Decadal Changes in Ground-Layer Plant Communities Reflect Maple Dieback and Earthworm Invasion in National Forests in the Lake Superior Region, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Field Methods
2.3. Analytical Methods
3. Results
3.1. Community Composition: 2010
3.2. Community Composition: 2021
3.3. Group Analysis
3.4. Indicator Species Analysis
4. Discussion
4.1. Plant-Community Composition
4.2. Plant Traits
4.3. Potential Influence of Sites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilliam, F.S. The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems. BioScience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- George, L.O.; Bazzaz, F.A. The Herbaceous Layer as a Filter Determining Spatial Pattern in Forest Tree Regeneration. In The Herbaceous Layer in Forests of Eastern North America; Gilliam, F., Ed.; Oxford University Press: New York, NY, USA, 2014; pp. 340–355. [Google Scholar]
- Royo, A.A.; Carson, W.P. On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 2006, 36, 1345–1362. [Google Scholar] [CrossRef]
- Neufeld, H.S.; Young, D.R. Ecophysiology of the Herbaceous Layer in Temperate Deciduous Forests. In The Herbaceous Layer in Forests of Eastern North America; Gilliam, F., Ed.; Oxford University Press: New York, NY, USA, 2014; pp. 340–355. [Google Scholar] [CrossRef]
- Kwiatkowska, A.J. Changes in the species richness, spatial pattern and species frequency associated with the decline of oak forest. Vegetatio 1994, 112, 171–180. [Google Scholar] [CrossRef]
- Robinson, D. The responses of plants to non-uniform supplies of nutrients. New Phytol. 1994, 127, 635–674. [Google Scholar] [CrossRef]
- Woods, K.D.; Hicks, D.J.; Schultz, J. Losses in understory diversity over three decades in an old-growth cool-temperate forest in Michigan, USA. Can. J. For. Res. 2012, 42, 532–549. [Google Scholar] [CrossRef]
- Webster, C.R.; Dickinson, Y.L.; Burton, J.I.; Frelich, L.E.; Jenkins, M.A.; Kern, C.C.; Raymond, P.; Saunders, M.; Walters, M.B.; Willis, J.L. Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change and the loss of ecological memory. For. Ecol. Manag. 2018, 421, 98–108. [Google Scholar] [CrossRef]
- Grime, J.P. Primary strategies in plants. Trans. Bot. Soc. Edinb. 1979, 43, 151–160. [Google Scholar] [CrossRef]
- Foster, D.R. Land-Use History (1730–1990) and Vegetation Dynamics in Central New England, USA. J. Ecol. 1992, 80, 753–771. [Google Scholar] [CrossRef]
- Davis, M.A.; Wrage, K.J.; Reich, P.B. Competition between tree seedlings and herbaceous vegetation: Support for a theory of resource supply and demand. J. Ecol. 1998, 86, 652–661. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Bazely, D.R. Propagule pressure and resource availability determine plant community invisibility in a temperate forest understory. Oikos 2009, 118, 300–308. [Google Scholar] [CrossRef]
- Burton, J.I.; Mladenoff, D.J.; Clayton, M.K.; Forrester, J.A. The roles of environmental filtering and colonization in the fine-scale patterning of ground-layer plant communities in north temperate deciduous forests. J. Ecol. 2011, 99, 764–776. [Google Scholar] [CrossRef]
- Rooney, T.P.; Wiegmann, S.M.; Rogers, D.A.; Waller, D.M. Biotic Impoverishment and Homogenization in Unfragmented Forest Understory Communities. Conserv. Biol. 2004, 18, 787–798. [Google Scholar] [CrossRef]
- Wiegmann, S.M.; Waller, D.M. Fifty years of change in northern upland forest understories: Identity and traits of “winner” and “loser” plant species. Biol. Conserv. 2006, 129, 109–123. [Google Scholar] [CrossRef]
