Fungal and Bacterial Communities of the Red Turpentine Beetle (Dendroctonus valens LeConte) in the Great Lakes Region, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Collection
2.2. DNA Extraction for Culture-Independent Sequencing
2.3. PCR and Culture-Independent Sequencing
2.4. Culturing of Fungal Communities
2.5. DNA Extraction from Pure Cultures
2.6. PCR and Sanger Sequencing of Pure Cultures
2.7. Community Analysis of Culture-Independent Sequences
2.8. Community Analysis of Culture-Dependent Sequences
2.9. Phylogenetic Placement of Ophiostomatales
3. Results
3.1. Alpha Diversity of Culture-Independent Samples
3.2. Community Composition of Culture-Independent Samples
3.3. Taxonomic Composition of Culture-Independent Samples
3.4. Taxonomic Composition of Culture-Dependent Samples
3.5. Ophiostomatales Species Isolated in the Culture-Dependent Samples
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RTB | Red turpentine beetle (Dendroctonus valens) |
RPPDM | Red pine pocket decline and mortality |
References
- Hofstetter, R.W.; Dinkins-Bookwalter, J.; Davis, T.S.; Klepzig, K.D. Symbiotic associations of bark beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: London, UK, 2015; pp. 209–245. [Google Scholar]
- Koski, T.-M.; Zhang, B.; Wickham, J.D.; Bushley, K.E.; Blanchette, R.A.; Kang, L.; Sun, J. Chemical interactions under the bark: Bark-, ambrosia-, and wood-boring beetles and their microbial associates. Rev. Environ. Sci. Bio/Technol. 2024, 23, 923–948. [Google Scholar] [CrossRef]
- Hulcr, J.; Barnes, I.; de Beer, Z.W.; Duong, T.A.; Gazis, R.; Johnson, A.J.; Jusino, M.A.; Kasson, M.T.; Li, Y.; Lynch, S.; et al. Bark beetle mycobiome: Collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis 2020, 81, 101–113. [Google Scholar] [CrossRef]
- Seibold, S.; Müller, J.; Baldrain, P.; Cadotte, M.W.; Stursova, M.; Biedermann, P.H.W.; Krah, F.-S.; Bässler, C. Fungi associated with beetles dispersing from dead wood—Let’s take the beetle bus! Fungal Ecol. 2019, 39, 100–108. [Google Scholar] [CrossRef]
- Jirošová, A.; Modlinger, R.; Hradecký, J.; Ramakrishnan, R.; Beránková, K.; Kandasamy, D. Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, Ips typographus to its aggregation pheromone in field traps. Front. Microbiol. 2022, 13, 980251. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, D.; Zaman, R.; Nakamura, Y.; Zhao, T.; Hartmann, H.; Andersson, M.N.; Hammerbacher, A.; Gershenzon, J. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 2023, 21, e3001887. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lou, Q.; Cheng, C.; Lu, M.; Sun, J. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 2015, 70, 1012–1023. [Google Scholar] [CrossRef]
- Geib, S.M.; Filley, T.R.; Hatcher, P.G.; Hoover, K.; Carlson, J.E.; Jimenez-Gasco, M.D.M.; Nakagawa-Izumi, A.; Slighter, R.L.; Tien, M. Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. USA 2008, 105, 12932–12937. [Google Scholar] [CrossRef]
- Skelton, J.; Jusino, M.A.; Carlson, P.S.; Smith, K.; Banik, M.T.; Lindner, D.L.; Palmer, J.M.; Hulcr, J. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Mol. Ecol. 2019, 28, 4971–4986. [Google Scholar] [CrossRef]
- Ayres, M.P.; Wilkens, R.T.; Ruel, J.J.; Lombardero, M.J.; Vallery, E. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 2000, 81, 2198–2210. [Google Scholar] [CrossRef]
