Stand Density Effects on Stem Diseases and Mortality in Spruce and Pine Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessment of Tree Health and Damage
2.3. Assessment of Tree Density
2.4. Statistical Analysis
3. Results
3.1. Dependence of Tree Damages on Stand Density
3.2. Distribution of Tree Damages Symptoms (SD) According to Initial Stand Density
3.3. Distribution Factors (FD), Intensity (ID), and Location of Damages (LD) in Relation to Stand Density
3.4. High-Precision Tree Mapping for Assessing the Effect of Stand Density on Tree Mortality
4. Discussion
4.1. The Densest Stand Variants
4.2. The Rarest Stand Variants
4.3. Thinning Stands with Different Intensities
4.4. Current Stand Density and Mortality
4.5. Directions for Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bembenek, M.; Karaszewski, Z.; Kondracki, K.; Lacka, A.; Mederski, P.S.; Skorupski, M.; Strzelinski, P.; Sulkowski, S.; Wegiel, A. Value of merchantable timber in Scots pine stands of different densities. Drewno 2014, 57, 134–142. [Google Scholar] [CrossRef]
- Macdonald, E.; Hubert, J. A review of the effects of silviculture on timber quality of Sitka spruce. Forestry 2002, 75, 107–138. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Rimal, S.; Djahangard, M.; Yousefpour, R. Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany. Land 2022, 11, 446. [Google Scholar] [CrossRef]
- Allikmäe, E.; Laarmann, D.; Korjus, H. Vitality Assessment of Visually Healthy Trees in Estonia. Forests 2017, 8, 223. [Google Scholar] [CrossRef]
- Mäkinen, H.; Hallaksela, A.-M.; Isomäki, A. Increment and decay in Norway spruce and Scots pine after artificial logging damage. Can. J. For. Res. 2007, 37, 2130–2141. [Google Scholar] [CrossRef]
- Piri, T.; Korhonen, K.; Sairanen, A. Occurrence of heterobasidion annosum in pure and mixed spruce stands in Southern Finland. Scand. J. For. Res. 1990, 5, 113–125. [Google Scholar] [CrossRef]
- Vasiliauskas, R. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry 2001, 74, 319–336. [Google Scholar] [CrossRef]
- Wallentin, C.; Nilsson, U. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden|Forestry: An International Journal of Forest Research|Oxford Academic. Forestry 2014, 8, 229–238. [Google Scholar] [CrossRef]
- Zubizarreta-Gerendiain, A.; Pellikka, P.; Garcia-Gonzalo, J.; Ikonen, V.-P.; Peltola, H. Factors affecting wind and snow damage of individual trees in a small management unit in Finland: Assessment based on inventoried damage and mechanistic modelling. Silva Fenn. 2012, 46, 181–196. [Google Scholar] [CrossRef]
- Chavardès, R.D.; Gennaretti, F.; Grondin, P.; Cavard, X.; Morin, H.; Bergeron, Y. Role of Mixed-Species Stands in Attenuating the Vulnerability of Boreal Forests to Climate Change and Insect Epidemics. Front. Plant Sci. 2021, 12, 658880. [Google Scholar] [CrossRef]
- Jourdan, M.; Cordonnier, T.; Dreyfus, P.; Riond, C.; de Coligny, F.; Morin, X. Managing mixed stands can mitigate severe climate change impacts on French alpine forests. Reg. Environ. Change 2021, 21, 78. [Google Scholar] [CrossRef]
- Bouwman, M.; Forrester, D.I.; den Ouden, J.; Nabuurs, G.-J.; Mohren, G.M.J. Species interactions under climate change in mixed stands of Scots pine and pedunculate oak. For. Ecol. Manag. 2021, 481, 118615. [Google Scholar] [CrossRef]