- Frerker, K.; Sabo, A.; Waller, D. Long-term regional shifts in plant community composition are largely explained by local deer impact experiments. PLoS ONE 2014, 9, e115843. [Google Scholar] [CrossRef]
- Craven, D.; Thakur, M.P.; Cameron, E.K.; Frelich, L.E.; Beauséjour, R.; Blair, R.B.; Blossey, B.; Burtis, J.; Choi, A.; Dávalos, A.; et al. The unseen invaders: Introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob. Change Biol. 2017, 23, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, P.F.; Bohlen, P.J. Exotic earthworm invasions in North America: Ecological and policy implications. BioScience 2002, 52, 801–811. [Google Scholar] [CrossRef]
- Hale, C.M.; Frelich, L.E.; Reich, P.B. Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 2006, 87, 1637–1649. [Google Scholar] [CrossRef] [PubMed]
- Bohlen, P.J.; Groffman, P.M.; Fahey, T.J.; Fisk, M.C.; Suarez, E.; Pelletier, D.M.; Fahey, R.T. Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems 2004, 7, 1–12. [Google Scholar] [CrossRef]
- Fisichelli, N.A.; Frelich, L.E.; Reich, P.B.; Eisenhauer, N. Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. Biol. Invasions 2013, 15, 1057–1066. [Google Scholar] [CrossRef]
- Bowe, A.; Dobson, A.; Blossey, B. Impacts of invasive earthworms and deer on native ferns in forests of northeastern North America. Biol. Invasions 2020, 22, 1431–1445. [Google Scholar] [CrossRef]
- Forey, E.; Barot, S.; Decaëns, T.; Langlois, E.; Laossi, K.R.; Margerie, P.; Scheu, S.; Eisenhauer, N. Importance of earthworm–seed interactions for the composition and structure of plant communities: A review. Acta Oecologica 2011, 37, 594–603. [Google Scholar] [CrossRef]
- Alban, D.H.; Berry, E.C. Effects of earthworm invasion on morphology, carbon, and nitrogen of a forest soil. Appl. Soil Ecol. 1994, 1, 243–249. [Google Scholar] [CrossRef]
- Hale, C.M.; Frelich, L.E.; Reich, P.B.; Pastor, J. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: A mesocosm study. Oecologia 2008, 155, 509–518. [Google Scholar] [CrossRef]
- Groffman, P.M.; Bohlen, P.J.; Fisk, M.C.; Fahey, T.J. Exotic earthworm invasion and microbial biomass in temperate forest soils. Ecosystems 2004, 7, 45–54. [Google Scholar] [CrossRef]
- McLean, M.A.; Parkinson, D. Impacts of the epigeic earthworm Dendrobaena octaedra on oribatid mite community diversity and microarthropod abundances in pine forest floor: A mesocosm study. Appl. Soil Ecol. 1998, 7, 125–136. [Google Scholar] [CrossRef]
- Nuzzo, V.A.; Maerz, J.C.; Blossey, B. Earthworm invasion as the driving force behind plant invasion and community change in northeastern North American forests. Conserv. Biol. 2009, 23, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Cameron, E.K.; Vilà, M.; Cabeza, M. Global meta-analysis of the impacts of terrestrial invertebrate invaders on species, communities and ecosystems. Glob. Ecol. Biogeogr. 2016, 25, 596–606. [Google Scholar] [CrossRef]
- Thouvenot, L.; Ferlian, O.; Craven, D.; Johnson, E.A.; Köhler, J.; Lochner, A.; Quosh, J.; Zeuner, A.; Eisenhauer, N. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. Iscience 2024, 27, 109036. [Google Scholar] [CrossRef] [PubMed]
- Thouvenot, L.; Ferlian, O.; Beugnon, R.; Künne, T.; Lochner, A.; Thakur, M.P.; Türke, M.; Eisenhauer, N. Do invasive earthworms affect the functional traits of native plants? Front. Plant Sci. 2021, 12, 627573. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Butenschoen, O.; Radsick, S.; Scheu, S. Earthworms as seedling predators: Importance of seeds and seedlings for earthworm nutrition. Soil Biol. Biochem. 2010, 42, 1245–1252. [Google Scholar] [CrossRef]