- Cambronero-Heinrichs, J.; Battisi, A.; Biedermann, P.H.W.; Cavaletto, G.; Castro-Gutierrez, V.; Favaro, L.; Santoiemma, G.; Rassati, D. Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol. Ecol. 2023, 99, fiad144. [Google Scholar] [CrossRef]
- Davis, T.S.; Stewart, J.E.; Mann, A.; Bradley, C.; Hofstetter, R.W. Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. Fungal Ecol. 2019, 38, 62–70. [Google Scholar] [CrossRef]
- Peral-Aranega, E.; Saati-Santamaría, Z.; Ayuso-Calles, M.; Kostovčík, M.; Veselská, T.; Švec, K.; Rivas, R.; Kolařik, M.; García-Fraile, P. New insight into the bark beetle Ips typographus bacteriome reveals unexplored diversity potentially beneficial to the host. Environ. Microbiome 2023, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.S.; Aylward, F.O.; Adams, S.M.; Erbilgin, N.; Aukema, B.H.; Currie, C.R.; Suen, G.; Raffa, K.F. Mountain pine beetle colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 2013, 79, 3468–3475. [Google Scholar] [CrossRef] [PubMed]
- Boone, C.K.; Keefover-Ring, K.; Mapes, A.C.; Adams, A.S.; Bohlmann, J.; Raffa, K.F. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 2013, 39, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Barras, S.J. Antagonism between Dendroctonus frontalis and the fungus Ceratocystis minor. Ann. Entomol. Soc. Am. 1970, 63, 1187–1190. [Google Scholar] [CrossRef]
- Mann, A.J.; Davis, T.S. Entomopathogenic fungi to control bark beetles: A review of ecological recommendations. Pest Manag. Sci. 2021, 77, 3841–3846. [Google Scholar] [CrossRef]
- Wood, S.L. The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a Taxonomic Monograph; Great Basin Naturalist Memoirs, No. 6; Brigham Young University: Provo, UT, USA, 1982; 1359p. [Google Scholar]
- Sun, J.; Lu, M.; Gillette, N.E.; Wingfield, M.J. Red turpentine beetle: Innocuous native becomes invasive tree killer in China. Annu. Rev. Entomol. 2013, 58, 293–311. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, L.; Huang, W.; Liu, B.; Wan, F.; Raffa, K.F.; Hofstetter, R.W.; Qian, W.; Sun, J. Chromosome-level genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol. 2022, 20, 190. [Google Scholar] [CrossRef]
- Marincowitz, S.; Duong, T.A.; Taerum, S.J.; de Beer, Z.W.; Wingfield, M.J. Fungal associates of an invasive pine-infesting bark beetle, Dendroctonus valens, including seven new Ophiostomatalean fungi. Persoonia 2020, 45, 177–195. [Google Scholar] [CrossRef]
- Six, D.L.; Bracewell, R. Dendroctonus. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: London, UK, 2015; pp. 305–350. [Google Scholar]
- Taerum, S.J.; Duong, T.A.; de Beer, Z.W.; Gillette, N.; Sun, J.-H.; Owen, D.R.; Wingfield, M.J. Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE 2013, 8, e78126. [Google Scholar] [CrossRef]
- Klepzig, K.D.; Raffa, K.F.; Smalley, E.B. Association of an insect-fungal complex with red pine decline in Wisconsin. For. Sci. 1991, 37, 1119–1139. [Google Scholar] [CrossRef]
- Klepzig, K.D.; Smalley, E.B.; Raffa, K.F. Dendroctonus valens and Hylastes porculus (Coleoptera: Scolytidae): Vectors of pathogenic fungi (Ophiostomatales) associated with red pine decline disease. Great Lakes Entomol. 1995, 28, 81–87. [Google Scholar] [CrossRef]
- Minnesota DNR. Minnesota Forest Health Annual Report 2004. Minnesota Department of Natural Resources. 2004. Available online: https://files.dnr.state.mn.us/assistance/backyard/treecare/forest_health/annualreports/2004AnnualReport.pdf (accessed on 10 January 2025).
