Next Article in Journal
Stakeholder Perception and Priority Gaps in Ecosystem Services of Different Land-Uses in Rural Laos
Previous Article in Journal
Effects of Fire Conditions on the Structural Optimization of Timber Trusses
Previous Article in Special Issue
Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

CO2 Estimation of Tree Biomass in Forest Stands: A Simple and IPCC-Compliant Approach

1
Johann Heinrich von Thuenen-Institute of Forestry, Leuschnerstrasse 91, 21031 Hamburg, Germany
2
Graduate School Forest and Agricultural Sciences (GFA), Buesgenweg 5, 37077 Goettingen, Germany
*
Author to whom correspondence should be addressed.
Forests 2025, 16(10), 1580; https://doi.org/10.3390/f16101580
Submission received: 16 September 2025 / Revised: 1 October 2025 / Accepted: 3 October 2025 / Published: 14 October 2025

Abstract

Background: While forests are pivotal for climate change mitigation, robust CO2 accounting is required to quantify their climate benefits. However, varying current methodologies complicate this process for practitioners. This study addresses the need for a low-threshold, IPCC-compliant CO2 estimation method of tree biomass in forest stands. Methods: We developed CO2 yield tables by integrating segmented allometric biomass functions into fourth-generation yield tables, combining empirical data and simulations for Northwest Germany. Above- and belowground biomass was calculated, converted into CO2, and compared with estimates from traditional expansion factors. An interactive R Shiny dashboard was designed to visualise results. Results: The main results of this article are the carbon yield tables, covering beech (Fagus sylvatica), oak (Quercus spp.), spruce (Picea abies), pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii), each across various yield classes and starting at age 1, thereby also encompassing the juvenile phase of forest stands. Our comparison with estimates from traditional expansion factors shows that the latter can substantially overestimate carbon content in forest stands compared to our results, ranging from 20% to 35%, with higher estimates for mature stands and improved representation of early growth. The interactive dashboard also allows readers to experiment with their own figures. Conclusions: The choice of CO2 methodology profoundly affects results. Our yield tables and a calculation tool (dashboard) deliver a transparent, accessible tool for quantifying forest CO2 stock, supporting sustainable management and carbon market participation.

1. Introduction

Forests play an important role in the global effort to combat climate change. This is primarily due to their ability to sequester carbon dioxide from the atmosphere through photosynthesis, storing it over significant timescales [1]. In order to preserve, maintain, and even expand this climate protection potential, forests must be managed sustainably, which also includes the capacity to monitor the development of their climate mitigation performance.
On a supranational level, the European Union has released comprehensive regulations and laws for a climate-neutral future. Central to these efforts is the “Land Use, Land Use Change, and Forestry (LULUCF)” sector. The EU defines the LULUCF sector broadly:
The land use sector encompasses the management of cropland, grassland, wetlands, forests, settlements, as well as changes in land use including afforestation (i.e., planting trees), deforestation, or draining of peatlands. LULUCF reporting categories comprise various types of carbon pools of living biomass (above and below ground), dead organic matter (CWD and litter), and organic soil carbon. Land-use changes are also reported, for example: deforestation, afforestation, or changes from grassland to arable land or settlements” [2].
This sector is crucial for both emitting and absorbing CO 2 from the atmosphere. The European Climate Law (Regulation (EU) 2021/1119 of 30 June 2021) establishes the framework for achieving climate neutrality by 2050 and sets an intermediate target of reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels [3]. Furthermore, the Commission Implementing Regulation (EU) 2018/2066 of 19 December 2018 details the monitoring and reporting of greenhouse gas emissions. The revised LULUCF Regulation (Regulation (EU) 2023/839) sets an overall EU-level objective of 310 Mt CO 2 of net removals in the LULUCF sector by 2030, with Member States responsible for contributing to this target [2,4].
At the national level, EU member states are developing and implementing their own legislative frameworks to align with these EU targets. These national laws often have specific names, such as the “Klimaschutzgesetz” (Climate Protection Act, 2019) in Germany [5]. Other examples of EU countries with national climate protection laws include (i). Finland: Finnish Climate Act (2022), aiming for carbon neutrality by 2035 [6]; (ii). France: Energy and Climate Law (2019), targeting carbon neutrality by 2050 [7]; (iii). Ireland: Climate Action and Low Carbon Development (Amendment) Act (2021), striving for climate neutrality by 2050 [8] and (iv). Portugal: Framework Law on Climate Change (2021), also aiming for climate neutrality by 2050 [9].
While these policies establish clear goals, their effective implementation raises significant questions. There is a lack of knowledge about which forest management strategies are most effective and how the contributions of different land use types, especially forests, can be optimally distributed. In the forest itself, practitioners and policymakers often lack clarity on how specific silvicultural measures affect carbon storage in the short, medium, and long term [10].
The components of the forest carbon budget pools include live biomass, dead biomass, soil, and wood products. Live biomass can be further divided into aboveground and belowground biomass [11,12]. Another significant carbon pool is the carbon stored in wood products over time [13], which ensures carbon storage beyond the forest itself and may also contribute to substitution effects [14,15,16]. However, it should be noted that harvested wood products (HWP) are not included in the scope of our analysis.
The most significant of these pools for reporting purposes is living tree biomass, and its accurate quantification is paramount. This can be approached through the calculation of either the individual tree biomass or the total biomass of a forest stand. The estimation of individual tree biomass typically employs allometric equations, which depend on the diameter and/or height [17]. The accuracy of these functions was enhanced by Riedel and Kändler 2017 [18], who developed new biomass estimation methods based on allometric functions and the Marklund Function in alignment with the “Greenhouse gas (GHG) Reporting”, by assigning different functions for different sectional diameters and heights [18,19,20].
Alternatively, the total biomass for a specific plot or stand can be obtained by summing the biomass of each individual tree on a site or per hectare [17]. The estimation of the total stand biomass is usually done by expanding the standing volume (stock) with specific expansion factors. The development of stand biomass estimates using biomass expansion factors has been undertaken for several tree species, including spruce (Picea abies), pine (Pinus sylvestris), beech (Fagus sylvatica), oak (Quercus robur/petraea), and Douglas fir (Pseudotsuga menziesii) [21,22]. Examples from other countries include pine (Pinus spp.) in Brazil [23], Korean red pine (Pinus densiflora) in South Korea [24] and maple (Acer pseudoplatanus) and ash (Fraxinus excelsior) in the Carpathians [25].
A significant challenge is the methodology for estimating forest carbon stocks. The existence of a wide range of different methods for estimating biomass highlights a clear absence of consensus on the most appropriate approach for calculating biomass and subsequent CO 2 stock. This lack of consensus is often a direct result of varying data availability and the resulting methodological choices. It is also important to note that these methodologies can differ significantly among countries preparing their National Inventory Reports, making direct comparisons difficult.
Furthermore, from a forest economics perspective, the potential for carbon sequestration is of considerable importance. This is largely due to the growing relevance of the voluntary carbon market (VCM) as a means of generating revenue from forest-based timber production [26]. In light of these developments on the VCMs, the EU also introduced the Carbon Removal Certification Framework (CRCF) as a voluntary EU initiative in 2024 to create uniform standards for the certification of climate protection activities that remove carbon dioxide from the atmosphere. In light of these developments on the VCMs, the EU also introduced the Carbon Removal Certification Framework (CRCF) as a voluntary EU initiative in 2024 to create uniform standards for the certification of climate protection activities that remove carbon dioxide from the atmosphere [27]. Standards such as the Verified Carbon Standard (VCS) employ models like Faustmann’s approach [28], or the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) [29], both of which require substantial expertise and a lengthy familiarisation period due to their complexity. This study also serves as a preparatory analysis for the model used within our department, known as the Forest Economic Simulation Model (FESIM). FESIM is an economic model that integrates a biological production component based on yield tables, a technical production model, and additional submodules—including a habitat tree module and a coarse woody debris decay model [30,31,32,33,34]. The calculations conducted in this study can subsequently be used to assess CO 2 levels within FESIM, as both rely on the same yield tables and, therefore, the same underlying biological production model.
The development of an approach that is both simpler and IPCC-compliant has two principal benefits. Firstly, it serves as a pre-study for FESIM development. Secondly, it bridges a threefold knowledge gap that hinders carbon estimation for practitioners: (i). Lack of an accessible estimation tool. Highly accurate methods, such as the single-tree biomass functions by Riedel and Kändler 2017 [18], exist but are not yet integrated into low-threshold, user-friendly tools that forestry practitioners can easily apply in their daily work. This creates a disconnect between state-of-the-art science and practical application. (ii). Inconsistent results from different methods. There is a lack of comparative analysis between common calculation methods. The differences in CO 2 estimation results when using precise single-tree biomass functions versus generalised stand expansion factors are not well understood, leading to potential inaccuracies in reporting. (iii). Simplified assumptions in current models. Many estimation methods rely on simplified assumptions about tree morphology, which may not reflect real-world conditions, especially in stands with varying stocking densities. It is therefore the objective of the present article to bridge these gaps by developing a low-threshold estimation tool and conducting a comparative analysis to address the following research questions:
  • How can the proposed single-tree biomass functions by Riedel and Kändler 2017 [18] be effectively integrated within yield tables to develop CO 2 yield tables that address the existing gap of a low-threshold estimation of the potential CO 2 stock in forest stands?
  • What are the differences in CO 2 estimation results when using single-tree biomass functions compared to those derived from stand expansion factors?
  • To what extent does the incorporation of realistic height-diameter (h-d) ratios into single-tree CO 2 estimations enhance the accuracy of forest stand CO 2 accounting—particularly under varying stocking densities—and support broader applicability of the method?

2. Materials and Methods

2.1. Materials

2.1.1. Input Data: A New Generation of Yield Tables

Yield tables provide valuable information on forest stands. They traditionally serve as planning tools in forestry and are used in various countries, by showing the development of forest stands under variable site qualities and management regimes [35,36,37,38,39]. Common yield tables present detailed information about merchantable timber in a forest stand, separating the “Yield after Thinning” from the “yield from thinning”, based on the age of the stand in years, usually in steps of 5 years. They include data for trees per hectare, mean height (m), top height (m), basal area ( m 2 ha 1 ), mean diameter at breast height (cm), and volume of merchantable timber per hectare ( m 3 ha 1 ). The tables also provide information on the “yield from thinning”, including trees per hectare, basal area m 2 ha 1 , mean diameter (cm), and volume ha 1 ( m 3 ha 1 ). Furthermore, they include the total volume production (TVP) ( m 3 ha 1 ), the mean annual increment (MAI) ( m 3 ha 1 yr 1 ), and the current annual increment (CAI) ( m 3 ha 1 yr 1 ). The data in yield tables has been recorded for various age classes in forest stands, thereby showcasing the development of stand characteristics over time. This enables a comprehensive analysis of forest growth and stand development, including the impact of thinning on the remaining maincrop. As they are based on empirical observations in the past, they also enable projections about future growth and timber yields. Moreover, they take into account different site indices that stand as a proxy for site quality. In this case, the relative site indices here are displayed in Roman numerals, starting at −I (very good site) to VI (very poor site).
For our analysis, we used the new generation of yield tables by Albert et al. (2024) [40] as the database. These are fourth-generation yield tables that are developed both on results from experimental plots and forest growth simulations, i.e., they combine empirical data with modelling. The yield tables of earlier generations were based exclusively on experimental plot data [35]. These trial plots that were used by Albert et al. (2024) [40] were thinned to a high level, thereby representing a staggered high thinning from above, and were extrapolated over a 30-year period using TreeGrOSS, a single-tree growth simulator [41]. High thinning, is a practice involving the removal of trees from the dominant canopy to improve the growing space for selected individuals, (as opposed to low thinning, which involves the removal of suppressed, intermediate, or co-dominant trees from the lower and middle canopy strata—a management approach that has been practiced for long periods in the past, and is partly displayed in the former yield tables by Schober (1995) [35]. The system of staggered high thinning, as depicted by Albert et al. (2024) [40], advocating for intensive early thinning interventions followed by more moderate low thinnings during later stand development stages, is a common and widespread forestry practice nowadays in Germany [40,42].
The youngest stand age reported in yield tables typically starts at the age period in which the stand has attained or surpassed a maximum height of 12 m and should undergo thinning for the first time, corresponding to an age at which the diameter of the tree equals/surpasses 7 cm. In German forestry, this is the threshold, where trees are counted as standing volume. It is important to note that the empirically observed range according to Albert et al. (2024) [40] begins and ends at different minimum and maximum ages. Those minima and maxima are shown in Table 1.
When utilising yield tables, it is imperative to acknowledge the limitations imposed by the data. It must be kept in mind that yield tables only reflect pure stand composition, even-aged trees, uniform site conditions, homogeneous stocking that is fully stocked with a relative density of 1.0 (B° = 1.0), and comparable silvicultural management, following the criteria established by Kramer et al. (1988) [43]. These limitations, which will be examined in greater detail in the discussion, must be recognised prior to application, in order to ensure a comprehension and effective consideration of the constraints inherent in their utilisation.
Moreover, it must be noted that for the tree species Douglas fir, the number of stems for site index −I is lower than for site index 0. This would lead to a lower CO 2 stock in the stand, though the individual trees are larger and individually sequester more CO 2 .