- Cassin, C.M.; Kotanen, P.M. Invasive earthworms as seed predators of temperate forest plants. Biol. Invasions 2016, 18, 1567–1580. [Google Scholar] [CrossRef]
- Burton, J.I.; Perakis, S.S.; Brooks, J.R.; Puettmann, K.J. Trait integration and functional differentiation among co-existing plant species. Am. J. Bot. 2020, 107, 628–638. [Google Scholar] [CrossRef]
- Greenop, A.; Woodcock, B.A.; Pywell, R.F. Using functional traits to predict pollination services: A review. J. Pollinat. Ecol. 2023, 35, 194–206. [Google Scholar] [CrossRef]
- Schwarz, R.; Eisenhauer, N.; Ferlian, O.; Maestre, F.T.; Rosenbaum, B.; Uthe, H.; Thouvenot, L. Invasive earthworms modulate native plant trait expression and competition. Oikos 2023, 2024, e10008. [Google Scholar] [CrossRef]
- Neill, A.R.; Puettmann, K.J. Managing for adaptive capacity: Thinning improves food availability for wildlife and insect pollinators under climate change conditions. Can. J. For. Res. 2013, 43, 428–440. [Google Scholar] [CrossRef]
- Horsley, S.B.; Long, R.P. Sugar Maple Ecology and Health. In Proceedings of the International Symposium, Warren, PA, USA, 2–4 June 1998; Gen Tech Rep NE-261, 1999. United States Department of Agriculture (USDA) Forest Service, Northeastern Research Station: Radnor, PA, USA, 1999. [Google Scholar]
- Godman, R.M.; Mendel, J.J. Economic Values for Growth and Grade Changes of Sugar Maple in the Lake States; Res. Pap. MC-155, 1978; United States Department of Agriculture (USDA) Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1978; 16p.
- Webster, C.R.; Reed, D.D.; Orr, B.D.; Schmierer, J.M.; Pickens, J.B. Expected rates of value growth for individual sugar maple crop trees in the Great Lakes Region. North. J. Appl. For. 2009, 26, 133–140. [Google Scholar] [CrossRef]
- Bal, T.L.; Storer, A.J.; Jurgensen, M.F. Evidence of damage from exotic invasive earthworm activity was highly correlated to sugar maple dieback in the Upper Great Lakes region. Biol. Invasions 2018, 20, 151–164. [Google Scholar] [CrossRef]
- Edwards, C.A. The assessment of populations of soil-inhabiting invertebrates. Agric. Ecosyst. Environ. 1991, 34, 145–176. [Google Scholar] [CrossRef]
- Loss, S.R.; Hueffmeier, R.M.; Hale, C.M.; Host, G.E.; Sjerven, G.; Frelich, L.E. Earthworm Invasions in Northern Hardwood Forests: A Rapid Assessment Method. Nat. Areas J. 2013, 33, 21–30. [Google Scholar] [CrossRef]
- Bouché, M.B. Strategies lombriciennes. Ecol. Bull. 1977, 25, 122–132. [Google Scholar]
- Edwards, C.A.; Arancon, N.Q. Earthworm Ecology: Communities. In Biology and Ecology of Earthworms; Edwards, C.A., Arancon, N.Q., Eds.; Springer: New York, NY, USA, 2022; pp. 151–190. [Google Scholar] [CrossRef]
- Hale, C. Earthworms of the Great Lakes; Kollath + Stensaas: Duluth, MN, USA, 2013. [Google Scholar]
- Brady, M.E. Decadal Reevaluation of Sugar Maple Dieback Etiology Across the Upper Great Lakes Region. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2022. [Google Scholar] [CrossRef]
- Kruskal, J.B. Nonmetric multidimensional scaling: A numerical method. Psychometrika 1964, 29, 115–129. [Google Scholar] [CrossRef]
- Mather, P.M. Computational Methods of Multivariate Analysis in Physical Geography; J. Wiley & Sons: London, UK, 1976; Available online: https://cir.nii.ac.jp/crid/1130000794145289728 (accessed on 10 January 2022).