- Brazier, J.D. The Effect of Forest Practices on Quality of the Harvested Crop 1. Forestry 1977, 50, 49–66. [Google Scholar] [CrossRef]
- Zobel, B.J.; Jett, J.B. (Eds.) The Role of Genetics in Wood Production—General Concepts. In Genetics of Wood Production; Springer: Berlin/Heidelberg, Germany, 1995; pp. 1–25. [Google Scholar] [CrossRef]
- Olivar, J.; Bogino, S.; Rathgeber, C.; Bonnesoeur, V.; Bravo, F. Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann. For. Sci. 2014, 71, 395–404. [Google Scholar] [CrossRef]
- Picchio, R.; Neri, F.; Maesano, M.; Savelli, S.; Sirna, A.; Blasi, S.; Baldini, S.; Marchi, E. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. For. Ecol. Manag. 2011, 262, 237–243. [Google Scholar] [CrossRef]
- Heitzman, E.; Grell, A.G. Residual Tree Damage Along Forwarder Trails from Cut-to-Length Thinning in Maine Spruce Stands. North. J. Appl. For. 2002, 19, 161–167. [Google Scholar] [CrossRef]
- Swedjemark, G.; Stenlid, J. Population Dynamics of the Root Rot Fungus Heterobasidion annosum Following Thinning of Picea abies. Oikos 1993, 66, 247–254. [Google Scholar] [CrossRef]
- Cline, M.L.; Hoffman, B.F.; Cyr, M.; Bragg, W. Stand Damage Following Whole-Tree Partial Cutting in Northern Forests. North. J. Appl. For. 1991, 8, 72–76. [Google Scholar] [CrossRef]
- Ursić, B.; Vusić, D.; Papa, I.; Poršinsky, T.; Zečić, Ž.; Đuka, A. Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System. Forests 2022, 13, 51. [Google Scholar] [CrossRef]
- Ozolinčius, R.; Lekevičius, E.; Stakėnas, V.; Galvonaitė, A.; Samas, A.; Valiukas, D. Lithuanian forests and climate change: Possible effects on tree species composition. Eur. J. For. Res. 2014, 133, 51–60. [Google Scholar] [CrossRef]
- Meshkova, V. The Lessons of Scots Pine Forest Decline in Ukraine. Environ. Sci. Proc. 2020, 3, 28. [Google Scholar] [CrossRef]
- Niemelä, P.; Chapin, F.S.; Danell, K.; Bryant, J.P. Herbivory-Mediated Responses of Selected Boreal Forests to Climatic Change. Clim. Change 2001, 48, 427–440. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.K.; Gessler, A.; Büntgen, U.; Rigling, A. Tamm review: Drought-induced Scots pine mortality—Trends, contributing factors, and mechanisms. For. Ecol. Manag. 2024, 561, 121873. [Google Scholar] [CrossRef]
- Donis, J.; Saleniece, R.; Krisans, O.; Dubrovskis, E.; Kitenberga, M.; Jansons, A. A Financial Assessment of Windstorm Risks for Scots Pine Stands in Hemiboreal Forests. Forests 2020, 11, 566. [Google Scholar] [CrossRef]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Neuner, S.; Albrecht, A.; Cullmann, D.; Engels, F.; Griess, V.C.; Hahn, W.A.; Hanewinkel, M.; Härtl, F.; Kölling, C.; Staupendahl, K.; et al. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob. Change Biol. 2015, 21, 935–946. [Google Scholar] [CrossRef]
- Schütz, J.-P.; Götz, M.; Schmid, W.; Mandallaz, D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res. 2006, 125, 291–302. [Google Scholar] [CrossRef]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.M.; Ruthrof, K.X.; et al. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annu. Rev. 2022, 73, 673–702. [Google Scholar] [CrossRef]