2.1.2. Foundational Models and Indices

Biomass Equations
In order to calculate the biomass, it is first necessary to ascertain the compartments under consideration. As previously stated, the IPCC delineates five distinct compartments within which biomass is present in forest ecosystems: (i). above-ground tree biomass; (ii). belowground tree biomass; (iii). biomass derived from non-tree vegetation; (iv). soil organic matter extending to a depth of one metre, inclusive of peat; (v). coarse woody debris; and (vi). fine litter [11,12]. In the present analysis, all living above-ground tree compartments are considered, as well as belowground tree biomass. The term ‘above-ground tree biomass’ refers to the entirety of the visible living tree mass, including not only stems up to the root collar, but also branches, bark, fruit, seeds, and leaves. In contrast, ‘belowground tree biomass’ consists of the structural and fine root systems [44]. We employed the term ‘full tree biomass’ to denote the aggregate of both the above-ground and belowground tree biomass. We used BDAT 3.0, which is available in the form of the R-package rBDAT on CRAN [45,46], where the segmented biomass functions by Riedel and Kändler (2017) [18] are fully implemented and depend on diameter and/or height. Coarse woody debris (CWD) will not be part of our analysis. Nevertheless, it should be noted that a fundamental assumption of yield tables is that all recorded mortality is removed and utilised as timber/roundwood. Based on the yield table’s “yield from thinning”, however, the necessary inflows and replenishment rates for establishing and maintaining a defined CWD stock could in principle also be estimated. All the following functions and parameters are derived from the GHG reporting. When other sources have been used, it is declared.
The allometric function (1) is valid for trees under 1.3 m in height, which takes into account the height in meters and species-specific coefficients found in Table 2.
B H   <   1.3   m = b 0 · H b 1
where B H   <   1.3   m is the above-ground biomass for trees smaller than 1.3 m of height in kg, b 0 and b 1 are the species-specific coefficients of the function, and H is the tree height in m.
For trees that are at least 1.3 m in height but have a diameter of less than 10 cm, the interpolation function (2) results:
B d   <   10   cm = b 0 + b s b 0 d s 2 + b 3 ( d d s ) d 2
where B d   <   10   cm is the above-ground biomass in kg, b 0 , s , 3 are the species-specific coefficients, d s is the threshold diameter of 10 cm and equals 10 in the equation, and d is the diameter. The species specific coefficients can be found in Table 3.
For a diameter ≥ 10 cm, the modified Marklund function is used. This includes not only the diameter and the height, but also an upper stem diameter named D 03 , which describes the diameter at 30% of the tree’s height. Equation (3) shows the modified Marklund function. The species specific coefficients can be found in Table 4.
B d     10   cm = b 0 · e b 1 d d + k 1 · e b 2 D 03 D 03 + k 2 · H b 3
where B d     10   cm is the above-ground biomass in kg for trees with a diameter greater than 10cm, H is the tree height in m, b 0 , 1 , 2 , 3 , and k 1 , 2 are the species-specific coefficients of the function; d is the diameter of the tree in cm, and D 03 is the diameter of the tree in 30% of its height.
It is important to note that, due to their non-linear nature, there is a risk of unrealistically high values being assigned to extremely strong trees. In order to minimise the effect of overestimation in the extrapolation range above a tree-species-specific threshold diameter, Riedel and Kändler (2017) [18] suggest a linearisation of the Marklund model, where the last slope of the Marklund function is extrapolated linearly. The threshold diameters apply from the following diameter values (Table 5):
For the belowground biomass, we also used an allometric function (4), which is presented in the National Inventory Report [20] and takes into account different species-specific coefficients (Table 6). For Douglas fir, coefficients equivalent to those employed for beech were assumed, given their comparable root structure [47].
B u = b 0 d b 1
where B u is the root biomass in kg (belowground), b 0 , 1 are the species-specific coefficients, and d is the diameter of the tree in cm.
Biomass Expansion Factors
In order to categorise our results, a comparison was carried out, which required additional calculations. In the field of comparative literature, we have drawn upon the work of Pretzsch (2009) [22], who provided biomass expansion factors for forest stands (1 ha), which can be found in Table 7.
Total Volume Production and Mean Annual Increment
As a further explanatory model, we would like to list the total volume production (TVP) and also the mean annual increment (MAI), which we used for our calculations. The TVP is defined as the cumulative volume of timber produced by a tree, stand, or forest over time, including both merchantable and non-merchantable timber. The MAI is defined as the average annual growth rate of a tree or stand of trees up to a specified age [43]. For assessing the (additional) climate protection performance, the TVP of managed forests shown is, in our opinion, only partially suitable, as the full TVP cannot be accumulated in the stand long-term if harvesting is forgone. This TVP curve is exclusively for (managed) stands based on the yield table management assumptions of Albert et al. (2024) [40].
h/d-Ratios
In the yield tables, the height and diameter values are shown for the respective basal area centre stem at the respective stand age. However, real individual trees or stands may have different height and diameter values from the yield table. The height (h) and diameter (d) are the central input variables for the dashboard for the CO 2 calculation of individual trees and stands, which is why the h/d-ratio is important. To answer the third research question, we also scrutinised which height/diameter ratios (h/d-ratios) are realistic, so that we could also cover data outside of the yield tables. The h/d ratio is a pivotal indicator in forestry that describes the ratio of tree height to diameter at breast height. It functions as a significant indicator for evaluating the stability of individual trees and the stability of entire forest stands. The significance of this phenomenon pertains to the growth behaviour of the trees. In dense forests, competition for light is a driving force that prompts trees to undergo rapid vertical growth, resulting in the development of slender, unstable trunks that exhibit a high h/d ratio. Conversely, free-standing trees can allocate greater energy towards increasing their thickness, resulting in a more compact structure and a lower h/d ratio that is less susceptible to variation and the values are defined as very unstable: h/d ≥ 1, unstable: h/d 0.8 to < 1, stable: h/d 0.45 to < 0.8, solitary tree: h/d < 0.45 [51].
Stand Density Index
In the yield tables, an age-dependent stocking density is shown, which can deviate in real individual stands. The Stand Density Index is an important parameter for making realistic settings for the diameter and stem number of the trees in a stand with regard to the degree of stocking using the dashboard, which will be presented in Section 2.2.2.
To answer the third research question, the SDI should therefore inform the user of the dashboard if settings with overstocking are selected. It must be noted that idealised pure stands from yield tables have a stocking density of B = 1.0 , a metric different from the SDI. The Stand Density Index (SDI) is a metric of stand density in forestry, developed by Reineke in the USA in 1993 [52]. Plotting the logarithm of the number of trees per hectare against the logarithm of the root mean square diameter (or the dbh of the tree with average basal area) of maximum stocked stands generally results in a linear relationship [52].
The model (Equation (5)) is predicated on a constant slope of 1.605. Pretzsch refined those slopes species-specifically (Table 8) [22].
S D I = N · ( 25 d q ) 1.605
Stand Density Index [52] is derived from Pretzsch et al. (2009) [22].
Carbon and CO 2 Conversion Factors
Plants absorb CO 2 from the air through their stomata. Photosynthesis takes place in the mesophyll cells and converts inorganic CO 2 into organic compounds, mainly glucose, which forms the basis for the synthesis of other carbohydrates such as cellulose and lignin. This decomposition of CO 2 leads to the fixation of carbon in the plant [1]. Consequently, timber consists primarily of carbon (approx. 50%), oxygen (approx. 43%), hydrogen (6%) and nitrogen (<1%). Therefore, a general proportion of 50% carbon is assumed in the conversion of biomass to carbon [53]. The periodic table of chemical elements is used to convert the pure carbon content into CO 2 . This calculation yields a molar mass of 12.011 g mol 1 for carbon (C) and 15.999 g mol 1 for oxygen (O). The molecular mass of carbon dioxide is thus 44.009 g mol 1 [54]. Utilising these values, the mass of carbon can be converted to the mass of carbon dioxide.

2.2. Methods

2.2.1. Stand CO 2 Calculation

Via Equations
The calculation was performed through the utilisation of the relevant formulae from Section Carbon and CO 2 Conversion Factors, with the necessary input data being obtained from the yield tables, specifically height and diameter at breast height of the quadratic mean stem. Based on these values, the above- and belowground tree biomass was calculated. This figure represents the single-tree CO 2 stock, which was then extrapolated to the entire stand using the corresponding stem numbers (N) from the yield tables. This was undertaken not only for the standing volume, but also for the yield from thinning, in order to calculate the TVP and MAI using these key figures.
Via Expansion
To calculate the above- and belowground tree biomass by expansion factors, we took the stock and expanded it using the species-specific expansion factors from Table 7.
Conversion to CO 2
Ultimately, the calculated biomass was multiplied by the conversion factor 0.5 to calculate the carbon content and subsequently by the conversion factor 3.664 to convert it to CO 2 .
Extrapolation for Younger Stands
The values below the initial age of the yield tables (subject to variation according to the tree species and site index) are extrapolated linearly to allow an approximate estimation of CO 2 in younger stands, since they are also able to sequester CO 2 [55].
The number of stems was not extrapolated due to the absence of data regarding the stand’s foundation. It can be naturally regenerated or planted. Therefore, numerical data pertaining to the stem count was not provided, as it lay outside the range of the data that had been previously secured through empirical means.
All calculations were carried out in R Studio Version 2024.04.2 Build 764 [56], using the R-packages rBDAT and et.nwfva [46,57]. The codes are provided as rmd files in the Appendix C.

2.2.2. Development of an Online Application (Dashboard)

To test our results, we built a dashboard to estimate above- and belowground CO 2 stock in forest stands. The tool avoids manual use of yield tables by implementing the published equations of Riedel and Kändler (2017) [18] within an R Studio application. It uses R-shiny for the interface, dplyr for data processing, and rBDAT for biomass estimation. Users can select tree species and adjust diameter, height, and stem count; the app then calculates tree- and stand-level CO 2 storage, h/d ratios, and SDI. Two plausibility checks flag unrealistic h/d ratios and basal areas exceeding one hectare. The dashboard complements existing yield tables and provides a straightforward way of carrying out CO 2 accounting for individual trees and forest stands. The dashboard can either be replicated by simply copying the code in the Appendix C and pasting it into an R-shiny document or online: https://easyco2estimation.shinyapps.io/shiny/, accessed on 10 October 2025.