- Davis, T.S. The ecology of yeasts in the bark beetle holobiont: A century of research revisited. Microb. Ecol. 2015, 69, 723–732. [Google Scholar] [CrossRef]
- Pineda-Mendoza, R.M.; Gutiérrez-Ávila, J.L.; Salazar, K.F.; Rivera-Orduña, F.N.; Davis, T.S.; Zúñiga, G. Comparative metabarcoding and biodiversity of gut-associated fungal assemblages of Dendroctonus species (Curculionidae: Scolytinae). Front. Microbiol. 2024, 15, 1360488. [Google Scholar] [CrossRef]
- Adams, A.S.; Adams, S.A.; Currie, C.R.; Gillette, N.E.; Raffa, K.F. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ. Entomol. 2010, 39, 406–414. [Google Scholar] [CrossRef]
- Adams, A.S.; Boone, C.K.; Bohlmann, J.; Raffa, K.F. Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J. Chem. Ecol. 2011, 37, 808–817. [Google Scholar] [CrossRef]
- Hernández-García, J.A.; Gonzalez-Escobedo, R.; Briones-Roblero, C.I.; Cano-Ramírez, C.; Rivera-Orduña, F.N.; Zúñiga, G. Gut bacterial communities of Dendroctonus valens and D. mexicanus (Curculionidae: Scolytinae): A metagenomic analysis across different geographical locations in Mexico. Int. J. Mol. Sci. 2018, 19, 2578. [Google Scholar] [CrossRef]
- Six, D.L. The bark beetle holobiont: Why microbes matter. J. Chem. Ecol. 2013, 39, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Bright, D.E. The bark beetles of Canada and Alaska. In the Insects and Arachnids of Canada, Part 2, the Bark Beetles of Canada and Alaska (Coleoptera: Scolytidae); Canada Department of Agriculture: Ottawa, ON, Canada; Biosystematics Research Institute: Ottawa, ON, Canada, 1976. [Google Scholar]
- Smith, R.H. Red turpentine beetle. In Forest Pest Leaflet; Forest Service: Washington, DC, USA, 1971; Volume 55, pp. 1–9. [Google Scholar]
- Gohl, D.M.; Vangay, P.; Garbe, J.; MacLean, A.; Hauge, A.; Becker, A.; Gould, T.J.; Clayton, J.B.; Johnson, T.J.; Hunter, R.; et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 2016, 34, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Blanchette, R.A.; Held, B.W.; Jurgens, J.; Stear, A.; Dupont, C. Fungi attacking historic wood of Fort Conger and the Peary Huts in the high arctic. PLoS ONE 2021, 16, e0246049. [Google Scholar] [CrossRef] [PubMed]
- Held, B.W.; Salomon, C.E.; Blanchette, R.A. Diverse subterranean fungi of an underground iron ore mine. PLoS ONE 2020, 15, e0234208. [Google Scholar] [CrossRef]
- Otto, E.C.; Held, B.W.; Gould, T.J.; Blanchette, R.A. Fungal diversity in multiple post-harvest aged red pine stumps and their potential influence on Heterobasidion root rot in managed stands across Minnesota. Front. Fungal Biol. 2021, 2, 782181. [Google Scholar] [CrossRef]
- Harrington, T.C. Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 1981, 73, 1123–1129. [Google Scholar] [CrossRef]
- Fergus, C.L. The influence of actidione on wood-staining fungi. Mycologia 1956, 48, 468–472. [Google Scholar] [CrossRef]
- Wingfield, B.D.; Wingfield, M.J.; Duong, T.A. Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr. Genet. 2022, 68, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Worrall, J.J. Media for selective isolation of Hymenomycetes. Mycologia 1991, 83, 296–302. [Google Scholar] [CrossRef]
- Wang, H.; Qi, M.; Cutler, A.J. A simple method of preparing plant samples for PCR. Nucleic Acids Res. 1993, 21, 4153–4154. [Google Scholar] [CrossRef] [PubMed]
- Keriö, S.; Terhonen, E.; LeBoldus, J.M. Safe DNA-extraction protocol suitable for studying tree-fungus interactions. Bio-Protocol 2020, 10, e3634. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for Basidiomycetes: Application to identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, a Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Marincowitz, S.; Duong, T.A.; de Beer, Z.W.; Wingfield, M.J. Cornuvesica: A little known mycophilic genus with a unique biology and unexpected new species. Fungal Biol. 2015, 119, 615–630. [Google Scholar] [CrossRef]
- Jacobs, K.; Bergdahl, D.R.; Wingfield, M.J.; Halik, S.; Seifert, K.A.; Bright, D.E.; Wingfield, B.D. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol. Res. 2004, 108, 411–418. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- De Beer, Z.W.; Procter, M.; Wingfield, M.J.; Marincowitz, S.; Duong, T.A. Generic boundaries in the Ophiostomatales reconsidered and revised. Stud. Mycol. 2022, 101, 57–120. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Held, B.W.; Simeto, S.; Rajtar, N.N.; Cotton, A.J.; Showalter, D.N.; Bushley, K.E.; Blanchette, R.A. Fungi associated with galleries of the emerald ash borer. Fungal Biol. 2021, 125, 551–559. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing. 2024. Available online: https://www.R-project.org/ (accessed on 12 July 2024).
