Climatic and Human Drivers of Forest Vegetation Index Changes in Mainland Southeast Asia: Insights from Protected and Non-Protected Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Construction of the Assimilated EVI2 Dataset
2.4. Analysis of Vegetation Index Dynamics
2.5. Attribution Analysis of Vegetation Index Changes
3. Results
3.1. Forest Distribution and Long-Term Mean Vegetation Index
3.2. Changes and Trends of Forest Vegetation Index
3.3. Attribution of Forest EVI2 Variations
4. Discussion
5. Conclusions
- (1)
- The total forest area in MSEA was approximately 730 × 103 km2, accounting for 35.4% of the region’s land area. Among these, forests in protected areas covered 218 × 103 km2 (29.9% of the total forest area). Overall, forest conditions were favorable, with a mean EVI2 of 0.6253 and an increasing trend of about 0.014 per decade, showing similar trajectories in both protected and non-protected areas.
- (2)
- Temperature was the dominant factor driving EVI2 changes, with contributions of 55.6% in protected areas and 51.9% in non-protected areas, significantly higher than those of precipitation (11.5% and 10.6%) and human activities (32.9% and 37.5%).
- (3)
- Forest EVI2 in non-protected zones fluctuated considerably, likely influenced by activities such as logging and plantation expansion, which are common in tropical forest regions. In contrast, forests in protected areas remained relatively stable, playing an important role in mitigating the potential negative effects of human disturbance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [PubMed]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Dong, C.; Liu, Y.; Zhang, L.; Liu, Z.; Zhao, H.; Li, W.; Chao, X.; Wang, X. Spatial Patterns of Stem Tissue Carbon Content in Fagaceae Species from Typical Forests in China. Forests 2025, 16, 1478. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F. Global forest transition: Prospects for an end to deforestation. Annu. Rev. Environ. Resour. 2011, 36, 343–371. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.; Wang, Z.; Guo, L.; Peng, C.; Yao, Q.; Mo, Z.; Tan, T. Divergent response of leaf unfolding to climate warming in subtropical and temperate zones. Agric. For. Meteorol. 2023, 342, 109742. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, C.; Liu, Z.; Zhang, Y. Vegetation dynamics in Mainland Southeast Asia: Climate and anthropogenic influences. Land Use Policy 2025, 153, 107546. [Google Scholar] [CrossRef]
- Carvajal, M.A.; Alaniz, A.J.; Vergara, P.M.; Hernández-Valderrama, C.; Fierro, A.; Toledo, G.; Gamin, J. Climate-induced tree senescence leads to a transient increase in reproductive success of a large woodpecker species. Sci. Total Environ. 2022, 806, 150604. [Google Scholar] [CrossRef] [PubMed]
- Kunert, N.; Hajek, P.; Hietz, P.; Morris, H.; Rosner, S.; Tholen, D. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biol. 2022, 24, 1254–1261. [Google Scholar] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Yuste, J.C.; Flores-Rentería, D.; García-Angulo, D.; Hereş, A.-M.; Bragă, C.; Petritan, A.-M.; Petritan, I. Cascading effects associated with climate-change-induced conifer mortality in mountain temperate forests result in hot-spots of soil CO2 emissions. Soil Biol. Biochem. 2019, 133, 50–59. [Google Scholar] [CrossRef]
- Vadrevu, K.; Heinimann, A.; Gutman, G.; Justice, C. Remote sensing of land use/cover changes in South and Southeast Asian Countries. Int. J. Digit. Earth 2019, 12, 1099–1102. [Google Scholar] [CrossRef]
- Orlando, S.; Catania, P.; Ferro, M.V.; Greco, C.; Modica, G.; Mammano, M.M.; Vallone, M. Development of a GIS-Based Methodological Framework for Regional Forest Planning: A Case Study in the Bosco Della Ficuzza Nature Reserve (Sicily, Italy). Land 2025, 14, 1744. [Google Scholar] [CrossRef]
- Tian, M.; Zhou, J.; Jia, B.; Lou, S.; Wu, H. Impact of three gorges reservoir water impoundment on vegetation–climate response relationship. Remote Sens. 2020, 12, 2860. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Morales-Hidalgo, D.; Oswalt, S.N.; Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 68–77. [Google Scholar] [CrossRef]
- Wyman, M.; Barborak, J.R.; Inamdar, N.; Stein, T. Best Practices for Tourism Concessions in Protected Areas: A Review of the Field. Forests 2011, 2, 913–928. [Google Scholar] [CrossRef]
- Nagendra, H. Do parks work? Impact of protected areas on land cover clearing. AMBIO A J. Hum. Environ. 2008, 37, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Li, Z.-Y.; Chen, E.-X.; Tian, X.; Gu, C.-Y.; Li, C.-M.; Fan, W.-W. Vegetation fractional coverage change in Daxinganling Genhe forest reserve of Inner Mongolia. Chin. J. Ecol. 2016, 35, 508. [Google Scholar]
- Chen, B.; Liu, F.; Zhang, Y.; Du, J.; Wang, W.; Li, J. Assessment of forest conservation in the Cangshan nature reserve based on propensity score matching. Biodivers. Sci. 2017, 25, 999–1007. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Feng, Z. Fusion and Analysis of Land Use/Cover Datasets Based on Bayesian-Fuzzy Probability Prediction: A Case Study of the Indochina Peninsula. Remote Sens. 2022, 14, 5786. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Feng, Z.; Xiao, C. A review of land use and land cover in mainland southeast Asia over three decades (1990–2023). Land 2025, 14, 828. [Google Scholar] [CrossRef]