- Safe’i, R.; Upe, A. Mapping of Tree Health Categories in Community Forests in Lampung Province. IOP Conf. Ser. Earth Environ. Sci. 2022, 995, 012004. [Google Scholar] [CrossRef]
- Mngadi, M.; Germishuizen, I.; Mutanga, O.; Naicker, R.; Maes, W.H.; Odebiri, O.; Schroder, M. A systematic review of the application of remote sensing technologies in mapping forest insect pests and diseases at a tree-level. Remote Sens. Appl. Soc. Environ. 2024, 36, 101341. [Google Scholar] [CrossRef]
- Vacher, C.; Castagneyrol, B.; Jousselin, E.; Schimann, H. Trees and Insects Have Microbiomes: Consequences for Forest Health and Management. Curr. For. Rep. 2021, 7, 81–96. [Google Scholar] [CrossRef]
- Ramos, F.R.; Sobucki, L.; Pawlowski, E.; Sarzi, J.S.; Rabuske, J.E.; Savian, L.G.; Kaspary, T.E.; Bellé, C. Perspective Chapter: Microorganisms and Their Relationship with Tree Health. In Current and Emerging Challenges in the Diseases of Trees; Bellé, C., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, W.; Liu, S.; Wei, H. Artificial intelligence in forest management and tree health protection. In Forest Microbiology; Elsevier: Amsterdam, The Netherlands, 2025; pp. 433–446. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Eichhorn, J.; Roskams, P.; Potocic, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletkovic, I.; Schroeck, H.-W.; et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. In UNECE ICP Forests Programme Coordinating Centre (ed.): Manual On Methods And Criteria For Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; 49p. [Google Scholar]
- Kostensalo, J.; Mehtätalo, L.; Tuominen, S.; Packalen, P.; Myllymäki, M. Recreating structurally realistic tree maps with airborne laser scanning and ground measurements. Remote Sens. Environ. 2023, 298, 113782. [Google Scholar] [CrossRef]
- SAS—Statistical Analysis Software, Users’ guide statistics version 9.4; SAS Institute Inc.: Cary, NC, USA, 2013.
- Stokes, M.E.; Davis, C.S.; Koch, G.G. Categorical Data Analysis Using SAS; SAS Institute: Cary, NC, USA, 2012; pp. 189–258. [Google Scholar]
- Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.M.; Nilsson, C. Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim. Res. 2006, 31, 75–84. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Ammer, C.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Dirnberger, G.; Drössler, L.; et al. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2015, 134, 927–947. [Google Scholar] [CrossRef]
- Linkevičius, E.; Šilinskas, B.; Beniušienė, L.; Aleinikovas, M.; Kliučius, A. The Growing Dynamic of Pure Scots Pine Stands Using Different Thinning Regimes in Lithuania. Forests 2023, 14, 1610. [Google Scholar] [CrossRef]
- Šilinskas, B.; Linkevičius, E.; Aleinikovas, M.; Beniušienė, L.; Škėma, M. The Impact of Different Thinning Regimes on the Growth Dynamics of Pure Norway Spruce Stands in Lithuania. Forests 2024, 15, 1791. [Google Scholar] [CrossRef]
- Valstybinė Miškų Tarnyba, Miškų ūkio Statistika. 2021. Available online: https://amvmt.lrv.lt/lt/atviri-duomenys-1/misku-statistikos-leidiniai/misku-ukio-statistika/2023-m_stat/ (accessed on 23 September 2025).