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, H.R.; Kõljalg, U. Full UNITE + INSD Dataset for Eukaryotes; UNITE Community: London, UK, 2024. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Crous, P.W.; Grams, W.; Stalpers, J.A.; Robert, V.; Stegehuis, G. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 2004, 50, 19–22. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity; R Package 2024; iNeXT: Metro Manila, Philippines, 2024. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wilke, C. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’, R package version 2024; Wilke C.O.: Wilkes County, GA, USA, 2024. [Google Scholar]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package; R package 2024; Vegan: London, UK, 2024. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, L. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Harrington, T.C. Ecology and evolution of mycophagous bark beetles and their fungal partners. In Ecological Evolutionary Advances in Insect-Fungal Associations; Vega, F.E., Blackwell, M., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 257–291. [Google Scholar]
- Koski, T.-M.; Zhang, B.; Mogouong, J.; Wang, H.; Chen, Z.; Li, H.; Bushley, K.E.; Sun, J. Distinct metabolites affect the phloem fungal communities in ash trees (Fraxinus spp.) native and nonnative to the highly invasive emerald ash borer (Agrilus planipennis). Plant Cell Environ. 2024, 47, 4116–4134. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef]
- Madden, A.A.; Epps, M.J.; Fukami, T.; Irwin, R.E.; Sheppard, J.; Sorger, D.M.; Dunn, R.R. The ecology of insect-yeast relationships and its relevance to human industry. Proc. R. Soc. B 2018, 285, 20172733. [Google Scholar] [CrossRef] [PubMed]
- Lou, Q.-Z.; Lu, M.; Sun, J.-H. Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods. Microb. Ecol. 2014, 68, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Soto-Robles, L.V.; Torres-Banda, V.; Rivera-Orduña, F.N.R.; Curiel-Quesada, E.; Hidalgo-Lara, M.E.; Zúñiga, G. An overview of genes from Cyberlindnera americana, a symbiont yeast isolated from the gut of the bark beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae), involved in the detoxification process using genome and transcriptome data. Front. Microbiol. 2019, 10, 2180. [Google Scholar] [CrossRef] [PubMed]
- Bizarria, R.; Pietrobon, T.D.C.; Kooij, P.W.; Rodrigues, A. When two species meet: A potential beetle-yeast facultative mutualism. Environ. Microbiol. Rep. 2025, 17, e70156. [Google Scholar] [CrossRef]
- Kirkendall, L.R.; Biedermann, P.H.W.; Jordal, B.H. Evolution and diversity of bark and ambrosia beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: London, UK, 2015; pp. 86–156. [Google Scholar]
- Mann, A.J. The Fungi and Bacteria Associated with Three Tree-Killing Beetles: From New Species to Complex Communities. Ph.D. Thesis, University of Minnesota, Saint Paul, MN, USA, April 2025. [Google Scholar]
- Taerum, S.J.; Hoareau, T.B.; Duong, T.A.; de Beer, Z.W.; Jankowiak, R.; Wingfield, M.J. Putative origins of the fungus Leptographium procerum. Fungal Biol. 2017, 121, 82–94. [Google Scholar] [CrossRef]
