmeliet, J.; Kubilay, A.; Derome, D. Local impact of trees on thermal comfort of pedestrians in streets. Urban Clim. 2025, 61, 102417. [Google Scholar] [CrossRef]
- Chen, Y.; Jones, C.A.; Dunse, N.A.; Li, E.; Liu, Y. Housing Prices and the Characteristics of Nearby Green Space: Does Landscape Pattern Index Matter? Evidence from Metropolitan Area. Land 2023, 12, 496. [Google Scholar] [CrossRef]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and Correlation among Local Regression Coefficients in Geographically Weighted Regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
- Apley, D.W.; Zhu, J. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 1059–1086. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing urban greenery by harvesting street view data: A review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 2016, 139, 75–86. [Google Scholar] [CrossRef]













| Variable | Definition (Coding) | Unit | Mean | Std | Data Source |
|---|---|---|---|---|---|
| Dependent variable | |||||
| log_price | Natural log of unit price (RMB/m2) | – | 10.304 | 0.523 | Anjuke (web-scraped) |
| Structural attributes | |||||
| s_proptype | Property type (1 = apartment; 0 = otherwise) | dummy | 0.050 | 0.220 | Anjuke (web-scraped) |
| s_age | Building age | year | 22.600 | 11.200 | Anjuke (web-scraped) |
| s_yearbuilt | Year built (calendar year) | year | 2001.000 | 11.200 | Anjuke (web-scraped) |
| s_far | Floor area ratio | – | 1.740 | 0.730 | Anjuke (web-scraped) |
| s_greenrate | Green coverage ratio of community | – | 1.740 | 0.730 | Anjuke (web-scraped) |
| s_bldgtype | Building type (1 = multi-storey; 0 = otherwise) | dummy | 0.340 | 0.480 | Anjuke (web-scraped) |
| s_mgmtfee | Property management fee | RMB/m2/month | 1.140 | 1.180 | Anjuke (web-scraped) |
| Locational attributes | |||||
| t_CBD | Distance to CBD (Euclidean) | m | 4322.270 | 2221.572 | QGIS (computed) |
| Neighborhood attributes (within 1000 m buffer unless noted) | |||||
| t_transport | Distance to nearest bus/metro station (Euclidean) | m | 167.894 | 90.150 | QGIS (computed) |
| n_commercial | Recreational/commercial amenities (count within 1000 m) | count | 131.701 | 125.521 | Amap POI |
| n_school | Schools (count within 1000 m) | count | 2.333 | 2.547 | Amap POI |
| n_hospital | Hospitals (count within 1000 m) | count | 3.453 | 3.638 | Amap POI |
| Street-greening indicators from SVI semantic segmentation | |||||
| Backgrounds | Background view index (non-vegetation), range [0,1] | ratio | 0.910 | 0.005 | SVI segmentation |
| G_TVI | Tree view index, range [0,1] | ratio | 0.059 | 0.033 | SVI segmentation |
| G_BVI | Bush view index, range [0,1] | ratio | 0.002 | 0.003 | SVI segmentation |
| G_GVI | Grass view index, range [0,1] | ratio | 0.004 | 0.004 | SVI segmentation |
| G_TBG | Integrated greening index (Tree+Bush+Grass), range [0,1] | ratio | 0.066 | 0.035 | SVI segmentation |
| G_TBR | Tree-to-Bush ratio (Tree/Bush), unitless | ratio | 25.356 | 33.370 | SVI segmentation |
| G_BGR | Bush-to-Grass ratio (Bush/Grass), unitless | ratio | 0.513 | 1.040 | SVI segmentation |
| POI Major Type | Included Subcategories (Selected) | Count (Selected) | Coverage Within Major Type (%) |
|---|---|---|---|
| Hospital | Clinics; General hospitals; Specialist hospitals | 5699 | 39.66% |
| School | Secondary schools; Vocational colleges; Primary schools; Higher education institutions | 6094 | 45.00% |
| Commercial | Lifestyle services; Catering services; Shopping services | 96,066 | 88.56% |
| Transportation | Bus stops; Docks; Subway stations | 52,919 | 6.01% |
| OLS Diagnosis | Structural | Neighborhood | Location | Green Structure |
|---|---|---|---|---|
| Adjusted R2 (Pseudo R2) | 0.244 | 0.356 | 0.497 | 0.254 |
| Moran’s I on Residual (z-value) | 96.375 *** | 85.492 *** | 87.747 *** | 93.599 *** |
| Robust LM (lag) | 588.935 *** | 361.010 *** | 13.654 *** | 291.752 *** |
| Robust LM (error) | 15.325 *** | 373.068 *** | 6.334 *** | 218.264 *** |
| Note: p values are shown in parentheses; *** . | ||||
| Model | Adjusted R2 (Pseudo R2) | Moran’s I on Residual (p-Value) | Robust LM (Lag) | Robust LM (Error) |
|---|---|---|---|---|
| Model 0: Baseline OLS | 0.551 | 0 *** | 251.649 *** | 106.400 *** |
| Model 1: Green Structure Visibility OLS | 0.566 | 0 *** | 318.300 *** | 123.976 *** |
| Model 2: Green Structure Hierarchy OLS | 0.572 | 0 *** | 341.987 *** | 122.081 *** |
| Model | R2 | Adj. R2 | MAE | RMSE | MAPE (%) |
|---|---|---|---|---|---|
| Global G-XGBoost | 0.634 | 0.625 | 0.254 | 0.325 | 2.46 |
| Local G-XGBoost | 0.780 | 0.774 | 0.186 | 0.252 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Zhou, S.; Zhang, L.; Yuan, Y.; Wu, L.; Tang, F.; Wu, J.; Meng, Y.; Zhang, Y. Urban Greening Strategies and Ecosystem Services: The Differential Impact of Street-Level Greening Structures on Housing Prices. Forests 2025, 16, 1713. https://doi.org/10.3390/f16111713
Ji Q, Zhou S, Zhang L, Yuan Y, Wu L, Tang F, Wu J, Meng Y, Zhang Y. Urban Greening Strategies and Ecosystem Services: The Differential Impact of Street-Level Greening Structures on Housing Prices. Forests. 2025; 16(11):1713. https://doi.org/10.3390/f16111713
Chicago/Turabian StyleJi, Qian, Shengbei Zhou, Longhao Zhang, Yankui Yuan, Lunsai Wu, Fengliang Tang, Jun Wu, Yufei Meng, and Yuqiao Zhang. 2025. "Urban Greening Strategies and Ecosystem Services: The Differential Impact of Street-Level Greening Structures on Housing Prices" Forests 16, no. 11: 1713. https://doi.org/10.3390/f16111713
APA StyleJi, Q., Zhou, S., Zhang, L., Yuan, Y., Wu, L., Tang, F., Wu, J., Meng, Y., & Zhang, Y. (2025). Urban Greening Strategies and Ecosystem Services: The Differential Impact of Street-Level Greening Structures on Housing Prices. Forests, 16(11), 1713. https://doi.org/10.3390/f16111713