- Burton, J.I.; Mladenoff, D.J.; Forrester, J.A.; Clayton, M.K. Experimentally linking disturbance, resources and productivity to diversity in forest ground-layer plant communities. J. Ecol. 2014, 102, 1634–1648. [Google Scholar] [CrossRef]
- Gleason, H.A.; Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada; New York Botanical Garden: New York, NY, USA, 1991. [Google Scholar]
- Holmgren, N.H.; Holmgren, P.K. Illustrated Companion to Gleason and Cronquist’s Manual: Illustrations of the Vascular Plants of Northeastern United States and Adjacent Canada; New York Botanical Garden: New York, NY, USA, 1998. [Google Scholar]
- Waller, D.; Paulson, A.K.; Richards, J.; Alverson, W.S.; Bai, C.; Amatangelo, K.L.; Johnson, S.E.; Li, D.; Sonnier, G.; Toczydlowski, R.H. Functional trait data for vascular plant species from eastern North America. Ecology 2021, 103, e03527. [Google Scholar] [CrossRef]
- Montgomery, F.H. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States; University of Toronto Press: Toronto, ON, Canada, 1977. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Allen, D.C.; Barnett, C.J.; Millers, I.; Lachance, D. Temporal change (1988–1990) in sugar maple health, and factors associated with crown condition. Can. J. For. Res. 1992, 22, 1776–1784. [Google Scholar] [CrossRef]
- Mielke, P.W.; Berry, K.J. Permutation Methods: A Distance Function Approach, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Biondini, M.E.; Bonham, C.D.; Redente, E.F. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 1985, 60, 25–36. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Drouin, M.; Bradley, R.; Lapointe, L. Linkage between exotic earthworms, understory vegetation and soil properties in sugar maple forests. For. Ecol. Manag. 2016, 364, 113–121. [Google Scholar] [CrossRef]
- Hopfensperger, K.N.; Leighton, G.M.; Fahey, T.J. Influence of invasive earthworms on above and belowground vegetation in a northern hardwood forest. Am. Midl. Nat. 2011, 166, 53–62. [Google Scholar] [CrossRef]
- Hale, C.M.; Frelich, L.E.; Reich, P.B. Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecol. Appl. 2005, 15, 848–860. [Google Scholar] [CrossRef]
- Beauséjour, R.; Handa, I.T.; Lechowicz, M.J.; Gilbert, B.; Vellend, M. Historical anthropogenic disturbances influence patterns of non-native earthworm and plant invasions in a temperate primary forest. Biol. Invasions 2015, 17, 1267–1281. [Google Scholar] [CrossRef]
- Alexander, G.; Almendinger, J.; White, P. The long-term effects of invasive earthworms on plant community composition and diversity in a hardwood forest in northern Minnesota. Plant-Environ. Interact. 2022, 3, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, J.; Reynolds, J.W.; Fragoso, C.; Hadly, E. Multiple invasion routes have led to the pervasive introduction of earthworms in North America. Nat. Ecol. Evol. 2024, 8, 489–499. [Google Scholar] [CrossRef]
- Scheu, S. Effects of earthworms on plant growth: Patterns and perspectives. Pedobiologia 2003, 47, 846–856. [Google Scholar] [CrossRef]
- Madritch, M.D.; Lindroth, R.L. Removal of invasive shrubs reduces exotic earthworm populations. Biol. Invasions 2009, 11, 663–671. [Google Scholar] [CrossRef]
- Whitfeld, T.J.; Roth, A.M.; Lodge, A.G.; Eisenhauer, N.; Frelich, L.E.; Reich, P.B. Resident plant diversity and introduced earthworms have contrasting effects on the success of invasive plants. Biol. Invasions 2014, 16, 2181–2193. [Google Scholar] [CrossRef]
- Dávalos, A.; Nuzzo, V.; Blossey, B. Single and interactive effects of deer and earthworms on non-native plants. For. Ecol. Manag. 2015, 351, 28–35. [Google Scholar] [CrossRef]
- Clause, J.; Forey, E.; Lortie, C.J.; Lambert, A.M.; Barot, S. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties. Acta Oecologica 2015, 64, 10–20. [Google Scholar] [CrossRef]
- Kimmerer, R.W. Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 2005, 108, 391–401. [Google Scholar] [CrossRef]
- Corio, K.; Wolf, A.; Draney, M.; Fewless, G. Exotic earthworms of great lakes forests: A search for indicator plant species in maple forests. For. Ecol. Manag. 2009, 258, 1059–1066. [Google Scholar] [CrossRef]
- Snyder, S.A. Gymnocarpium dryopteris. In Fire Effects Information System [Online]; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory: Missoula, MT, USA, 1993. Available online: www.fs.usda.gov/database/feis//plants/fern/gymdry/all.html (accessed on 1 March 2022).
