Stabilizing and Optimizing of Automatic Leaf Area Index Estimation in Temporal Forest
Abstract
1. Introduction
- Which binarization technique provides consistent results on automated DHP imagery for gap fraction analysis?
- How sensitive are LAI estimates to image acquisition timing under different illumination conditions?
- Which temporal filtering approaches are most effective at stabilizing short-term LAI variability under non-optimal observation conditions?
2. Data and Method
2.1. Automatic In Situ LAI Observation System
2.2. Automatic Mountain Meteorology Observation System
2.3. Canopy-Sky Binarization of Digital Hemispherical Photographs (DHP)
2.4. Temporal Filtering of Automatic In Situ LAI Observation System
2.5. Qualitative Evaluation of LAI Based on Expert Interpretation
3. Results
3.1. Comparison of Binary Classification Methods for Automated DHP Imagery
3.2. Sensitivity of LAI Estimates to Image Timing in Automated Observations
3.3. Evaluation of Temporal Filtering Methods Using Expert-Interpreted LAI Ranges
4. Discussion
4.1. Stabilization of Binary Classification
4.2. Uncertainty in LAI Estimation Caused by Limitations in Gap Fraction Analysis from an Automated LAI Network
4.3. Implications of Temporal Filtering for LAI Quality Control
4.4. Actions for Optimizing Automated LAI Network for High-Quality Data Acquisition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GCOS. The global observing system for climate: Implementation needs. World Meteorol. Organ. 2016, 200, 316. [Google Scholar]
- Law, B.E.; Cescatti, A.; Baldocchi, D.D. Leaf area distribution and radiative transfer in open-canopy forests: Implications for mass and energy exchange. Tree Physiol. 2001, 21, 777–787. [Google Scholar] [CrossRef]
- Rödig, E.; Cuntz, M.; Rammig, A.; Fischer, R.; Taubert, F.; Huth, A. The importance of forest structure for carbon fluxes of the Amazon rainforest. Environ. Res. Lett. 2018, 13, 54013. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, Z.; Yan, K.; Liu, Q. Effects of vertical forest stratification on precipitation material redistribution and ecosystem health of Pinus massoniana in the Three Gorges Reservoir area of China. Sci. Rep. 2024, 14, 27596. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, A.; Jin, H.; Tan, J.; Wang, C.; Lei, G.; Zhang, Z.; Bian, J.; Nan, X. Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models. Sci. Total Environ. 2019, 690, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Nemani, R.; Running, S.W. Sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res. Atmos. 1996, 101, 7393–7408. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl. Opt. 1995, 34, 6211–6222. [Google Scholar] [CrossRef]
- Lang, M.; Kuusk, A.; Mõttus, M.; Rautiainen, M.; Nilson, T. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric. For. Meteorol. 2010, 150, 20–29. [Google Scholar] [CrossRef]
- White, M.A.; Asner, G.P.; Nemani, R.R.; Privette, J.L.; Running, S.W. Measuring fractional cover and leaf area index in arid ecosystems: Digital camera, radiation transmittance, and laser altimetry methods. Remote Sens. Environ. 2000, 74, 45–57. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H. Estimation of LAI with the LiDAR technology: A review. Remote Sens. 2020, 12, 3457. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Allard, D.; Garrigues, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.; Morisette, J.; et al. VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sens. Environ. 2005, 76, 36–39. [Google Scholar]
- Brown, L.A.; Ogutu, B.O.; Dash, J. Tracking forest biophysical properties with automated digital repeat photography: A fisheye perspective using digital hemispherical photography from below the canopy. Agric. For. Meteorol. 2020, 287, 107944. [Google Scholar] [CrossRef]