3. Results

3.1. CO2 Estimates for Forest Stands

3.1.1. Based on Equations

The integration of the Riedel and Kändler (2017) [18] biomass estimation functions was successfully achieved through the utilisation of height and diameter from the yield tables by Albert et al. (2024) [40], as outlined in the Methods section. In the subsequent sections, the stock, TVP and the MAI are presented as illustrative examples for oak (Quercus spec.). The yield tables and other tree species, which have been supplemented with the CO 2 figures calculated by the authors, can be found in the Appendix A. Moreover, it should be noted that the starting and end age of each tree species differs, as presented in Table 1, meaning that e.g., for site index −I (oak), the maximum stand age is 175 years.
Figure 1 illustrates the age-related development of stand-level CO 2 stock for Quercus spec. across site indices −I to III. The CO 2 stock calculation was carried out with single tree equations and is later compared with the upscaling approaches for CO 2 stock estimation based on stand expansion factors.
The trajectories indicate that higher site indices accumulate substantially larger CO 2 stocks, ranging from approximately 200 t  ha 1 on poor sites (Site Index III) to nearly t  ha 1 on very good sites (site index −I) at advanced stand ages. Across all site classes, CO 2 accumulation increases steeply up to about age 60–80 years and then gradually levels off, reflecting the declining increment with stand development. The clear separation of the curves highlights the strong dependence of CO 2 storage potential on site productivity.
Figure 2 illustrates the cumulative CO 2 (as TVP) stored in oak stands versus their age, differentiated by site quality. Five distinct lines, each representing a site index (from −I to III), show CO 2 accumulation. Site Index −I (teal) represents the most productive site, accumulating over 2000  t 1   ha 1 by 175 years. Site Index III (light green) is the least productive, accumulating just over 1000  t 1   ha 1 over the same period. Generally, CO 2 accumulation increases with age for all sites, with an initial slower growth followed by a more rapid increase. The difference in CO 2 storage among the site indices becomes more pronounced as the trees age. For the assessment of additional climate mitigation effects, the TVP of managed forests appears to be of limited suitability, as the full TVP cannot be accumulated in the stand over the long term under a no-management scenario. To avoid potential misinterpretation, it should be clarified that the displayed TVP trajectory refers exclusively to managed stands based on the yield table assumptions of Albert et al., 2024 [40].
Figure 3 illustrates the mean annual increment (MAI) of CO 2 in oak stands as a function of their age, differentiated by site quality.
Site Index −I (teal) represents the most productive site, showing the highest MAI, which peaks around 14 t  ha 1   yr 1 at approximately 70 years of age before gradually declining. Site Index III (light green) is the least productive, exhibiting the lowest MAI, which continues to increase slowly throughout the observed period, reaching approximately 6 t  ha 1   yr 1 by 180 years.
For the more productive sites (Site Indices −I, 0, and I), the MAI CO 2 curves show a rapid increase in the early years, reach a distinct peak (indicating the age of maximum annual CO 2 sequestration), and then gradually decline as the stands mature. The peak MAI is higher and occurs earlier for more productive sites. For less productive sites (Site Indices II and III), the MAI CO 2 increases more gradually, and for Site Index III, a clear peak is not reached within the 180-year time frame.

3.1.2. Based on Expansion

While in Figure 1 the CO 2 stock was derived by scaling individual-tree estimates and stem numbers following Riedel and Kändler (2017) [18], Figure 4 presents results based on stand expansion factors according to Pretzsch (2009) [22]. Both approaches rely on the identical yield tables provided by Albert et al. (2024) [40], ensuring consistency of the underlying growth assumptions while allowing for a methodological comparison of tree-level versus stand-level upscaling. Figure 4 illustrates the accumulation of carbon dioxide ( CO 2 ) stock in tonnes per hectare (t ha 1 ) over time (age in years) for oak (Quercus spec.).
Site Index −I shows the highest CO 2 accumulation, exceeding 1000 t  ha 1 by 170–180 years, indicating the most productive site. The orange curve (Site index 0) follows, reaching approximately 1000 t  ha 1 by 180 years. The purple curve (Site Index I) shows moderate accumulation, reaching around 900 t  ha 1 at 180 years. The magenta curve (Site Index II) indicates lower accumulation, reaching about 820 t  ha 1 at 180 years. Finally, the lime green curve (Site Index III) represents the lowest CO 2 accumulation, just over 700 t  ha 1 at 180 years, indicating the least productive site.
All curves exhibit a sigmoidal growth pattern: an initial slow accumulation phase, followed by a period of rapid increase, and finally a gradual levelling off as the stands mature. Differences in CO 2 stock among the site indices become more pronounced with increasing age, particularly after 40–50 years.

3.1.3. Comparison of Equation-Based Stock vs. Expansion Factor Stock

Given its central role in comparing tree-level and stand-level upscaling approaches for CO 2 stock estimation (Figure 1 and Figure 4), Figure 5 shows the deviation of the methods in percent [%]. These extreme fluctuations highlight the inflexibility of generalised expansion factors when applied to early growth stages. The allometry of young trees changes rapidly and is highly sensitive to site conditions, a dynamic that a single, averaged factor cannot capture. Our single-tree approach, being sensitive to tree height and diameter, could be more suitable in this case.

3.2. Interactive Online Application

Figure 6 illustrates the interactive application developed for this study, displaying a sample calculation for an oak stand. The application can be found online: https://easyco2estimation.shinyapps.io/shiny/, acessed on 10 October 2025.
Based on these inputs, the dashboard displays 120.51 kg of CO 2 stock in the above-ground biomass and 38.0 kg in the belowground biomass for the individual tree. At the stand level, the total estimated CO 2 stock is 213.04 t  ha 1 , which corresponds to an SDI of 649. As the number of stems per hectare increases, the total CO 2 stock increases linearly. The dashboard incorporates validation checks to ensure realistic inputs. If a user enters a biologically implausible height-to-diameter (h/d) ratio, the system flags the input with the warning, “implausible h/d ratio”, indicating an unrealistic combination of parameters.
Similarly, a validation check is in place for stand density. If the number of stems is so high that the cumulative basal area of all trees would exceed the stand area (1 ha), the dashboard triggers a second warning: “SDI is too high! Total basal area exceeds 1 ha”.

4. Discussion

4.1. Discussion of Materials and Methods

The foundation for quantifying potential CO 2 stock and sequestration in this study was the fourth generation of yield tables by Albert et al. (2024) [40]. These tables were selected as they are the most contemporary dataset for Northwest Germany, representing a methodological advancement by combining empirical observations with modelling in the single-tree growth simulator TreeGrOSS. A significant limitation, however, is that these tables do not yet account for the future impacts of climate change. The planned updates will be crucial for re-evaluating these findings under future climate scenarios. It should be kept in mind that the data are regionally specific to Northwest Germany, and caution is required when extrapolating the findings to other regions with different growth conditions.
Furthermore, forest thinning practices significantly alter stand dynamics and, consequently, the overall carbon stock by selectively removing trees to guide forest development. Historically, management often favored low thinning, which removes suppressed and intermediate trees from the lower canopy strata, a principle reflected in older yield tables like those by Schober (1995) [35]. In contrast, modern approaches such as high thinning or the now-widespread system of graduated thinning—involving intensive early interventions followed by more moderate low thinnings later on—are employed to more actively guide stand development [40,42]. While any thinning intervention initially reduces the on-site CO 2 stock by removing biomass, these practices are designed to reallocate growth to the remaining, often more vigorous, trees. This can accelerate their development and lead to a higher rate of carbon sequestration over the stand’s lifetime; indeed, a global meta-analysis found that thinning, on the whole, significantly increased total tree aboveground biomass and soil organic carbon stocks, enhancing the overall forest ecosystem carbon sink [58]. However, the results are not always straightforward and can be inconsistent [58]. For instance, a 30-year time-series study in Turkey on Brutia pine found no significant difference in total carbon stocks between thinned and unthinned plots, as the faster growth of remaining trees compensated for the removals over time [59]. Furthermore, the specific thinning strategy is critical, as a simulation study in Finland showed that shifting to regimes that allowed higher tree stocking resulted in an increase of up to 11 % in the forest ecosystem’s carbon stock and up to 14 % in the carbon of harvested timber [60]. This demonstrates that the effect of thinning on the total carbon stock stored in the forest and in timber products is a complex outcome dependent on management intensity, ecosystem response, and regional factors.
A critical methodological constraint is the model’s application to pure stands only. While our single-tree approach can be used to simplify stand data, its direct application to mixed-species forests is problematic. As established in the literature, mixing species fundamentally alters forest dynamics. Interspecific competition leads to significant shifts in individual tree allometry, resource use, and overall productivity, often resulting in higher yields than in monocultures [61,62]. Belowground competition can be equally complex and asymmetric, with species like Fagus showing strong competitive ability for root space [63]. As our model does not capture these interactions, its findings are primarily applicable for pure stands and should be interpreted with caution for more complex stand structures.
For the conversion of tree biomass to carbon, a constant factor of 0.5 was used. This value is a widely accepted standard in European forest carbon accounting, supported by research indicating that the relative error associated with this simplification is typically low, around ±2% [64]. While carbon content can vary within and between species [65], and global averages show a range [66], the 0.5 factor provides a robust and practical estimate for the circumstances of this study. Nevertheless, it remains a simplification that contributes to the overall uncertainty of the absolute carbon stock values.
In our dashboard, we did not set a fixed limit for stems per hectare (at any given age), but it must be noted that the dashboard might give unrealistic outputs when unrealistic inputs are given.
The concept of maximum stand density is not a single, fixed number. Instead, it is a dynamic relationship known as the self-thinning line, which connects the number of trees to their average size [67]. A young stand might have well over 50,000 small seedlings, but as those trees grow, competition causes natural mortality (self-thinning), and the stem count drops. A single threshold fails to capture this fundamental process.
It is influenced by multiple factors that a fixed value ignores:
  • Species and Traits: Different tree species have inherently different carrying capacities. For example, self-thinning models for beech and oak have different parameters [67]. A species’ tolerance to drought, shade, or bending stress also directly controls the maximum density a site can support [68].
  • Stand Structure: Even in a forest of a single species, the arrangement and size variation of trees matter. Maximum density and yield are often highest in stands with moderate structural diversity, not in those that are perfectly uniform or overly heterogeneous [69].
  • Site and Climate: The self-thinning relationship changes based on local conditions. Factors like site quality, solar radiation, temperature, and precipitation all alter a stand’s carrying capacity [70,71]. Therefore, management models based on self-thinning must be adapted for different latitudes and climates [71].
It can thus be concluded that the utilisation of the dashboard necessitates a certain degree of expertise. Realistic maximum basal areas for dense European forests are typically in the range of 37–68 m 2 per hectare [72].