- Adams, A.B.; Dale, V.H.; Kruckeberg, A.R. Plant survival, growth form and regeneration following the 18 May eruption of Mount St. Helens, Washington. Northwest Sci. 1987, 61, 160–170. [Google Scholar]
- Walkup, C.J. Athyrium filix-femina. In Fire Effects Information System [Online]; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory: Missoula, MT, USA, 1991. Available online: https://www.fs.usda.gov/database/feis/plants/fern/athfil/all.html#1 (accessed on 1 March 2022).
- Holdsworth, A.R.; Frelich, L.E.; Reich, P.B. Effects of earthworm invasion on plant species richness in northern hardwood forests. Conserv. Biol. 2007, 21, 997–1008. [Google Scholar] [CrossRef]
- Loss, S.R.; Blair, R.B. Earthworm invasions and the decline of clubmosses (Lycopodium spp.) that enhance nest survival rates of a ground-nesting songbird. For. Ecol. Manag. 2014, 324, 64–71. [Google Scholar] [CrossRef]
- Jain, P.; Khare, S.; Sylvain, J.D.; Raymond, P.; Rossi, S. Predicting the location of maple habitat under warming scenarios in two regions at the northern range in Canada. For. Sci. 2021, 67, 446–456. [Google Scholar] [CrossRef]
- Auclair, A.N.D.; Lill, J.T.; Revenga, C. The role of climate variability and global warming in the dieback of Northern Hardwoods. Water Air Soil Pollut. 1996, 91, 163–186. [Google Scholar] [CrossRef]
- Burton, J.I.; Zenner, E.K.; Frelich, L.E. Frost crack incidence in northern hardwood forests of the southern boreal-north temperate transition zone. J. Appl. For. 2008, 25, 133–138. [Google Scholar] [CrossRef]
- Proctor, E.; Nol, E.; Burke, D.; Crins, W.J. Responses of insect pollinators and understory plants to silviculture in northern hardwood forests. Biodivers. Conserv. 2012, 21, 1703–1740. [Google Scholar] [CrossRef]
- Malloch, D.; Malloch, B. The mycorrhizal status of boreal plants: Species from northeastern Ontario. Can. J. Bot. 1981, 59, 2167–2172. [Google Scholar] [CrossRef]
- Paudel, S.; Longcore, T.; MacDonald, B.; McCormick, M.K.; Szlavecz, K.; Wilson, G.W.T.; Loss, S.R. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi. Ecology 2016, 97, 605–614. [Google Scholar] [CrossRef]
SU | CH | NI | OT | HI | |
---|---|---|---|---|---|
N plots | 6 | 5 | 8 | 17 | 5 |
A. saccharum canopy dieback (% per tree) | 42.2 (21.0–78.5, 8.1) | 12.4 (3.1–34.1, 5.5) | 16.7 (1.5–34.5, 4.1) | 15.0 (2.9–37.5, 2.8) | 15.9 (10.0–25.3, 4.6) |
Δ from 2010 | +26.8 (6.8) | +2.42 (5.3) | +4.9 (4.7) | +5.8 (2.3) | +7.9 (3.2) |
Distance from Lake Superior (km) | 8.85 | 90.11 | 96.68 | 31.58 | 9.44 |
Ground-layer plant taxon richness (S) (species per m2) | 15.3 (0.96) | 16.2 (0.74) | 13.25 (1.01) | 16.12 (0.73) | 13.2 (0.53) |