- Štefančik, I. Development of spruce (Picea abies [L.] Karst.) target (crop) trees in pole-stage stand with different initial spacing and tending regime. J. For. Sci. 2012, 58, 454–464. [Google Scholar] [CrossRef]
- Valinger, E.; Pettersson, N. Wind and snow damage in a thinning and fertilization experiment in Picea abies in southern Sweden. Forestry 1996, 69, 25–34. [Google Scholar] [CrossRef]
- Ruel, J.C.; Mitchell, S.J.; Dornier, M. A GIS Based Approach to Map Wind Exposure for Windthrow Hazard Rating. North. J. Appl. For. 2002, 19, 183–187. [Google Scholar] [CrossRef]
- Sohn, J.A.; Saha, S.; Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manag. 2016, 380, 261–273. [Google Scholar] [CrossRef]
- Šilinskas, B.; Konstantinavičienė, J.; Varnagirytė-Kabašinskienė, I. The economic evaluation of timber obtained from Norway spruce and Scots pine grown under different thinning regimes in Lithuania. J. For. Res. 2024, 29, 352–359. [Google Scholar] [CrossRef]
- Pretzsch, H.; Bravo-Oviedo, A.; Hilmers, T.; Ruiz-Peinado, R.; Coll, L.; Löf, M.; Ahmed, S.; Aldea, J.; Ammer, C.; Avdagić, A.; et al. With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus sylvestris L.) stand structuring across Europe. For. Ecol. Manag. 2022, 520, 120365. [Google Scholar] [CrossRef]
- del Río, M.; Pretzsch, H.; Alberdi, I.; Bielak, K.; Bravo, F.; Brunner, A.; Condés, S.; Ducey, M.J.; Fonseca, T.; von Lüpke, N.; et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur. J. For. Res. 2016, 135, 23–49. [Google Scholar] [CrossRef]
—Picea abies (L.) H. Karst. (100%);
—Pinus sylvestris L. (100%)).
—Picea abies (L.) H. Karst. (100%);
—Pinus sylvestris L. (100%)).




| Initial Stand Density Variant Number | Initial Stand Density Established in the First Thinning, Trees ha−1 | Number of Thinning | Principle Stand Age at Thinning Year | Area of Test Plots, ha | Total Number of Trees at Assessment, Tree | Mean Tree Height at Assessment, m | Mean Diameter of Trees at Assessment, cm | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| SP | NS | SP | NS | SP | NS | SP | NS | ||||
| V | 4038–5400 | No thinning | - | 0.58 | 0.64 | 1364 | 2025 | 17.5 | 19.5 | 16.1 | 18.0 |
| IV | 3000–4400 | 4 | 8, 15, 21, 34 | 0.56 | 0.63 | 576 | 608 | 17.7 | 21.2 | 19.3 | 22.8 |
| III | 2000–2400 | 3 | 8, 15, 34 | 0.57 | 0.92 | 529 | 795 | 17.7 | 21.0 | 20.2 | 23.7 |
| II | 1000–1200 | 2 | 8, 34 | 0.58 | 0.91 | 482 | 778 | 17.6 | 21.3 | 21.3 | 24.1 |
| I | 500–600 | 1 | 8 | 0.66 | 0.94 | 389 | 514 | 17.2 | 21.2 | 23.8 | 28.7 |
| Damage Symptom | Test Plots Variant | |||||
|---|---|---|---|---|---|---|
| Norway spruce | ||||||
| V | IV | III | II | I | Total | |
| Tilted and fallen | 0.11 | 0.82 | 0.38 | 1.41 | 0.97 | 0.57 |
| Deformations | 0.7 | 0.33 | 0.5 | 0.9 | 1.36 | 0.73 |
| Signs of insects | 1.3 | 2.47 | 0.88 | 0.13 | 0.19 | 1.06 |
| Broken | 1.14 | 1.15 | 1.51 | 2.57 | 1.36 | 1.47 |