4.2. Discussion of Results

Our results reveal a systematic difference between CO 2 estimates derived from our single-tree allometric approach and those from the established expansion factors. The interpretation of these deviations provides insight into the strengths and weaknesses of each method.
In mature stands, our approach consistently estimates approximately 20% to more than 35% CO 2 stock than the expansion factor method (Figure 4). This substantial, stable deviation can be directly linked to the different methodologies for calculating belowground biomass. Our use of tree-specific allometric functions seems justified by the well-documented variation in root-to-shoot allocation among species. The publication by Dieter and Elsasser (2002) [21] shows that a single, fixed ratio is not able to capture the complexity of the observed data precisely in our case. More importantly, it illustrates that generalised models tend to systematically underestimate root biomass in mature forests, particularly for coniferous species [21]. Our species-specific approach, therefore, provides a more realistic estimation of this crucial carbon pool, avoiding the underestimation inherent in conventional, non-specific methods.
To further assess our model’s foundation, we have categorised our results for single tree estimation with those from Klein and Schulz (2023) [73]. The comparison shows very small deviations, confirming the general accuracy of our underlying allometric functions for individual trees. Minor differences, such as our slightly lower CO 2 values for small-dimension pine trees or higher values for large beech trees, do exist. However, the fact that our single-tree estimates align so closely with other recent research, while our stand-level estimates diverge so strongly from the expansion factor method, reinforces our main conclusion: the primary source of the discrepancy very likely is not the basic above- and belowground allometry, but rather the method of aggregating trees to the stand level by multiplying it with the number of stems.
As previously stated, carbon storage in harvested wood products (HWPs) is not addressed in this study; however, it is undeniably an important component of comprehensive carbon accounting. To avoid potential misunderstandings, it is important to emphasise that the utilisation of wood beyond the boundaries of the forest system also plays a significant role. Nonetheless, this aspect is not considered within the scope of the present analysis. The atmospheric impact of wood use can vary depending on its specific application. For instance, when wood is used in construction, it contributes to an increase in the HWP carbon pool. Conversely, when wood is burned for energy, it results in immediate carbon emissions [74]. These outcomes, however, occur outside the system boundaries defined for this study and are therefore excluded from the analysis.

5. Conclusions

This study demonstrates that the choice of methodology for CO 2 accounting in forests is not a minor detail but a critical factor that can lead to significant disparities in results, with deviations ranging from 20% to over 35%. These findings underscore the need for accurate and transparent tools for carbon quantification, which have profound implications for forest management, climate policy, and emerging carbon markets.
In this context, tools such as the CO 2 yield tables developed here can represent a valuable instrument for practitioners and scientists who need a fast and easy solution for CO 2 estimation in forest stands. By facilitating a robust evaluation of their stands’ CO 2 storage potential over time, they provide a solid foundation for sustainable management decisions. To further enhance this, the interactive R-shiny dashboard developed in this study offers added value. It moves beyond static tables to provide a user-friendly, and reproducible tool that makes precise CO 2 accounting accessible, that neither requires deep statistical expertise nor knowledge in forest growth modelling. This capacity to reliably quantify and project carbon stocks allows forest owners to better engage with mechanisms like the expanding Voluntary Carbon Market (VCM). As companies increasingly seek to offset their emissions, the provision of transparent and verifiable accounting tools is paramount. The credibility and growth of the VCM are thus contingent on the very type of standardised and scientifically sound methodologies that this research seeks to advance.
From a scientific perspective, our results reinforce the call to move away from static, generalised factors towards more dynamic, process-oriented models that capture the underlying biological reality of tree growth. However, our analysis also highlights critical areas where further research is required. The most pressing need is the accounting of carbon in mixed woodlands. The complex interactions between different tree species and their influence on carbon storage are not adequately represented in most existing yield tables. Future research must therefore concentrate on creating carbon yield tables specifically for mixed woodlands to enable a more precise and comprehensive evaluation of carbon potential in these diverse ecosystems. In addition, there is a need for yield tables and carbon accounting approaches that address non-typical forest management concepts, which do not primarily aim at timber production, such as management abstention, set-aside areas, or special silvicultural regimes designed for water or biodiversity protection forests. By providing a more accurate method for estimating carbon, this study adds value not only for practitioners but also for forest-economic modelling. In the future, this will allow for the modelling of yields not only from timber production but also from mechanisms such as the Voluntary Carbon Market (VCM), based on the aforementioned measures. Accordingly, the findings of this study will be directly applied within the FESIM model mentioned above.
Beyond the challenge of mixed stands, future work must also address the impacts of climate change, which will undoubtedly alter growth rates and allometric relationships. But most fundamentally, the ultimate validation for any carbon model lies beyond comparing different equations. It would involve field research to anchor our models in direct, empirical measurements—including destructive sampling of representative trees from various sites and age classes, excavating root systems drying, and weighing each component (stem, branches, foliage, and roots) to determine its actual biomass [75].
In essence, the value of augmenting traditional yield tables with explicit CO 2 content lies in their powerful simplicity and accessibility. For forest practitioners, this approach integrates a critical ecosystem service directly into their established planning framework. Instead of navigating separate carbon calculators, they can assess the sequestration potential of a stand ’at a glance’, alongside traditional metrics like timber volume, facilitating intuitive decisions where both economic and ecological outcomes are immediately visible.
For scientists, the innovation lies in lowering the entry barrier to carbon research: These tables support decision-making where both economic and ecological outcomes are immediately visible. For scientists, their innovation lies in lowering the entry barrier to carbon-related research: they offer a standardised, transparent, and readily applicable method for incorporating CO 2 dynamics into disciplines that do not typically focus on forest carbon accounting. This enables, for instance, silvicultural researchers to explore how species selection affects both timber production and carbon sequestration, or political scientists to evaluate policy instruments aimed at enhancing forest carbon storage—without the need for specialised carbon models. While not a substitute for detailed simulation approaches—such as those implemented in FESIM—these tables provide a shared empirical foundation that facilitates comparative analysis, interdisciplinary dialogue, and reproducibility. In doing so, they serve as a form of scientific infrastructure that extends the impact of forest carbon research well beyond the forestry domain.

Author Contributions

Conceptualisation, P.E. and B.S.; methodology, M.B.; software, M.B.; validation, M.B., B.S. and P.E.; formal analysis, M.B.; writing—original draft preparation, M.B.; writing—review and editing, M.B., B.S. and P.E.; visualisation, M.B.; supervision, B.S. and P.E.; project administration, P.E.; funding acquisition, P.E. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Federal Government of Agriculture, Germany (BMEL), as part of the Climate Transformation Fonds (KTF).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Acknowledgments

We would like to thank Cornelius Regelmann for his support regarding the data analysis and the procurement of suitable methods for analysis, as well as for proofreading the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. CO2 Yield Tables