Evenness (H/ln(S)) | 0.87 (0.02) | 0.92 (0.01) | 0.85 (0.03) | 0.90 (0.01) | 0.92 (0.03) |
Ground-layer Shannon’s diversity index (H) | 2.38 (0.07) | 2.57 (0.03) | 2.17 (0.1) | 2.47 (0.05) | 2.36 (0.11) |
Canopy density (% closure) | 72 (38–88, 8) | 93 (91–95, 1) | 90 (81–95, 2) | 88 (61–94, 2) | 86 (76–95, 3) |
SU | CH | NI | OT | HI | |
---|---|---|---|---|---|
N plots | 6 | 5 | 8 | 17 | 5 |
Forest-floor rating (1–5) | 1.33 (1.0–2.0, 0.17) | 1.0 (1.0–1.0, 0) | 2.25 (1.0–3.0, 0.25) | 2.78 (1.0–5.0, 0.37) | 4.6 (3.5–5.0, 0.29) |
Δ from 2010 | −3.67 (0.17) | −3.8 (0.2) | −1.59 (0.26) | −1.66 (0.36) | −0.35 (0.31) |
Earthworms (presence/absence) | 1 (0) | 1 (0) | 1 (0) | 0.82 (0.09) | 0.4 (0.12) |
Juvenile Lumbricus | 0.83 (0.15) | 1 (0) | 0.88 (0.12) | 0.53 (0.12) | 0 (0) |
Epigeic | 0.83 (0.15) | 1 (0) | 1 (0) | 0.76 (0.10) | 0.2 (0.10) |
Endogeic | 0.17 (0.15) | 1 (0) | 1 (0) | 0.24 (0.10) | 0.2 (0.10) |
Epi-endogeic | 0.83 (0.15) | 0 (0) | 0.13 (0.12) | 0.12 (0.08) | 0 (0) |
Anecic | 0.17 (0.15) | 0.4 (0.22) | 0.63 (0.17) | 0.24 (0.10) | 0.4 (0.12) |
Group | Characterization | n |
---|---|---|
1 | No earthworms | 6 |
2 | Epigeic-dominated | 21 |
3 | High earthworm diversity | 11 |
4 | Juvenile Lumbricus/L. rubellus | 3 |
Axis 1 | Axis 2 | Axis 3 | ||
---|---|---|---|---|
2010 | Aralia nudicaulis | 0.566 | −0.305 | 0.258 |
Arisaema triphyllum | −0.654 | −0.175 | −0.082 | |
Asarum canadense | 0.518 | 0.443 | −0.041 | |
Aster spp. | 0.513 | 0.338 | −0.46 | |
Athyrium filix-femina | 0.618 | 0.027 | −0.117 | |
Caulophyllum thalictroides | −0.615 | −0.006 | −0.442 | |
Circaea alpina | −0.034 | −0.566 | 0.044 | |
Clintonia borealis | 0.41 | 0.541 | 0.033 | |
Coptis trifolia | 0.362 | −0.465 | 0.295 | |
Cornus alternifolia | −0.866 | 0.007 | −0.052 | |
Cornus foemina | 0.301 | −0.742 | −0.337 | |
Dryopteris spp. | −0.222 | 0.509 | −0.494 | |
Galium spp. | 0.228 | −0.763 | −0.022 | |
Poaceae spp. | −0.122 | −0.787 | −0.022 | |
Hepatica americana | 0.11 | −0.629 | 0.097 | |
Hieracium spp. | −0.848 | −0.001 | −0.015 | |
Impatiens capensis | 0.044 | −0.69 | 0.082 | |
Laportea canadensis | −0.839 | 0.125 | −0.003 | |
Lonicera canadensis | −0.767 | 0.218 | 0.041 | |
Mitella nuda | −0.041 | −0.549 | 0.191 | |
Mitchella repens | −0.866 | 0.007 | −0.052 | |
Bryophyta spp. | −0.597 | −0.24 | 0.28 | |
Osmunda claytoniana | 0.318 | −0.514 | −0.522 | |
Pyrola spp. | −0.866 | 0.007 | −0.052 | |
Ranunculus spp. | −0.68 | 0.007 | −0.507 | |
Ribes spp. | −0.842 | −0.106 | 0.069 | |
Rubus canadensis | −0.866 | 0.007 | −0.052 | |
Rubus strigosus | 0.608 | 0.073 | −0.252 | |
Sanguinaria canadensis | 0.044 | −0.69 | 0.082 | |
Carex spp. | −0.228 | −0.765 | −0.234 | |