- Wang, H.; Yan, H.; Hu, Y.; Xi, Y.; Yang, Y. Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study. Land 2022, 11, 758. [Google Scholar] [CrossRef]
- Bai, Y.; Fang, Z.; Hughes, A.C. Ecological redlines provide a mechanism to maximize conservation gains in Mainland Southeast Asia. One Earth 2021, 4, 1491–1504. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Tam, N.H.; Loi, N.V.; Tuan, H.H. Establishing Models for Predicting Above-Ground Carbon Stock Based on Sentinel-2 Imagery for Evergreen Broadleaf Forests in South Central Coastal Ecoregion, Vietnam. Forests 2025, 16, 686. [Google Scholar] [CrossRef]
- Acosta-Muñoz, C.; Figueroa, D.; Varo-Martínez, M.Á.; Ariza-Salamanca, A.J.; González-Moreno, P. Unravelling key factors of forest condition: Multidimensional assessment in Mediterranean pine ecosystems. For. Ecol. Manag. 2024, 578, 122487. [Google Scholar] [CrossRef]
- Gatti, L.; Gloor, M.; Miller, J.; Doughty, C.; Malhi, Y.; Domingues, L.; Basso, L.; Martinewski, A.; Correia, C.; Borges, V. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 2014, 506, 76–80. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Entekhabi, D.; Gianotti, D.J.S.; Yang, K.; Luo, C.; Feldman, A.F.; Wang, W.; Jiang, R. Satellite-based assessment of meteorological and agricultural drought in Mainland Southeast Asia. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 6180–6189. [Google Scholar] [CrossRef]
- Duncanson, L.; Liang, M.; Leitold, V.; Armston, J.; Krishna Moorthy, S.; Dubayah, R.; Costedoat, S.; Enquist, B.; Fatoyinbo, L.; Goetz, S. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 2023, 14, 2908. [Google Scholar] [CrossRef]
- McNicol, I.M.; Keane, A.; Burgess, N.D.; Bowers, S.J.; Mitchard, E.T.; Ryan, C.M. Protected areas reduce deforestation and degradation and enhance woody growth across African woodlands. Commun. Earth Environ. 2023, 4, 392. [Google Scholar] [CrossRef]
- Nelson, A.; Chomitz, K.M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 2011, 6, e22722. [Google Scholar] [CrossRef] [PubMed]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed]
- Montagnini, F.; Finney, C. Payments for environmental services in Latin America as a tool for restoration and rural development. Ambio 2011, 40, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Duguma, L.A.; Atela, J.; Ayana, A.N.; Alemagi, D.; Mpanda, M.; Nyago, M.; Minang, P.A.; Nzyoka, J.M.; Foundjem-Tita, D.; Ntamag-Ndjebet, C.N. Community forestry frameworks in sub-Saharan Africa and the impact on sustainable development. Ecol. Soc. 2018, 23, 21. [Google Scholar] [CrossRef]
- Kimengsi, J.N.; Deodatus Ngu, N. Community participation and forest management dynamics in rural Cameroon. World Dev. Perspect. 2022, 27, 100442. [Google Scholar] [CrossRef]
- Kaveh, N.; Ebrahimi, A.; Asadi, E. Comparative analysis of random forest, exploratory regression, and structural equation modeling for screening key environmental variables in evaluating rangeland above-ground biomass. Ecol. Inform. 2023, 77, 102251. [Google Scholar] [CrossRef]





| Year | Before Assimilation | After Assimilation | ||
|---|---|---|---|---|
| AD | SMAPE | AD | SMAPE | |
| 2000 | −0.126 | 0.308 | 0.038 | 0.150 |
| 2001 | −0.125 | 0.283 | 0.043 | 0.115 |
| 2002 | −0.137 | 0.300 | 0.031 | 0.097 |
| 2003 | −0.158 | 0.331 | 0.010 | 0.089 |
| 2004 | −0.119 | 0.344 | 0.039 | 0.125 |
| 2005 | −0.139 | 0.327 | 0.026 | 0.113 |
| 2006 | −0.176 | 0.374 | −0.014 | 0.094 |
| 2007 | −0.173 | 0.373 | −0.014 | 0.096 |
| 2008 | −0.163 | 0.354 | −0.003 | 0.097 |
| 2009 | −0.173 | 0.368 | −0.012 | 0.098 |
| 2010 | −0.176 | 0.375 | −0.017 | 0.093 |
| 2011 | −0.185 | 0.389 | −0.027 | 0.096 |
| 2012 | −0.171 | 0.362 | −0.011 | 0.088 |
| 2013 | −0.176 | 0.363 | −0.012 | 0.087 |
| Multi-year average | −0.157 | 0.346 | 0.005 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; Wang, Q.; Wang, H.; Zhu, J. Climatic and Human Drivers of Forest Vegetation Index Changes in Mainland Southeast Asia: Insights from Protected and Non-Protected Areas. Forests 2025, 16, 1645. https://doi.org/10.3390/f16111645
Xi Y, Wang Q, Wang H, Zhu J. Climatic and Human Drivers of Forest Vegetation Index Changes in Mainland Southeast Asia: Insights from Protected and Non-Protected Areas. Forests. 2025; 16(11):1645. https://doi.org/10.3390/f16111645
Chicago/Turabian StyleXi, Yue, Qiufeng Wang, Hao Wang, and Jianxing Zhu. 2025. "Climatic and Human Drivers of Forest Vegetation Index Changes in Mainland Southeast Asia: Insights from Protected and Non-Protected Areas" Forests 16, no. 11: 1645. https://doi.org/10.3390/f16111645
APA StyleXi, Y., Wang, Q., Wang, H., & Zhu, J. (2025). Climatic and Human Drivers of Forest Vegetation Index Changes in Mainland Southeast Asia: Insights from Protected and Non-Protected Areas. Forests, 16(11), 1645. https://doi.org/10.3390/f16111645