The following pages present the yield tables, revised to include our calculated values. The abbreviations used in the tables are defined as follows. All columns with the additional CO 2 were calculated by us.
  • Age: Stand age in years.
  • SI: Site index, a measure of stand quality.
  • N: Number of trees per hectare.
  • H: Mean height in metres (m).
  • H100: Top height in metres (m). The top height, defined as the height of the basal area mean stem of the 100 thickest trees per hectare at a given age, is a widely used measure of growth performance in pure, even-aged stands [76].
  • BA: Basal area in m 2   ha 1 .
  • dbh: Diameter at breast height (1.3 m) in centimetres (cm). In our analysis, we use ‘d’ to denote diameter more generally, as our calculations include trees smaller than the standard breast height threshold.
  • dbh100: Diameter corresponding to the top-height (H100); i.e., the diameter of the basal area mean stem of the 100 thickest trees per hectare.
  • S: Standing stock (volume) in m 3   ha 1 .
  • N_YFT: Number of trees removed during thinning (YFT = yield from thinning).
  • BA_YFT: Basal area of trees removed during thinning, in m 2   ha 1 .
  • dbh_YFT: Diameter of trees removed during thinning, in cm.
  • S_YFT: Stock (volume) removed during thinning, in m 3   ha 1 .
  • CAI Current annual increment of the standing stock, in m 3   ha 1 yr 1 ; a measure of the stand’s current productivity.
  • MAI: Mean annual increment of the standing stock, in m 3   ha 1 yr 1 ; the average yearly volume increase from establishment to the current age.
  • ABV_CO2_SINGLE: Above-ground potentially CO 2 stock in a single tree, in tonnes (t).
  • ABV_CO2_YFT_SINGLE: Above-ground potentially CO 2 stock for a single tree removed during thinning, in tonnes (t).
  • ROOT_CO2_SINGLE: Belowground potentially CO 2 stock in a single tree’s root system, in tonnes (t).
  • ROOT_CO2_YFT_SINGLE: Belowground potentially CO 2 stock from a single thinned tree’s root system, in tonnes (t). Note: We assume that the root biomass initially remains in the soil post-harvest and decomposes over time.
  • FULL_TREE_CO2: Sum of ABV_CO2_SINGLE and ROOT_CO2_SINGLE.
  • STAND_CO2: Product of FULL_TREE_CO2 and N, in t  ha 1 .
  • FULL_TREE_CO2_YFT: Sum of ABV_CO2_YFT_SINGLE and ROOT_CO2_YFT_SINGLE.
  • STAND_CO2_YFT: Product of FULL_TREE_CO2_YFT and N_YFT, in t  ha 1 .
  • TVP_CO2: Total CO 2 production of the stand over its lifetime, in t  ha 1 .
  • MAI_CO2: Mean annual increment of potentially sequestered CO 2 , in t  ha 1   yr 1 .
  • CAI_CO2: Current annual increment of potentially sequestered CO 2 , in t  ha 1   yr 1 .
Table A1. Beech—Site Index −I.
Table A1. Beech—Site Index −I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
0− 1000000000000000000000000
5− 12221212560216224100000200122015
10 1 3552523112043135482000003902539210
15−15774735168154198723000005903759214
20−1710959462241752610964000007904979319
25−14046812126125828019632121205000009906199424
30−12561121614816941485784015197700000127054242829
35−11761151916112013380061047172838000001940663751127
40−11214182218142417454861251183759000002470684951224
45−18952124201729215319514551947110000003020696201425
50−16972326222033255198518572056811000013550717441525
55−15652528232337295132521592066612110014101728711625
60−1470273024264133494424602076513110014621739961725
65−13992932252846371714276020863131100151517211211725
70−13423133263150408574296119960141100256217412431824
75−129632352734544434643261191055142200260927213621824
80−125734362837574773943460191149142200365527314811924
85−122435372840615093333660181242153200370027215981923
90−119636382944655412833859181333153300474637117161924
95−117237403047685722434059181422154300578737118271922
100−115238403151726012134258181510155300684037219522025
105−113440413154766291834557171596156400787946620572021
110−111840423258796571634757171680157400891446621572020
115−11054143326382684143505616176315850088735652182195
Table A2. Beech—Site Index 0.
Table A2. Beech—Site Index 0.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
00000000000000000000000000
50222121032711522010000018081814
10034424196542210440100000350163517
150566362898043146602000005302553211
2006985838130755197813000007103371214
25081110610481634662491013000008804188318
300333391312712571961772911121400000106049106421
3502200121615915881134683513188500000136045230725
400153515181712191236655103915261600000197056347923
4501111182118152315842451243163398000002460574531021
500850202320172619426151545164218000002930595581121
550679222521203023017141847175049000003380606631221
6005602427222234265119421491758710110013831607691321
650472262823253830087424501767210110014291618761321
700405273024284133367426501775611110014741619821421
7503522931253045366544295117839111100152016310921522
8003073032263348398443315116922122100255716211911520
85027031342736524283733351161004122200259826212931520
90023933352838554583233551161084122200364226314001621
95021234362841594872733751161164123200368026215001620
100018835362944625152333951161242123300471636115971620
105016836373047655412034250151319134300475436116951620
110015136383050685671834450151395135300578536217891619
115013537393154715931534649151469135400681945918821619
120012238403157746171324849151542136500785755919791619
125011039403260766401225148141614137500888656120691718
Table A3. Beech—Site Index I.
Table A3. Beech—Site Index I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
01-000000000000000000000000
51-12212821711311600000016051602
101-3442315434227332100000330113315
151-46635236512310448100000490164917
201-678463186734145632000006502265210
251-7995839108445177792000008202782212
301-8111161046130156218953000009803398315
3513028101313811541518672410111300000114038114317
4012083121515101482945582811167400000141035214520
451148715181712181125964103112228500000192034299717
501110417201814211433824123413293600000232046385817
55187919212017241742254153614361700000274048475918
60172121232119282061594173814430700000314049563918
651604222522213123711642039145018100013520506521018
70151624262324342678832241145728110013931517431118
75144725272426382976932441146439110014321518331118
80139127292428413255632742147139110014711529241218
851344283025314435346329431478491100150315210081217
9013052931263347380393314314854102100253915310971218
9512733032273550406333334314923102200257225311831217
10012453132273853431283354314991102200260625312701317
105122132332840564562433743141059103200364125313591318
110120032342843584792134043131126103300367135414421317
115118133352945615021824243131191103300469535215181315
120116534353048635241624443131256104300472435316011317
125115135363050665461424642131320114400575245316821316
130113935373053685661324842131383115400678045517641416
135112736373155705861125042121445116500680455118391415
140111736383158736061025242121505116500782755019111415
14511083738326175624925441121565117500885854919931416
Table A4. Beech—Site Index II.
Table A4. Beech—Site Index II.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
02-000000000000000000000000
52-11211514401211000000013031302
102-233221128711422010000026062613
152-345241643112633110000039093915
202-4563521574238341100000520135216
252-5784627718249451100000650166528
302-68957328613411561200000770197729
352-710116837100535136722000009002290211
402-911127104311484615782200000103025103312
40231061012148114812924617892200000116028116314
45222471214159147385948209137300000137027192415
5021670141617111699577492310186400000183027265514
552127816181813201263933102610239400000216036334614
602100617201916221532723122811294500000250037405714
65284419212018261811623162911351500000288038481715
70271820222119282071263183112409600000319040552814
7526192224222131233993203212467600001351041625814
8025382325232334259803213312526711001384142700915
8524732426242537283663233412584711001415143774915
9024182527242740307543253512643711001445143847915
95237326282529423304532835127017110014751449211015
100233527282631453523833036127598110025041459941015
1052303282926334737432332361281782100253314510681015
1102276283027355039528234361187482200256224611431015
1152252293127375241524236361193182200258324612101113
1202231303128395443421238371198682200361024712841115
12522133032284156453182413711104183300363534613551114
13021973132294358471162433611109683300365334614191113
13521833233294560488142443611115083300467934514901114
14021703233304762505132463611120394300470034515551113
14521583234304964521122483610125594400572244616241114
15021473334305166537112503610130794400574144616901113
Table A5. Beech—Site Index III.
Table A5. Beech—Site Index III.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
03-000000000000000000000000
53-1121141340111800000012021201
103-22322926911211500000025042512
153-345231340312422300000037073714
203-456341853712533110000050095015
253-5684622672236338100000620116216
303-6795727806247446100000740137427
353-79115831940249554100000870158728
403-81012693610753510561100000990179929
4533527911147104012093611669200000112020112211
50326741113158136185336137103200000131019170312
553206812141610158460638168141300000163020222410
6031634141618121810743439188182300000192020271510
65313191617191320130315310209225400000221028328511
70310871719201523153232312229270400000252029388612
7539361820201726176152315239316400000279031446612
8038111921211828198125316259362400000306032505612
8537092022222031219103218269409500000331033563712
9036242123232233239852192710456500001358034624712
9535542224242336259702212810504510001385035686712
10034962324242538278582232810551611001408136745712
1053447242525264029749225299598611001431136804812
1103406252625284231441227299645611001459137868813
1153371252626304433135229309692611001479137926812
1203340262726314634830231309738611001499138983811
12533142628273348363262333097846110025211381043812
13032922728273450379232353098306220025432391104812
13532712728283651393202373198756220025582381157911
14032532829283753407182393199207220025782381216912
14532372829283954421162413199647220035982381273911
150322229302940564341524231910087230036163401331912
Table A6. Spruce Site Index −I.
Table A6. Spruce Site Index −I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
0−1-000000000000000000000000
5−1-335443628412854920000041084126
10−1-67117972568341610985000008201682412
15−1-1010161113108853462515146700000123024123618
20−11372131422141814411376833191951000000164032164823
25−18351718262023212537612432230512000002320453101229
30−16292021312528280206518482342214000013150464381526
35−1568232434283234961532502454116110014331476041733
40−1524262738303641744436512466016110015201477371827
45−1471293040334048252432512377717110015531468171816
50−1423313243364454648432512389118110016061459141820
55−138733344539476073543650221003181100267314410251922
60−136334354841506662434350221111182200274824211421923
65−134636375043537221834849211217192200283524212702026
70−133237385245567751435349201319192300390933913832023
75−132038395446598271235748201418192301397633914892021
Table A7. Spruce Site Index 0.
Table A7. Spruce Site Index 0.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
00-000000000000000000000000
50-234242136412643020000029072914
100-55857427273312760300000570145739
150-7813711641090451911915000008602286413
20021611011171014851454672514121600000115029115618
25013291314211419140832593418210800000165032227922
3009001617261924199429512381930610000002260403271120
3507082020302328259192517412040712000002960394361222
400641222333263231967428422051013010013881395681426
450604242536273537937437422061214110014951407141629
500564272838293943739435432071314110015241397821614
550519282940324249446432432081215110015461398431512
600473303143344554845331431990915110015901389261516
65043432324536475993933343191004151100164413810181618
70040433344738506493133643181096161100269913811111618
75038134354940526952334143181186162200276123712101620
80036335365042547401734643181274162200282223613071619
85034936375243577811435043171359162300387933513991618
90033637385345598211335243161441162300391233514671614
95032437385446608581335243161522162300393433615251612
Table A8. Spruce Site Index I.
Table A8. Spruce Site Index I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
01-000000000000000000000000
51-223231623012532610000023062314
101-44746324592310552200000450124527
151-6710694868935158783000006801868311
201-8913812649184620101044000009102491415
25122111011161015801148682513130500000113031113518
301149713142113191277145103015206700000162031223722
351108316162417231774144123217289800000211035307917
401863181928202723022041534173759000002650333941018
4517552021312330282108421341746210000003220334841118
501705222333243333449430351755011010014071336011223
551669242535263638536334361763612110014761337041321
601631262738283943439333361772112110015051347671313
651587272840294148144330371780512110015281348241311
701542283042314452545330381688713110015651348951314
751501303144334656741331381696713110016051349701315
80146631324535486063533339161046131100164313410411314
85143532334737506443033539151122131100268313411161315
90140932344839526782733740151197131100271613611841314
95138533344940537112433940151270132100274613512501313
100136334355042557422234140141341132200277823513161313
105134435365144567712034241141411132200280723513801313
110132535365245587981934341141478132200382823514361311
Table A9. Spruce Site Index II.
Table A9. Spruce Site Index II.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
02-000000000000000000000000
52-223231116811422010000018051813
102-3353522335238439100000360103616
152-55848345033412659200000540155428
202-67106104567145157793000007202072211
252-89138135683847199983000009002590314
3022496101016915671006582311118400000108030108417
35218161213201219106680592513183500000147028205619
402137314152315221484434112714252600000188030276714
452110016172617251922734132814323700000226029343813
50294018192820282371603162815396800000269028414814
5528502021302130281903212915470800000324028498917
60279122223323333245932630155439000003800295821017
652745232435243536546329311461510010014321296631016
702703242537263740441331321468610110014711307321014
752664262639273944140331331475710110015111318031114
802624272840294147640331341482610110015341328571111
852584282942304350840331351489310110015611329171112
90254428304332445384033136139591111001576132964119
95250529304433465663933137131024111100160413310241112
100246730314535475923833237131088111100163113410851112
105243131324637486163633238121150111100265213411401111
110239831324739506393433338121210111100267513411981111
115236632334841516603233439121270112100269913412561112
120233532335043526793033539121328112100271813313081110
Table A10. Spruce Site Index III.
Table A10. Spruce Site Index III.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
03-000000000000000000000000
53-11212108611311800000017031702
103-334342017212533610000034073413
153-4474629258238455100000510105115
203-56958393442510573200000680136827
253-7711611494303613691200000850178529
303-88138135851637168110300000102020102310
353-910169156860248189128300000119023119312
4032261101118101778688492110146400000136027136314
453177012132112201124914102211202400000158028213515
503142814152314221473424112312260500000191026272512
553119816172616251842303132412320600000224025329612
603104917182818272191503162412380600000262025392713
6539531920302029254953202612441700000305025459714
7038932021322131287603252712501700000359026539816
7538322122342333319613252812560800000384026590810
8037842223362434348483283012619801001425127658814
8537412424372536375433303112677801001462129725913
903699242538263740143330321173581100147913077199
953655252639283842444329331179181100149613081999
10036092627402940445453293411846811001518131871911
10535642728423141465463293411900911001535132920910
11035182728423242483463293511953911001552132968910
1153472282944344350046329351010059110015731321021911
1203426283045364451546329361010579110015921321072910
Table A11. Pine Site Index −I.
Table A11. Pine Site Index −I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
0−1-000000000000000000000000
5−1-33533284464322750300000350203527
10−1-671157568927544131015000007003970414
15−1-910168108513381186720152800000106059106521
20−1242412132110141131784151089272021000000141078141728
25−1150915162414171559141113812432513000001730663181335
30−110451718271821195464916722243614000002160574171420
35−17422021292224232303717642053815000002600505121519
40−15762223312528268166621571963116000013100476091519
45−1479242532283130297526521771616100013580447011618
50−1417252633313433462430471679516110014051417891618
55−1373272834333836444433431586816110014451388671616
60−1340283035354139333335401493716110014821359381614
65−131330313637444202733737131001151100251413310031513
70−129131323639474472233934121061151100254113010601511
75−127232333641504711824132111118152200256922711151511
80−125733343742524951524330111172152200259822611691511
85−124534353744555171324529101223142200362522612221411
90−12343436374558539112482710127214220036482241269149
Table A12. Pine Site Index 0.
Table A12. Pine Site Index 0.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
00-000000000000000000000000
50-33523245413217540200000280132816
100-56947481082643411814000005602756312
150-89146107216229650161226000008304083418
20034041011188139621631286721162800000111054111624
2502196131422111613312071010652026411000001510582631130
30015151516241420167682812601935912000001750493351114
35011321718271723200383715551844713000002110444161216
4008501920282026230282616511652913000002450404891215
4506802022302329259170520471560513000002870385691316
5005742223312632287107423431467514000013300366481316
550503242532283531371426401374214100013690347211315
600451252633303733851429371280413110014031337881313
650412262734314036139332351286313110014341318491312
700380272834334238432334331191813110014651299101312
750354282935354540526336311097113110014931289661311
80033229303536474262223830101021131100252012710191311
85031530313638504451824028101069131100254812610731311
900299303236395246415242279111412120025712241120129
950286313236405448113244269115812120025902231162129
1000275323336415649811245258119912220026092211202128
1050265323436425851410247248123912220026272211241128
110025633343643605309249238127812220036452201280128
115024833343644625448250227131511220036582191312116
120024034353644645588250227135011220136682201342116
Table A13. Pine Site Index I.
Table A13. Pine Site Index I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
01-000000000000000000000000
51-2242321309221033110000023082314
101-45746436174320762200000450154528
151-67115964926552910944000006802368312
201-89157128612347739131255000009103191416
25131411012199151071543984916156600000113038113520
301219512142111181379478104916234800000150044232824
351160914162414211655867124615309900000170038291812
4011245161726162419136461444143791000000201035356913
4511018181927182621622751741134451000000233033421913
5018291920282029239188417391250710000002590314781011
5517032022302331261126420371256610000002920305421013
601615222330253428288423351162210000013250296041012
651550232431263630265325331167410000013580286641012