Site | State | Longitude | Latitude | Elevation (m) | Tree Species | Years Sampled |
---|---|---|---|---|---|---|
Anoka | Minnesota | 45.33113 | −93.12880 | 277 | White pine | 2021 2022 |
Sherburne | Minnesota | 45.44212 | −93.69684 | 298 | Red pine | 2021 2022 |
Carlton | Minnesota | 46.69949 | −92.52472 | 386 | Red pine | 2021 2022 2023 |
Jackson | Wisconsin | 44.349704 | −90.695295 | 282 | Red pine | 2023 |
Gene Region | Conditions |
---|---|
ITS | 94 °C for 5 min. 35 cycles of 94 °C for 60 s, 52 °C for 60 s, 72 °C for 60 s. 72 °C for 5 min. |
LSU | 95 °C for 3 min. 30 cycles of 94 °C for 60 s, 50 °C for 45 s, 72 °C for 2 min. 75 °C for 5 min. |
EF-1α | 95 °C for 5 min. 31 cycles of 94 °C for 30 s, 55 °C for 45 s, 72 °C for 90 s. 72 °C for 10 min. |
RPBII | 94 °C for 3 min. 40 cycles of 94 °C for 30 s, 58 °C for 30 s, 72 °C for 60 s. 72 °C for 5 min. |
βt | 94 °C for 3 min. 31 cycles of 94 °C for 30 s, 58 °C for 30 s, 72 °C for 60 s. 72 °C for 7 min. |
Tree Species | Sample Type | Species | Relative Abundance (%) |
---|---|---|---|
Red Pine | Adult | Ceratocystiopsis brevicomis | 2.70 |
Graphilbum sp. A | 16.22 | ||
Graphilbum pusillum | 5.41 | ||
Leptographium gordonii | 10.81 | ||
Leptographium terebrantis | 35.14 | ||
Ophiostoma minus | 10.81 | ||
Sporothrix lunata | 18.92 | ||
Gallery | Ceratocystiopsis yantaiensis | 3.13 | |
Graphilbum fragrans | 6.25 | ||
Graphilbum sp. A | 6.25 | ||
Graphilbum pusillum | 18.75 | ||
Leptographium procerum | 6.25 | ||
Leptographium terebrantis | 50.00 | ||
Ophiostoma gilletteae | 3.13 | ||
Ophiostoma ips | 3.13 | ||
Ophiostoma minus | 3.13 | ||
White Pine | Adult | Graphilbum sp. A | 42.86 |
Leptographium terebrantis | 14.29 | ||
Ophiostoma gilletteae | 28.57 | ||
Ophiostoma minus | 14.29 | ||
Gallery | Ceratocystiopsis brevicomis | 6.67 | |
Ceratocystiopsis minima | 26.67 | ||
Leptographium procerum | 6.67 | ||
Leptographium terebrantis | 40.00 | ||
Sporothrix lunata | 6.67 | ||
Sporothrix variecibatus | 13.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mann, A.J.; Barnum, R.M.; Held, B.W.; Bushley, K.E.; Aukema, B.H.; Blanchette, R.A. Fungal and Bacterial Communities of the Red Turpentine Beetle (Dendroctonus valens LeConte) in the Great Lakes Region, USA. Forests 2025, 16, 1604. https://doi.org/10.3390/f16101604
Mann AJ, Barnum RM, Held BW, Bushley KE, Aukema BH, Blanchette RA. Fungal and Bacterial Communities of the Red Turpentine Beetle (Dendroctonus valens LeConte) in the Great Lakes Region, USA. Forests. 2025; 16(10):1604. https://doi.org/10.3390/f16101604
Chicago/Turabian StyleMann, Andrew J., Rin M. Barnum, Benjamin W. Held, Kathryn E. Bushley, Brian H. Aukema, and Robert A. Blanchette. 2025. "Fungal and Bacterial Communities of the Red Turpentine Beetle (Dendroctonus valens LeConte) in the Great Lakes Region, USA" Forests 16, no. 10: 1604. https://doi.org/10.3390/f16101604
APA StyleMann, A. J., Barnum, R. M., Held, B. W., Bushley, K. E., Aukema, B. H., & Blanchette, R. A. (2025). Fungal and Bacterial Communities of the Red Turpentine Beetle (Dendroctonus valens LeConte) in the Great Lakes Region, USA. Forests, 16(10), 1604. https://doi.org/10.3390/f16101604