- Weiss MBaret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Cohen, W.B.; Justice, C.O. Validating MODIS terrestrial ecology products: Linking in situ and satellite measurements. Remote Sens. Environ. 1999, 70, 1–3. [Google Scholar] [CrossRef]
- Meier, C.; Everhart, J.; Jones, K. TOS Protocol and Procedure: Measurement of Leaf Area Index, K ed.; National Ecological Observatory Network: Boulder, CO, USA, 2018. [Google Scholar]
- Qu, Y.; Han, W.; Fu, L.; Li, C.; Song, J.; Zhou, H.; Bo, Y.; Wang, J. LAINet–A wireless sensor network for coniferous forest leaf area index measurement: Design, algorithm and validation. Comput. Electron. Agric. 2014, 108, 200–208. [Google Scholar] [CrossRef]
- Yang, R.; Liu, L.; Liu, Q.; Li, X.; Yin, L.; Hao, X.; Ma, Y.; Song, Q. Validation of leaf area index measurement system based on wireless sensor network. Sci. Rep. 2022, 12, 4668. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, S.; Cheng, Y.; Wei, H.; Sun, L.; Sun, Y. LAI-NOS: An automatic network observation system for leaf area index based on hemispherical photography. Agric. For. Meteorol. 2022, 322, 108999. [Google Scholar] [CrossRef]
- Culvenor, D.S.; Newnham, G.J.; Mellor, A.; Sims, N.C.; Haywood, A. Automated in-situ laser scanner for monitoring forest leaf area index. Sensors 2014, 14, 14994–15008. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M. A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric. For. Meteorol. 2001, 110, 125–139. [Google Scholar] [CrossRef]
- Macfarlane, C.; Ryu, Y.; Ogden, G.N.; Sonnentag, O. Digital canopy photography: Exposed and in the raw. Agric. For. Meteorol. 2014, 197, 244–253. [Google Scholar] [CrossRef]
- Ryu, Y.; Verfaillie, J.; Macfarlane, C.; Kobayashi, H.; Sonnentag, O.; Vargas, R.; Ma, S.; Baldocchi, D.D. Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. Remote Sens. Environ. 2012, 126, 116–125. [Google Scholar] [CrossRef]
- Brown, L.A.; Meier, C.; Morris, H.; Pastor-Guzman, J.; Bai, G.; Lerebourg, C.; Gobron, N.; Lanconelli, C.; Clerici, M.; Dash, J. Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data. Remote Sens. Environ. 2020, 247, 111935. [Google Scholar] [CrossRef]
- Brown, L.A.; Morris, H.; Albero, E.; Lopez-Baeza, E.; Tiedemann, F.; Siebicke, L.; Knohl, A.; da Silva Gomes, C.; Bai, G.; Lerebourg, C.; et al. Potential of automated digital hemispherical photography and wireless quantum sensors for routine canopy monitoring and satellite product validation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Gao, Z.; Chen, Y.; Zhang, Z.; Duan, T.; Chen, J.; Li, A. Continuous Leaf Area Index (LAI) Observation in Forests: Validation, Application, and Improvement of LAI-NOS. Forests 2024, 15, 868. [Google Scholar] [CrossRef]
- Lee, J.; Cha, S.; Lim, J.; Chun, J.; Jang, K. Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain. Forests 2023, 14, 2047. [Google Scholar] [CrossRef]
- Bangare, S.L.; Dubal, A.; Bangare, P.S.; Patil, S. Reviewing Otsu’s method for image thresholding. Int. J. Appl. Eng. Res. 2015, 10, 21777–21783. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January 1966; Volume 1, pp. 281–298. [Google Scholar]
- Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [Google Scholar] [CrossRef]
- Niedballa, J.; Axtner, J.; Döbert, T.F.; Tilker, A.; Nguyen, A.; Wong, S.T.; Fiderer, C.; Heurich, M.; Wilting, A. Imageseg: An R package for deep learning-based image segmentation. Methods Ecol. Evol. 2022, 13, 2363–2371. [Google Scholar] [CrossRef]
- Chianucci, F.; Macek, M. HemispheR: An R Package for Fisheye Canopy Image Analysis. Agric. For. Meteorol. 2023, 336, 109470. [Google Scholar] [CrossRef]