701500242532283832150328311072510110013841287181011
751461242633304034039330301077310110014131267741011
80143025263331423573133228981810110014411258261011
85140526273432443742523527986210110014691248791011
9013832728343346389212372689041011001491124925109
9513652728343448405182392589451011001511123967109
100134928293435504191624024898310110025311231010109
1051335283035365143314242238102110120025482221049108
1101323293035375344612244237105710120025682201090108
1151312293035385545911245227109210120025812201122107
120130130313539564711024621711259120025922191153106
Table A14. Pine Site Index II.
Table A14. Pine Site Index II.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
02-000000000000000000000000
52-223131821011622310000019051912
102-3463535420231244720000037093715
152-56948526303418670200000560145627
202-78126117083945238933000007501975210
252-810157148810495729101174000009302393312
30233101012189161051259683512140500000112028112415
352247112132011191298396103612200600000143027198617
402190413152212211515665113612258600000161030246610
452152015162414231723855133511314700000183028296710
502125716172516261922634153311367700000206027346710
552107517182618282101814173210418800000234026400711
6029141819282030228161417311046680000025102444178
6527951920282131244119319309513800000279024493810
702705202129233326090321289557800000304024542810
752636212230243527569323278600800001329023591810
802582222331263729054326268640800001354023639810
852540222331273830442328258680811001380123687810
90250623243228403173423025871881100140312273389
95247723243229413302823224775481100142412277589
100245324253230433422423423779081100144612281989
105243224253331443542123622782481100146512286088
110241425263332463651823822785781100148212189888
115239825263333473761623921688981100149812093487
120238325263334483861524021692081100150912096586
Table A15. Pine Site Index III.
Table A15. Pine Site Index III.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
03-000000000000000000000000
53-112121410211311700000016031601
103-335252820512623410000031053113
153-4474742308231035210000047084714
203-56959564102413569200000630106326
253-7711611705123516686200000790137927
303-89147148461546207104300000940159429
353-910168169871847238121300000110018110310
4033023111218101811282058269138300000126020126311
45324281213201120129596410279182400000149021190413
5031991131421122214543741127922540000016702323158
5531668141523142416132341227826750000018102226757
6031428151624152517524041426830850000019802130558
6531247161725162718918131625834750000021702034558
7031110161826182820213731725838460000023802038568
7531005171826193021410531924742160000025902042668
803902181927203122610431923745660000026901945666
85381918202821322378232023749060000028801949468
90375319202822342486632222752360000030801953368
95369919212924352585422422655560000032901957368
100365320212924362684522621658660000134401960767
105361520213025372773822721661660000136001964267
110358220223026382873322920664560100137711967767
115355421223127392952823120667460100139211871167
120352921223128403042523219670161100140811874567
Table A16. Douglas fir—Site Index −I.
Table A16. Douglas fir—Site Index −I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
0−1-000000000000000000000000
5−1-4574426000063320000038003833
10−1-891399531000116540000076007656
15−11091121420141379100017987000001150011589
20−152417192721201885673820262301200000162012174912
25−12752224333027306249413403138616100011920382421014
30−12662628383633417752757345541811001311143661225
35−12692931434040517164171357272111002451115081528
40−12723234474346610165783359032323002618336771734
45−12623537504652692106638934107524240137284398271830
50−12413740524958768236589334124525230037593779341922
55−121039425553648352865296331409263300476137910161816
60−118141445757698972965197321567264300478738311251922
65−115543465862759552665498311723264300581738612411923
70−1135454760668010062165898301872275410685648513662025
75−1118464961708510531656296292016276510788057914682020
80−1106485062749010981256795282154277611991667015742021
85−1964952637895113710571942722892787111095476916812021
90−1855053638299117585749326241927108111196086117481913
95−17851546486104121194749025254527118111399887018562022
Table A17. Douglas fir—Site Index 0.
Table A17. Douglas fir—Site Index 0.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
00-000000000000000000000000
50-3454418000042220000034003425
100-671178371000845300000670067410
1501815911161112551000126740000010100101715
200106914162316181437462615211729000001870111981019
2506741820292324242395411322630212000002720393221325
3005172224342930338156520482944615100013670504681629
350442252839333642775631613059717110014711566271832
400401283042374151041643713175119110015861618032035
450371313346404758530651773090320120026892659712234
50034333364842526542965281301054212200275127011042226
55031335385045587172965084291201222200379327112162223
60028437405248637752965085291344222300383637313332223
65025739415452688292765186281484233300388937414602225
70023340435655728782455386271619233300493837415832325
75021242445758779232155685261750234400599647517152326
800194434658628296618559842518762444005104547318372324
8501784447586587100516562832419992455106108957419552324
9001634548596891104214564822421182465117112757120642322
9501504649607195107714464802322332475118117357321832324
100013747506075100111214464782223482475119120157522862321
1050124485161781041147144657622246324851110122157723822319
11001114952628210911821446574212578241061111122567824642216
1150985053638511312171446572202693241161112119968025192211
Table A18. Douglas fir—Site Index I.
Table A18. Douglas fir—Site Index I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
01-000000000000000000000000
51-335342423101242810000033023324
101-669684946212585730000067046739
151-8101491274694148128640000010007100513
201161411131912169892525101611460000013409134717
251107315172517211785413924212189000002180162421022
3017681921302227259305514392433811000002960443651224
3516152224352732337154521512646713100013820525021428
401530252738303741085629592659915110014681566441628
451480272942334247850638652773116110015621577951830
501445293244364654035646692686317120016462599391929
5514163134463851599306497226993181200271326210671926
60138733354840566532954973261121191200275426311722021
65135935375042617032854974251245192200279026312712020
70133136385144657502754974241366202200281826313621918
75130637405347707932654974241484202200385026414581919
80128238415449748342455073231598203300388336415561920
85126040425452788732255272221709203300391036416461918
90124141435554839092045371221817203300494136317401919
95122242445656879431945470211921204300496736218281918
100120442455760919751845469202023204300599435919151917
10511874346586395100617454682021212053106103635820141920
11011714447596699103516455671922172054106108445821201921
115115645476070103106215456651923092064107113645822301922
120114145486274107108914457631824012074108116945623191918
Table A19. Douglas fir—Site Index II.
Table A19. Douglas fir—Site Index II.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
02-000000000000000000000000
52-234241526801131610000020012014
102-457573053602253320000040034028
152-681171144804134850200000600460312
2022207810149145910721351066300000800580416
25215241214211319122683371616145600000162013180720
3021103161726172418842041129192418000002340352881022
3528501920302128254253516402134610000003070444041223
4027002123342532317150521482245711000013750495211323
452609242637283737691527542357013110014481526461425
502553262840304143257534582368414110015261527761626
552513273042324548539541602279714110015981529001625
6024822931443450534315466222908151200166225310161723
65245630334636545812754963221017161200270625311141719
70243132344737586242555063211123161200274625412071719
75240733354839626662455063211228161200276625412811715
80238434365040667052345062201329172200278725313561715
85236235375042707422245062201428172200280625314281714
90234136385144747762145061191524172200281825214921713
95232037395245788102144960191618172200383625215621614
100229938405247828412144959181709172200385225116291613
105227838415450868712144858181797173200387125116981614
110225939415552909002044957171883173300389835117771616
115224040425655949281845056171967173300492734818531615
120222340435857989541735055162048174300496134719341616
Table A20. Douglas fir—Site Index III.
Table A20. Douglas fir—Site Index III.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
03-000000000000000000000000
53-2232372880001700000014001413
103-345361457600031410000029012915
153-568592286501042110000043014328
20328366810713291153010528100000570157310
2532032101117101774804258118230000011108120513
30315031314221421127529392014154500000176015200716
353116016172617251803434123017238700000241035299920
403938182030202823322251637183288000003000403981020
453794202233233228414452143194229000003590445011121
503699222436263633295526471951710000014170456051221
553634242638284037865531491961211110014781467111321
603588252740304342246536511970712110015331458101420
653553262842314746435541521980012110015881459101420
7035262830433251504284465218892131200164224510091420
7535022931443454542234495218982131200168124310921517
80348230324535585782145152181070131200171524511711516
85346330334636626131945252171157141200274124412401514
90344531344737666461845351171241141200275324312951411
9534263234473869677194515016132314120027522441338149
100340733354839737081944950161403141200275924213871410
105338733365040777372044849161481142200277024314401411
110336834365142817641944848151557142200278924115001412
115334934375244847911934847151631142200280824215611412
120333135375345888171834846141703142200282624016201312
Table A21. Oak Site Index −I.
Table A21. Oak Site Index −I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
0−1-000000000000000000000000
5−1-3442412000032010000026002623
10−1-6774724100074030000052005237
15−13126811117113610001060400000790079510
20−11923121413914721203572913126600000118029147714
25−1137514161412181095495113514197800000167040237918
30−11063161816142114431251439152719000002160433291118
35−18601820181624178203416411534610000002670454251219
40−17152022191827209145419421541910000003120475171318
45−16052223202130238110421431449011000013550486081418
50−1519232521233326486423431456011110013921476921417
55−1450242622253528969325431462811110014251477721416
60−1395262723273831256327431369412110014561478491416
65−1350272823294133345329431375712110014851469251415
70−1313282924314335237332431281912110025131469991415
75−12832830243346370303344212879121100254414410741415
80−12572930253549386253374212938122200257224311451414
85−12353031263751402223394111994122200359824412161414
90−121731322639544161924141111049122200362424312841414
95−120031322741564291624340111103122301364534113471412
100−118632332743584411524540101155123301467034214141413
105−117333342845614531324739101205123311469134114751412
110−116133342847634641224939101255113311470734115321411
115−115134342849664741025138101303113411572843715901412
120−1141343529516848392533791349114411574143616391410
125−1133343529537049292553791395114411676143916991412
130−1125353629547350082563691439114511677653717511310
135−1118353629567550872583691483115511778953517991310
140−1112363730587751572603581525115511781053818581312
145−110636373060795226262348156611561188226351905139
150−110036373062825295264348160711661188376311951139
155−19537383064845355266338164611671198497341998139
160−1913738306686541526833816851077121086773620501311
165−186373831678854642693281723107712108707302084137
170−182383831699055142703271760108822118808312124128
175−178383931719355642713171796108822118848322161127
Table A22. Oak Site Index 0.
Table A22. Oak Site Index 0.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
00-000000000000000000000000
50-233231041011421810000024052413
100-5664621819238436200000470104726
150-7886932122834137533000007101571410
20023209111181242163845179714000009401994513
2501619121413101472701482310123500000131024175716
300123514161512171023854112611180600000170031244814
35098916171614201312464142812238700000219032325916
400815181918172316017331630122967000002590343991015
450685192019192518713031831123548000002970354721015
500584202220212821210131932124118000013290355401113
55050422232023302368032133114688100013610376081114
60043923242125332586432333115239110013901376731113
65038824252227352795232633115779110014191377401113
70034625262229382984232834116309110014481378061213
75031126272331403173523034106829110024741388701213
80028226272433423332923334107329110025021379351213
85025827282434453492423534107829120025282369981212
900237282925364736421237341083092200255423610601212
95021828292538503781823934987792200357623511171211
100020229302640523901624133992492200359823511751212
105018730302642544021424333996992200361423412251210
1100175303126445641413245339101393311463733512831212
1150163313227465842412247339105693311465433613361211
1200153313227486143410249328109893311467533313891211
12501433232274963443925132811409341156884321435119
130013532332851654529253328118094411570543514871110
135012732332853674608254318122094411672043415351110
14001203334285569468725631812599451167365321583119
14501133334285772475725831812979551177475341628119
150010734342958744826260308133595511776353216761110
15501023435296076489526230713719561187816291723119
1600973435296278495526430714079661187936311765118
1650923535296480501526629714439661198046321808119
1700873535296682507426729714789671198067271838116
17508335363067845124268297151297712108137281872117
18007935363069865174269287154597722108197291907117
Table A23. Oak Site Index I.
Table A23. Oak Site Index I.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
01-000000000000000000000000
51-22222819311311310000020032012
101-445351638612532710000040064024
151-677572557924844020000060096026
201-89979337722510654200000800128038
2511974101112912419653613767300000100015100410
301147212131311146550238168108400000129017161512
3511161131515131690311310189151400000162020215611
4019471516161519114215312209195500000204022279713
4517881618171721139159214219240500000238024337712
5016661819181924162122216229286600000273025397812
551571192019212618496218239331600001301026451811
601495202120222820676220249376600001329027506811
651434212220243022661222249421610001355028560911
701385222321263324549224259465711001382128615911
751345232422283526340226259508711001408129671911
801312242422303728033228268551711001433129726911
851284242523323929628231268593711002456130778911
901260252623344131124233268634711002482130834911
951239262624364432521235278675721002504130885910
1001221262724374633818237278715722002524229935910
1051204272825394835016239278754722003544229984910
1101190272825415036214241278793722003562229103199
11511772828254352373132432788317220035822301081910
1201165282926445438312244278868733114598331112799
12511552929264656393112462779057331146163311176910
1301145293026485840210248277941733114629331122099
135113730302650604119250277977733115646330126799
1401129303127526241982522771012744115661429131199
1451121303127536442772542771046744116670428134897
15011153131275566434725627710807441166914301400910
1551109313227576844162582671113745116705528144298
1601103313228587044862602671146755117713530148098
165198323228607245452622661179755117727527152198
170193323228627446052632661210756118734628155697
175188323328647646652642661242766118735629158796
180184333328657847142652661273766119746624162197
Table A24. Oak Site Index II.
Table A24. Oak Site Index II.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
02-000000000000000000000000
52-2222261200121900000017021711
102-344341124012321810000035033512
152-556561736013432710000052055223
202-678682348114633610000070077024
252-8910892860125844520000087088735
3021838911129113472126955420000010501010537
3521415111213111353423281068420000012101114348
40211331214151316742822912611630000015201218659
452930141516151894203211137149300000185015233510
5027771516171720115153212147184400000217015281610
552659161718182213511821415721940000024201632268
60256717181820241559221615725440000026801736569
65249418191922261747321716728940000129501841169
70243519202024281925821917732451000132001945579
75238820212026302104722118735951000134102049778
80234921212127322263922418739351100136612254379
85231721222129342423322619742851100138912258979
90228922232231362572822819746251100141012363379
95226523232233382712423020749651100243412367979
100224423242334402842123220752951100245212372178
105222524242336422971923321756352100247212476579
110220824252438443091723521759552100248912580678
115219425262440463201523721662862200350822585079
120218125262441483311323921666062200352522489078
125216926262443503411224122669162200354122593278
130215826272545523501124322672362210455422597078
1352148272725465435910245226754633114569325101078
140213927282548563689247226784633114583325104978
145213128282650573768249226814633115598325108988
150212428282652593847251226844633115614324112888
155211728292653613917253226873644115627426116688
160211129292655633986255226903644116641424120488
165210529292656654056257226931644116650426123987
170210029302658674115158226960655117661523127377
17529530302760694175159226988655117669524130576
180290303027627142251602261016655117674525133576
Table A25. Oak Site Index III.
Table A25. Oak Site Index III.
AgeSINHH100BAdbhdbh100SN_YFTBA_YFTdbh_YFTS_YFTCAITVPMAIABV_CO2_SINGLEABV_CO2_YFT_SINGLEROOT_CO2_SINGLEROOT_CO2_YFT_SINGLEFULL_TREE_CO2STAND_CO2FULL_TREE_CO2_YFTSTAND_CO2_YFTTVP_CO2MAI_CO2CAI_CO2
03-000000000000000000000000
53-112125510111700000013011301
103-233331010202211400000026022612
153-445451515302222110000039023913
203-557562020413322810000052035214
253-678782425614433610000065046525
303-7810892930715434310000078057826
353-9101210113435815545010000091069127
40314281011131112394091664571000001040610437
45311461112141314552821764802000001320714638
50394112131514167220518751042000001590717947
553786131416161889155110851292000001890821748
6036681415171820107118111851553000002120924947
6535761516172022124921139518130000023501028247
70350416171821241407211410520730000125601131446
75344617181923261575811610523430000127901235057
80339918181925281724711811526131000130201338657
85336018192026291873912012528831000132401442257
90332619202028312023312212531541000134301545657
95329820202130332162912413534141100136411649257
100327320212132352292512614536841100138111652657
105325121222233372412212714539541100240111756357
110323222222235382531912915542141100241811759757
115321522232236402651713115544841100243611863367
120320022232338422761513315547442100245311866867
125318623242340442861413516550042100346811970267
130317324242341462961213716552642200348021973366
135316224242443483051113916555242200349421976667
140315224252445493141014117557742210350721979966
14531432525244651322914317560343210452221983267
15031352525244853330814517562843211453821986867
15531272526255055338814717565343311454832190066
16031202626255156345714918567843311556132193367
16531142626255358352615018570243311557431996566
17031082627255460358615218572744311558232099366
175310227272556623656153185751444116592422102466
18039627272558643715154185775444116593419104464