Trillium spp. | 0.163 | −0.545 | 0.17 | |
Forest-floor rating | 0.517 | 0.375 | 0.171 | |
Distance to L. Superior | 0.023 | −0.583 | 0.171 | |
Latitude | 0.139 | 0.546 | −0.059 | |
2021 | Anemone quinquefolia | 0.052 | −0.412 | 0.155 |
Athyrium filix-femina | 0.125 | −0.4 | 0.337 | |
Clintonia borealis | 0.702 | 0.057 | −0.22 | |
Lycopodiaceae spp. | 0.215 | 0.68 | 0.157 | |
Maianthemum canadense | 0.098 | −0.519 | 0.201 | |
Bryophyta spp. | −0.698 | −0.077 | −0.434 | |
Phegopteris connectilis | 0.389 | −0.259 | −0.202 | |
Ribes spp. | −0.017 | −0.394 | 0.422 | |
Carex spp. | −0.69 | −0.024 | −0.217 | |
Trientalis borealis | 0.59 | 0.037 | −0.38 | |
Trillium spp. | −0.207 | −0.388 | −0.153 | |
Forest-floor rating | −0.05 | 0.597 | 0.157 | |
Lumbricus rubellus | 0.476 | 0.185 | −0.065 | |
Juvenile Lumbricus | −0.052 | −0.44 | −0.028 | |
Epi-endogeic worms | 0.489 | 0.178 | −0.053 | |
Epi-endogeic, proportion | 0.538 | 0.044 | −0.012 | |
Latitude | 0.599 | 0.082 | −0.121 | |
Distance to L. Superior | −0.42 | −0.264 | −0.145 |
Axis 1 | Axis 2 | Axis 3 | ||
---|---|---|---|---|
2010 | Graminoids | −0.268 | 0.619 | |
Forbs | −0.724 | −0.4 | ||
Ferns | −0.387 | 0.331 | - | |
Perennials | −0.756 | 0.48 | - | |
Geophytes | −0.679 | −0.218 | - | |
Abiotic seed dispersal | −0.489 | 0.298 | - | |
Biotic seed dispersal | −0.679 | −0.415 | - | |
Vertebrate seed dispersal | −0.651 | −0.45 | - | |
Large seeds | −0.563 | −0.245 | - | |
Early flowering | −0.744 | −0.385 | - | |
Mid-flowering | −0.702 | −0.425 | - | |
Abiotic pollination | −0.447 | 0.778 | - | |
Biotic pollination | −0.746 | −0.42 | - | |
2021 | Forbs | −0.667 | 0.476 | 0.084 |
Shrubs | −0.512 | 0.057 | −0.069 | |
Ferns | −0.373 | −0.666 | −0.335 | |
Hemicryptophytes | −0.331 | −0.628 | −0.353 | |
Geophytes | −0.645 | 0.302 | −0.158 | |
Abiotic seed dispersal | −0.483 | −0.612 | 0.025 | |
Biotic seed dispersal | −0.579 | 0.227 | 0.016 | |
Vertebrate seed dispersal | −0.685 | 0.346 | −0.046 | |
Large seeds | −0.614 | 0.445 | −0.127 | |
Early flowering | −0.782 | 0.373 | 0 | |
Mid-flowering | −0.772 | 0.344 | 0.007 | |
Abiotic pollination | −0.375 | −0.618 | 0.492 | |
Biotic pollination | −0.797 | 0.374 | 0.013 | |
Native | −0.764 | −0.188 | −0.318 | |
A. saccharum dieback | −0.423 | 0.099 | −0.157 | |
Tree density (trees/area) | −0.112 | 0.445 | 0.1 | |
Epi-endogeic, proportion | −0.253 | 0.406 | −0.108 | |
Latitude | −0.428 | 0.152 | −0.222 |
Taxon | 2010 | 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
Forest-Floor Rating | Forest-Floor Rating | Earthworm Abundance | Earthworm Assemblage | Anecic Presence | |||||