- Origo, N.; Calders, K.; Nightingale, J.; Disney, M. Influence of levelling technique on the retrieval of canopy structural parameters from digital hemispherical photography. Agric. For. Meteorol. 2017, 237, 143–149. [Google Scholar]
- Sabater, J.M.; Rüdiger, C.; Calvet, J.-C.; Fritz, N.; Jarlan, L.; Kerr, Y. Joint assimilation of surface soil moisture and LAI observations into a land surface model. Agric. For. Meteorol. 2008, 148, 1362–1373. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Ju, W.; Zhu, G.; Wu, X.; Fan, W.; Li, D.; Zhou, Y. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 2018, 206, 174–188. [Google Scholar] [CrossRef]
- Lee, L.X.; Whitby, T.G.; Munger, J.W.; Stonebrook, S.J.; Friedl, M.A. Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest. Agric. For. Meteorol. 2023, 333, 109389. [Google Scholar] [CrossRef]
- Glatthorn, J.; Beckschäfer, P. Standardizing the protocol for hemispherical photographs: Accuracy assessment of binarization algorithms. PLoS ONE 2014, 9, e111924. [Google Scholar] [CrossRef]
- Xing, J.; Yang, P.; Qingge, L. Robust 2D Otsu’s algorithm for uneven illumination image segmentation. Comput. Intell. Neurosci. 2020, 2020, 5047976. [Google Scholar] [CrossRef]
- Yang, Z.; Zuo, S.; Zhou, Y.; He, J.; Shi, J. A Review of Document Binarization: Main Techniques, New Challenges, and Trends. Electronics 2024, 13, 1394. [Google Scholar] [CrossRef]
- Baslamisli, A.S.; Groenestege, T.T.; Das, P.; Le, H.-A.; Karaoglu, S.; Gevers, T. Joint learning of intrinsic images and semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–302. [Google Scholar]
- Chen, J.M.; Black, T.A.; Adams, R.S. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agric. For. Meteorol. 1991, 56, 129–143. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [Google Scholar] [CrossRef]
- Macfarlane, C.; Arndt, S.K.; Livesley, S.J.; Edgar, A.C.; White, D.A.; Adams, M.A.; Eamus, D. Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. For. Ecol. Manag. 2007, 242, 756–763. [Google Scholar] [CrossRef]
- Ri, S.; Wang, Q.; Xia, P.; Tsuda, H. Spatiotemporal phase-shifting method for accurate phase analysis of fringe pattern. J. Opt. 2019, 21, 95702. [Google Scholar] [CrossRef]
- Liu, L.; Cao, R.; Chen, J.; Shen, M.; Wang, S.; Zhou, J.; He, B. Detecting crop phenology from vegetation index time-series data by improved shape model fitting in each phenological stage. Remote Sens. Environ. 2022, 277, 113060. [Google Scholar] [CrossRef]
- Zhou, X.; Xin, Q.; Zhang, S.; Delzon, S.; Dai, Y. A prognostic vegetation phenology model to predict seasonal maximum and time series of global leaf area index using climate variables. Agric. For. Meteorol. 2023, 342, 109739. [Google Scholar] [CrossRef]
- Chianucci, F. An overview of in situ digital canopy photography in forestry. Can. J. For. Res. 2020, 50, 227–242. [Google Scholar] [CrossRef]
- Hwang, Y.; Ryu, Y.; Kimm, H.; Jiang, C.; Lang, M.; Macfarlane, C.; Sonnentag, O. Correction for light scattering combined with sub-pixel classification improves estimation of gap fraction from digital cover photography. Agric. For. Meteorol. 2016, 222, 32–44. [Google Scholar] [CrossRef]






| ID | Site Name | Latitude (°) | Longitude (°) | Altitude (m) | Forest Type | MIN LAI (Manual) | MAX LAI (Manual) |
|---|---|---|---|---|---|---|---|
| 1 | Gapyeong | 37.80 | 127.42 | 552.23 | DBF | 0.0 | 3.3 |
| 2 | Gwangneung | 37.75 | 127.15 | 252 | DBF | 0.1 | 5.3 |
| 3 | Inje | 38.20 | 128.12 | 1156 | DBF | 0.0 | 3.7 |
| 4 | Gangneung_G | 37.75 | 128.77 | 705 | MF | 1.9 | 3.6 |
| 5 | Gangneung_P | 37.66 | 129.00 | 274 | MF | 1.2 | 6.1 |