Appendix B. Additional Figures

Appendix B.1. Beech

Figure A1. CO 2 stock of beech for different site indices and different ages.
Figure A1. CO 2 stock of beech for different site indices and different ages.
Forests 16 01580 g0a1
Figure A2. CO2 stock of beech for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Figure A2. CO2 stock of beech for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Forests 16 01580 g0a2
Figure A3. Single tree CO2 estimation for beech (above- and belowground biomass).
Figure A3. Single tree CO2 estimation for beech (above- and belowground biomass).
Forests 16 01580 g0a3
Figure A4. Total CO2 production of beech for different site indices and different ages.
Figure A4. Total CO2 production of beech for different site indices and different ages.
Forests 16 01580 g0a4
Figure A5. Mean annual increment CO2 of beech for different site indices and different ages.
Figure A5. Mean annual increment CO2 of beech for different site indices and different ages.
Forests 16 01580 g0a5

Appendix B.2. Spruce

Figure A6. CO2 stock of spruce for different site indices and different ages.
Figure A6. CO2 stock of spruce for different site indices and different ages.
Forests 16 01580 g0a6
Figure A7. CO2 stock of spruce for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Figure A7. CO2 stock of spruce for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Forests 16 01580 g0a7
Figure A8. Single tree CO2 estimation for spruce (above- and belowground biomass).
Figure A8. Single tree CO2 estimation for spruce (above- and belowground biomass).
Forests 16 01580 g0a8
Figure A9. Total CO2 production of spruce for different site indices and different ages.
Figure A9. Total CO2 production of spruce for different site indices and different ages.
Forests 16 01580 g0a9
Figure A10. Mean annual increment CO2 of spruce for different site indices and different ages.
Figure A10. Mean annual increment CO2 of spruce for different site indices and different ages.
Forests 16 01580 g0a10

Appendix B.3. Pine

Figure A11. CO2 stock of pine for different site indices and different ages.
Figure A11. CO2 stock of pine for different site indices and different ages.
Forests 16 01580 g0a11
Figure A12. CO2 stock of pine for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Figure A12. CO2 stock of pine for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Forests 16 01580 g0a12
Figure A13. Single tree CO2 estimation for Pine (above- and belowground biomass).
Figure A13. Single tree CO2 estimation for Pine (above- and belowground biomass).
Forests 16 01580 g0a13
Figure A14. Total CO2 production of pine for different site indices and different ages.
Figure A14. Total CO2 production of pine for different site indices and different ages.
Forests 16 01580 g0a14
Figure A15. Mean annual increment CO2 of pine for different site indices and different ages.
Figure A15. Mean annual increment CO2 of pine for different site indices and different ages.
Forests 16 01580 g0a15

Appendix B.4. Douglas Fir

Disclaimer for Douglas fir: We removed the −I site index because, although the CO 2 stock of an individual reference stem in the yield tables is higher for better site indices, the total CO 2 stock becomes lower when scaled by the lower stem count associated with the −I site index. This scaling effect explains why the overall CO 2 stock for −I is less than that of the 0 site index.
Figure A16. CO2 stock of Douglas fir for different site indices and different ages.
Figure A16. CO2 stock of Douglas fir for different site indices and different ages.
Forests 16 01580 g0a16
Figure A17. CO2 stock of Douglas fir for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Figure A17. CO2 stock of Douglas fir for different site indices and different ages based on stand expansion factors by Pretzsch [22].
Forests 16 01580 g0a17
Figure A18. Total CO2 production of Douglas fir for different site indices and different ages.
Figure A18. Total CO2 production of Douglas fir for different site indices and different ages.
Forests 16 01580 g0a18
Figure A19. Mean annual increment CO2 of Douglas fir for different site indices and different ages.
Figure A19. Mean annual increment CO2 of Douglas fir for different site indices and different ages.
Forests 16 01580 g0a19

Appendix B.5. Deviation Plots for Other Tree Species

Figure A20. Deviation of Pretzsch’ expansion factors to our results for spruce.
Figure A20. Deviation of Pretzsch’ expansion factors to our results for spruce.
Forests 16 01580 g0a20
Figure A21. Deviation of Pretzsch’ expansion factors to our results for pine.
Figure A21. Deviation of Pretzsch’ expansion factors to our results for pine.
Forests 16 01580 g0a21
Figure A22. Deviation of Pretzsch’ expansion factors to our results for Douglas fir.
Figure A22. Deviation of Pretzsch’ expansion factors to our results for Douglas fir.
Forests 16 01580 g0a22

Appendix C. Code Examples

Listing A1. R Shiny dashboard.
Forests 16 01580 i001a
Forests 16 01580 i001b
Forests 16 01580 i001c
Forests 16 01580 i001d