Poor (>20%) | Intact | Poor | Absence | Presence | High | Diverse | Juvenile Lumbricus | ||
Aster spp. | 0.036 | ||||||||
Athyrium filix-femina | 0.024 | 0.046 | 0.082 | ||||||
Bryophyta (s. str.) | 0.032 | 0.017 | |||||||
Carex spp. | 0.088 | 0.01 | |||||||
Caulophyllum thalictroides | 0.032 | ||||||||
Clintonia borealis | 0.002 | ||||||||
Dryopteris spp. | 0.045 | ||||||||
Gymnocarpium dryopteris | 0.085 | ||||||||
Lycopodiaceae spp. | 0.002 | < 0.001 | |||||||
Maianthemum racemosum | 0.027 | 0.041 | |||||||
Phegopteris connectilis | 0.038 | ||||||||
Poaceae spp. | 0.033 | 0.049 | |||||||
Polygonatum pubescens | 0.052 | ||||||||
Ranunculus spp. | 0.033 | ||||||||
Ribes spp. | 0.025 | ||||||||
Trientalis borealis | 0.0892 | ||||||||
Trillium spp. | 0.029 | 0.013 | |||||||
Veronica spp. | 0.026 | 0.059 | 0.035 |
Taxon | 2010 | 2021 | |||
---|---|---|---|---|---|
National Forest | A. saccharum canopy dieback | National Forest | A. saccharum canopy dieback | ||
Severe (>20%) | Low (<10%) | Severe (>20%) | |||
Aster spp. | SU 0.013 | ||||
Athyrium filix-femina | 0.041 | ||||
Carex spp. | NI 0.02 | ||||
Clintonia borealis | SU < 0.001 | 0.008 | SU < 0.001 | <0.001 | |
Dryopteris spp. | HI 0.066 | ||||
Lycopodiaceae spp. | HI 0.005 | ||||
Maianthemum canadense | CH 0.008 | 0.068 | |||
Phegopteris connectilis | SU 0.011 | 0.026 | |||
Poaceae spp. | CH 0.03 | 0.088 | |||
Rubus strigosus | 0.019 | ||||
Trientalis borealis | 0.096 | ||||
Trillium spp. | CH 0.019 | CH 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal, T.L.; Anderson, M.E.; Brady, M.E.; Burton, J.I.; Webster, C.R. Decadal Changes in Ground-Layer Plant Communities Reflect Maple Dieback and Earthworm Invasion in National Forests in the Lake Superior Region, USA. Forests 2025, 16, 1583. https://doi.org/10.3390/f16101583
Bal TL, Anderson ME, Brady ME, Burton JI, Webster CR. Decadal Changes in Ground-Layer Plant Communities Reflect Maple Dieback and Earthworm Invasion in National Forests in the Lake Superior Region, USA. Forests. 2025; 16(10):1583. https://doi.org/10.3390/f16101583
Chicago/Turabian StyleBal, Tara L., Manuel E. Anderson, Mattison E. Brady, Julia I. Burton, and Christopher R. Webster. 2025. "Decadal Changes in Ground-Layer Plant Communities Reflect Maple Dieback and Earthworm Invasion in National Forests in the Lake Superior Region, USA" Forests 16, no. 10: 1583. https://doi.org/10.3390/f16101583
APA StyleBal, T. L., Anderson, M. E., Brady, M. E., Burton, J. I., & Webster, C. R. (2025). Decadal Changes in Ground-Layer Plant Communities Reflect Maple Dieback and Earthworm Invasion in National Forests in the Lake Superior Region, USA. Forests, 16(10), 1583. https://doi.org/10.3390/f16101583