| 6 | Yanggu | 38.08 | 128.10 | 684 | DBF | 0.5 | 3.8 |
| 7 | Yangyang | 37.96 | 128.59 | 863.66 | DBF | 0.0 | 2.5 |
| 8 | Yeoncheon | 38.16 | 127.14 | 415 | DBF | 0.0 | 4.2 |
| 9 | Pyeongchang | 37.43 | 128.26 | 811.9 | DNF | 0.2 | 4.1 |
| 10 | Hongcheon_G | 37.64 | 127.84 | 623 | DBF | 0.5 | 4.1 |
| 11 | Hongcheon_D | 37.67 | 128.07 | 565.81 | DBF | 0.1 | 4.2 |
| 12 | Danyang | 37.09 | 128.47 | 665 | ENF | 1.4 | 3.2 |
| 13 | Boeun | 36.49 | 127.64 | 297 | DBF | 0.2 | 3.9 |
| 14 | Buyeo | 36.33 | 126.78 | 262.49 | MF | 0.9 | 3.7 |
| 15 | Asan | 36.69 | 127.02 | 352.14 | MF | 0.9 | 3.4 |
| 16 | Eumseong | 37.09 | 127.68 | 322.83 | DBF | 0.8 | 7.2 |
| 17 | Geochang | 35.85 | 127.82 | 896 | DBF | 0.0 | 4.0 |
| 18 | Gyeongsan | 35.83 | 128.95 | 505.4 | ENF | 0.7 | 4.3 |
| 19 | Gumi | 36.28 | 128.29 | 317.82 | MF | 0.4 | 4.3 |
| 20 | Gimhae | 35.21 | 128.76 | 481.91 | DBF | 0.6 | 3.7 |
| 21 | Bonghwa | 37.08 | 129.14 | 990 | DBF | 0.1 | 4.1 |
| 22 | Sancheong | 35.40 | 127.78 | 587.74 | DBF | 0.8 | 4.6 |
| 23 | Andong | 36.47 | 128.58 | 370 | MF | 2.0 | 3.0 |
| 24 | Yeongyang | 36.74 | 129.25 | 891 | DBF | 0.2 | 3.2 |
| 25 | Yecheon | 36.81 | 128.43 | 816 | DBF | 0.7 | 3.8 |
| 26 | Wanju | 36.07 | 127.28 | 242 | DBF | 0.3 | 3.8 |
| 27 | Cheongsong | 36.20 | 129.02 | 653 | MF | 1.3 | 3.4 |
| 28 | Boseong | 34.69 | 127.01 | 477 | DBF | 0.7 | 3.9 |
| 29 | Sunchang | 35.41 | 126.97 | 645 | DBF | 0.1 | 4.4 |
| 30 | Yeosu | 34.62 | 127.77 | 415 | MF | 0.8 | 3.6 |
| 31 | Wando | 34.36 | 126.68 | 10 | EBF | 2.5 | 4.6 |
| 32 | Jindo | 34.46 | 126.27 | 205 | MF | 2.4 | 3.9 |
| 33 | Jeju | 33.32 | 126.57 | 240 | MF | 1.4 | 7.5 |
| NO. | Description |
|---|---|
| TF01 | Raw data (i.e., LAI estimates from gap fraction analysis) |
| TF02 | Raw data excluding rainy days |
| TF03 | 3 days moving average after excluding rainy days |
| TF04 | 3 days moving average (≥50% data available) after excluding rainy days |
| TF05 | 5 days moving average after excluding rainy days |
| TF06 | 5 days moving average (≥50% data available) after excluding rainy days |
| TF07 | 7 days moving average after excluding rainy days |
| TF08 | 7 days moving average (≥50% data available) after excluding rainy days |
| TF09 | 3-day moving average after excluding rainy days and ±1 day |
| TF10 | 3 days moving average (≥50% data available) after excluding rainy days and ±1 day |
| TF11 | 5 days moving average after excluding rainy days and ±1 day |
| TF12 | 5 days moving average (≥50% data available) after excluding rainy days and ±1 day |
| TF13 | 7 days moving average after excluding rainy days and ±1 day |
| TF14 | 7 days moving average (≥50% data available) after excluding rainy days and ±1 day |
| TF15 | Raw data excluding mean ±1 standard deviation (5-day window) |
| TF16 | Raw data excluding mean ±1 standard deviation (7-day window) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Cho, N.; Kim, W.; Im, J.; Kim, K. Stabilizing and Optimizing of Automatic Leaf Area Index Estimation in Temporal Forest. Forests 2025, 16, 1691. https://doi.org/10.3390/f16111691
Lee J, Cho N, Kim W, Im J, Kim K. Stabilizing and Optimizing of Automatic Leaf Area Index Estimation in Temporal Forest. Forests. 2025; 16(11):1691. https://doi.org/10.3390/f16111691
Chicago/Turabian StyleLee, Junghee, Nanghyun Cho, Woohyeok Kim, Jungho Im, and Kyungmin Kim. 2025. "Stabilizing and Optimizing of Automatic Leaf Area Index Estimation in Temporal Forest" Forests 16, no. 11: 1691. https://doi.org/10.3390/f16111691
APA StyleLee, J., Cho, N., Kim, W., Im, J., & Kim, K. (2025). Stabilizing and Optimizing of Automatic Leaf Area Index Estimation in Temporal Forest. Forests, 16(11), 1691. https://doi.org/10.3390/f16111691