| Signs of fungi | 2.16 | 2.96 | 0.38 | 2.06 | 0 | 1.69 |
| Wounds and resin flow | 4.38 | 2.8 | 2.52 | 2.44 | 0.39 | 3.06 |
| Other signs (Parastitic, Bacteria, Competition) | 12.98 | 0.99 | 0.13 | 0.51 | 3.5 | 5.97 |
| Decay/rot | 4.33 | 12.17 | 7.92 | 7.97 | 8.74 | 7.13 |
| Without symptoms | 72.9 | 76.32 | 85.79 | 82.01 | 83.5 | 78.37 |
| Scots pine | ||||||
| V | IV | III | II | I | Total | |
| Signs of insects | 0 | 0.17 | 0 | 0.19 | 0 | 0.06 |
| Deformations | 0.22 | 0.17 | 0 | 0.38 | 0.52 | 0.24 |
| Wounds and resin flow | 0.15 | 1.22 | 0.21 | 0.19 | 0 | 0.33 |
| Decay/rot | 0.66 | 0.17 | 2.07 | 0.19 | 0 | 0.63 |
| Tilted and fallen | 1.17 | 1.04 | 0.83 | 0.19 | 0 | 0.81 |
| Sign of fungi | 0 | 5.56 | 0.21 | 2.46 | 0 | 1.38 |
| Broken | 3.01 | 1.04 | 1.04 | 0.76 | 1.03 | 1.8 |
| Other signs (Parastitic, Bacteria, Competition) | 14.88 | 0.35 | 0.21 | 0.19 | 0.26 | 6.23 |
| Without symptoms | 79.91 | 90.28 | 95.44 | 95.46 | 98.2 | 88.53 |
| Variant | Healthy Trees | Dead Trees | Diff | p (t-test) | p (ANOVA) | ||||
|---|---|---|---|---|---|---|---|---|---|
| n | Mean | SD | n | Mean | SD | ||||
| Scots pine | |||||||||
| I | 186 | 6.1 | 1.2 | 2 | 6.0 | 2.8 | 0.1 | 0.9778 | 0.9376 |
| II | 200 | 8.3 | 1.3 | 6 | 8.7 | 1.2 | −0.4 | 0.4640 | 0.4748 |
| III | 199 | 8.8 | 1.7 | 15 | 7.0 | 1.9 | 1.8 | 0.0031 | 0.0001 |
| IV | 169 | 9.7 | 2.6 | 31 | 7.9 | 2.1 | 1.8 | 0.0001 | 0.0004 |
| V | 410 | 17.8 | 3.7 | 57 | 18.2 | 3.2 | −0.4 | 0.4285 | 0.4736 |
| Norway spruce | |||||||||
| I | 123 | 5.5 | 1.4 | 27 | 5.1 | 1.2 | 0.3 | 0.1839 | 0.2317 |
| II | 240 | 9.1 | 1.7 | 54 | 7.8 | 2.1 | 1.3 | <0.0001 | <0.0001 |
| III | 300 | 9.3 | 1.8 | 19 | 8.9 | 2.3 | 0.4 | 0.5042 | 0.3979 |
| IV | 162 | 9.6 | 1.6 | 22 | 8.7 | 2.1 | 0.9 | 0.0653 | 0.0186 |
| V | 632 | 25.2 | 6.2 | 129 | 26.2 | 5.6 | −1.0 | 0.0687 | 0.0860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beniušienė, L.; Mozgeris, G.; Jonikavičius, D.; Jurkšienė, G.; Šilinskas, B.; Beniušis, R. Stand Density Effects on Stem Diseases and Mortality in Spruce and Pine Forests. Forests 2025, 16, 1606. https://doi.org/10.3390/f16101606
Beniušienė L, Mozgeris G, Jonikavičius D, Jurkšienė G, Šilinskas B, Beniušis R. Stand Density Effects on Stem Diseases and Mortality in Spruce and Pine Forests. Forests. 2025; 16(10):1606. https://doi.org/10.3390/f16101606
Chicago/Turabian StyleBeniušienė, Lina, Gintautas Mozgeris, Donatas Jonikavičius, Girmantė Jurkšienė, Benas Šilinskas, and Ričardas Beniušis. 2025. "Stand Density Effects on Stem Diseases and Mortality in Spruce and Pine Forests" Forests 16, no. 10: 1606. https://doi.org/10.3390/f16101606
APA StyleBeniušienė, L., Mozgeris, G., Jonikavičius, D., Jurkšienė, G., Šilinskas, B., & Beniušis, R. (2025). Stand Density Effects on Stem Diseases and Mortality in Spruce and Pine Forests. Forests, 16(10), 1606. https://doi.org/10.3390/f16101606