References

  1. Eaton-Rye, J.J.; Tripathy, B.C.; Sharkey, T.D. Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation; Springer Science+Business Media B.V.: Berlin/Heidelberg, Germany, 2012; Volume 34. [Google Scholar] [CrossRef]
  2. EU Commission. Commission Implementing Regulation (EU) 2018/2066 of 19 December 2018 on the Monitoring and Reporting of Greenhouse Gas Emissions Pursuant to Directive 2003/87/EC of the European Parliament and of the Council and amending Commission Regulation (EU) No 601/2012, 2018. Legislation. Available online: https://eur-lex.europa.eu/eli/reg_impl/2018/2066/oj/eng (accessed on 2 October 2025).
  3. European Parliament and Council of the European Union. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’), 2021. PE/27/2021/REV/1. Available online: https://eur-lex.europa.eu/eli/reg/2021/1119/oj/eng (accessed on 2 October 2025).
  4. Korosuo, A.; Pilli, R.; Abad Viñas, R.; Blujdea, V.; Colditz, R.; Fiorese, G.; Rossi, S.; Vizzarri, M.; Grassi, G. The role of forests in the EU climate policy: Are we on the right track? Carbon Balance Manag. 2023, 18, 15. [Google Scholar] [CrossRef]
  5. Bundesministerium der Justiz und Verbraucherschutz and Bundesamt für Justiz. Bundes-Klimaschutzgesetz (KSG), 2019. Bundes-Klimaschutzgesetz vom 12. Dezember 2019 (BGBl. I S. 2513), das Zuletzt Durch Artikel 1 des Gesetzes vom 15. Juli 2024 (BGBl. 2024 I Nr. 235) GeäNdert Worden Ist. Available online: https://www.gesetze-im-internet.de/ksg/BJNR251310019.html (accessed on 2 October 2025).
  6. Ministry of the Environment. Climate Act. 2022. Available online: https://www.finlex.fi/api/media/statute-foreign-language-translation/687510/mainPdf/main.pdf?timestamp=2022-06-09T21%3A00%3A00.000Z (accessed on 2 October 2025).
  7. L’Assemblée Nationale et le Sénat. LOI n° 2019-1147 du 8 Novembre 2019 Relative à L’énergie et au Climat (1). 2019. Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000039355955 (accessed on 2 October 2025).
  8. Minister for Environment, Climate and Communications. Climate Action and Low Carbon Development (Amendment) Act 2021. 2021. Available online: https://www.irishstatutebook.ie/eli/2021/act/32/section/15/enacted/en/html (accessed on 2 October 2025).
  9. The Assembly of the Republic Portugal. Climate Framework Law. 2021. Available online: https://www.bportugal.pt/sites/default/files/documents/2024-07/Law%20N.98-2021_EN.pdf (accessed on 2 October 2025).
  10. Ledermann, T.; Braun, M.; Kindermann, G.; Jandl, R.; Ludvig, A.; Schadauer, K.; Schwarzbauer, P.; Weiss, P. Effects of Silvicultural Adaptation Measures on Carbon Stock of Austrian Forests. Forests 2022, 13, 565. [Google Scholar] [CrossRef]
  11. Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
  12. IPCC. Land Use, Land-Use Change and Forestry, 5.4.1.1. Identification of Carbon Pools; Technical Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
  13. Hu, J.; Jåstad, E.O.; Rørstad, P.K. Exploring trade-offs in forest carbon storage: A cost-effectiveness study of Nordic forests and harvested wood products. For. Policy Econ. 2025, 179, 103619. [Google Scholar] [CrossRef]
  14. Howard, C.; Dymond, C.C.; Griess, V.C.; Tolkien-Spurr, D.; van Kooten, G.C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 2021, 16, 9. [Google Scholar] [CrossRef]
  15. Leskinen, P.; Cardellini, G.; González-García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Smyth, C.; Stern, T.; Verkerk, P.J. Substitution Effects of Wood-Based Products in Climate Change Mitigation; Technical Report; EFI Joensuu: Joensuu, Finland, 2018. [Google Scholar]
  16. Myllyviita, T.; Soimakallio, S.; Judl, J.; Seppälä, J. Wood substitution potential in greenhouse gas emission reduction–review on current state and application of displacement factors. For. Ecosyst. 2021, 8, 42. [Google Scholar] [CrossRef]
  17. Dong, L.; Zhang, L.; Li, F. Evaluation of Stand Biomass Estimation Methods for Major Forest Types in the Eastern Da Xing’an Mountains, Northeast China. Forests 2019, 10, 715. [Google Scholar] [CrossRef]
  18. Riedel, T.; Kändler, G. Nationale Treibhausgasberichterstattung: Neue Funktionen zur Schätzung der oberirdischen Biomasse am Einzelbaum. Forstarchiv 2017, 88, 31–38. [Google Scholar] [CrossRef]
  19. Marklund, L.G. Biomass Functions for Norway Spruce (Picea abies (L.) Karst) in Sweden. In Biomassafunktioner för Gran i Sverige; Rapport; Sveriges lantbruksuniversitet, Institutionen för Skogstaxering: Uppsala, Sweden, 1987; p. 43. [Google Scholar]
  20. Umweltbundesamt. Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2023: Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990–2021; Umweltbundesamt: Berlin, Germany, 2023. [Google Scholar]
  21. Dieter, M.; Elsasser, P. Carbon Stocks and Carbon Stock Changes in the Tree Biomass of Germany’s Forests. Forstwiss. Cent. 2002, 121, 195–210. [Google Scholar] [CrossRef]
  22. Pretzsch, H. Forest Dynamics, Growth and Yield, 1. softcover print ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
  23. Sanquetta, C.R.; Corte, A.P.; da Silva, F. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance Manag. 2011, 6, 6. [Google Scholar] [CrossRef] [PubMed]
  24. Li, X.; Yi, M.J.; Son, Y.; Park, P.S.; Lee, K.H.; Son, Y.M.; Kim, R.H.; Jeong, M.J. Biomass Expansion Factors of Natural Japanese Red Pine (Pinus densiflora) Forests in Korea. J. Plant Biol. 2010, 53, 381–386. [Google Scholar] [CrossRef]
  25. Konôpka, B.; Pajtík, J.; Šebeň, V. Biomass functions and expansion factors for young trees of European ash and Sycamore maple in the Inner Western Carpathians. Austrian J. For. Sci. 2015, 132, 1–26. [Google Scholar]
  26. Baral, S.; Lamichhane, S.; Koirala, A. Current status of improved forest management carbon offset projects in the US voluntary market. For. Policy Econ. 2025, 178, 103567. [Google Scholar] [CrossRef]
  27. European Parliament; Council of the European Union. Regulation (EU) 2024/3012 of the European Parliament and of the Council of 27 November 2024 Establishing a Union Certification Framework for Permanent Carbon Removals, Carbon Farming and Carbon Storage in Products. OJ L, 6 December 2024, 2024. PE/92/2024/REV/1, ELI: 32024R3012, in Force. Available online: https://eur-lex.europa.eu/eli/reg/2024/3012/oj/eng (accessed on 2 October 2025).
  28. Indrajaya, Y.; Weikard, H.P.; Mohren, G.; Van der Werf, E. Paying for forest carbon: Cost-effectiveness of the Verified Carbon Standard (VCS) remuneration scheme. Nat. Resour. Model. 2023, 37, e12387. [Google Scholar] [CrossRef]
  29. Kull, S.J.; Rampley, G.J.; Morken, S.; Metsaranta, J.M.; Neilson, E.T.; Kurz, W.A. Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) Version 1.2: User’s Guide (2024) (V1.2); Technical Report; Natural Resources Canada: Ottawa, ON, Canada, 2024. [Google Scholar] [CrossRef]
  30. Rosenkranz, L.; Seintsch, B.; Wippel, B.; Dieter, M. Income losses due to the implementation of the Habitats Directive in forests—Conclusions from a case study in Germany. For. Policy Econ. 2014, 38, 207–218. [Google Scholar] [CrossRef]
  31. Rosenkranz, L.; Seintsch, B. Opportunitätskostenanalyse zur Implementierung des naturschutzorientierten Waldbehandlungskonzepts: Neue Multifunktionalität. Landbauforsch.-Appl. Agric. For. Res. 2015, 3–4, 145–160. [Google Scholar] [CrossRef]
  32. Rosenkranz, L. Auswirkungen der Umsetzung von Naturschutzmaßnahmen auf die Forst- und Holzwirtschaft; University of Goettingen: Goettingen, Germany, 2016. [Google Scholar] [CrossRef]
  33. Regelmann, C.; Rosenkranz, L.; Seintsch, B.; Dieter, M. Economic Evaluation of Different Implementation Variants and Categories of the EU Biodiversity Strategy 2030 Using Forestry in Germany as a Case Study. Forests 2023, 14, 1173. [Google Scholar] [CrossRef]
  34. Regelmann, C.; Brinkord, M.; Rock, J.; Seintsch, B.; Dieter, M. Unveiling the Carbon Sequestration Potential and Opportunity Costs of Beech-dominated Forest Enterprises Decommissioned from Timber Utilization. Eur. J. For. Res. 2025. [Google Scholar]
  35. Schober, R. Ertragstafeln Wichtiger Baumarten bei Verschiedener Durchforstung, 4. aufl. ed.; Sauerländer: Frankfurt, Germany, 1995. [Google Scholar]
  36. Matthews, R.W.; Jenkins, T.; Mackie, E.D.; Dick, E.C. Forest Yield: A Handbook on Forest Growth and Yield Tables for British Forestry; Forestry Commission: London, UK, 2016. [Google Scholar]
  37. Décourt, N. Les tables de production. leurs limites et leur utilité. Rev. For. Fr. 1964, 8–9, 640–657. [Google Scholar] [CrossRef]
  38. Szymkiewicz, B. Tablice Zasobności i Przyrostu Drzewostanów Ważniejszych Gatunków Drzew Leśnych/Bolesław Szymkiewicz; Państwowe Wydaw. Rolnicze i Leśne: Warszawa, Poland, 2001. [Google Scholar]
  39. Stage, A.R.; Renner, D.L.; Chapman, R.C. Selected Yield Tables for Plantations and Natural Stands in Inland Northwest Forests; US Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1988. [CrossRef]
  40. Albert, M.; Nagel, J.; Schmidt, M.; Nagel, R.V.; Spellmann, H. Eine neue Generation von Ertragstafeln für die Baumarten Eiche, Buche, Fichte, Douglasie und Kiefer in Nordwestdeutschland; Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt; Universitätsverlag Göttingen: Göttingen, Germany, 2024; Volume 22. [Google Scholar] [CrossRef]
  41. Hansen, J.; Nagel, J. Waldwachstumskundliche Softwaresysteme auf Basis von TreeGrOSS—Anwendung und Theoretische Grundlagen; Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt; Nordwestdeutsche Forstliche Versuchsanstalt: Göttingen, Germany, 2014; Volume 11. [Google Scholar]
  42. FNR e.V. Waldpflege; Technical Report; Fachagentur Nachwachsende Rohstoffe e.V.: Gülzow-Prüzen, Germany, 2022. [Google Scholar]
  43. Kramer, H.; Gussone, H.A.; Schober, R. Waldwachstumslehre. Oekologische und Anthropogene Einfluesse auf das Wachstum des Waldes, Seine Massen-und Wertleistung und die Bestandessicherheit; Verlag Kessel: Remagen-Oberwinter, Germany, 1988; ISBN 3490056167. [Google Scholar]
  44. Kalkanlı Genç, Ş.; Diamantopoulou, M.J.; Özçelik, R. Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches. Forests 2023, 14, 2429. [Google Scholar] [CrossRef]
  45. Kublin, E. Einheitliche Beschreibung der Schaftform—Methoden und Programme—BDATPro. A Uniform Description of Stem Profiles—Methods and Programs—BDATPro. Forstwiss. Cent. 2003, 122, 183–200. [Google Scholar] [CrossRef]
  46. Vonderach, C.; Kublin, E.; Bösch, B.; Kändler, G.; Cullmann, D. Implementation of BDAT Tree Taper Fortran Functions. 2023. Available online: https://cran.r-project.org/web/packages/rBDAT/rBDAT.pdf (accessed on 2 October 2025).
  47. McMinn, R. Characterization of Douglas Fir root systems. Can. J. Bot. 2011, 41, 105–122. [Google Scholar] [CrossRef]
  48. Bolte, A.; Hertel, D.; Ammer, C.; Schmid, I.; Nörr, R.; Kuhr, M.; Redde, N. Freilandmethoden zur Untersuchung von Baumwurzeln. Forstarchiv 2003, 74, 240–262. [Google Scholar]
  49. Neubauer, M.; Demant, B. Wurzeln als Kohlenstoffspeicher: Untersuchungen zur Unterirdischen Biomasse von Birke, Eiche und Kiefer; Universitätsdruckerei Freiburg, Albert-Ludwigs-Universität Freiburg: Freiburg im Breisgau, Germany, 2016. [Google Scholar]
  50. Drexhage, M.; Colin, F. Estimating root system biomass from breast-height diameters. Forestry 2001, 74, 491–497. [Google Scholar] [CrossRef]
  51. Kramer, H.; Akça, A. Leitfaden zur Waldmesslehre, 5. überarb. aufl. ed.; Sauerländer: Bad Orb, Germany, 2008. [Google Scholar]
  52. Reineke, L.H. Perfecting a stand-density index for even-aged forest. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
  53. Lamlom, S.H.; Savidge, R.A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
  54. Scerri, E.R. The Periodic Table, 2nd ed.; Very Short Introductions; Oxford University Press: Oxford, UK, 2019; Volume 289. [Google Scholar]
  55. Paul, C.; Weber, M.; Mosandl, R. Kohlenstoffbindung junger Aufforstungsflächen; Karl Gyer Institut, Lehrstuhl fuer Waldbau der Technischen Universitaet Muenchen: Freising, Germany, 2009. [Google Scholar]
  56. Posit Team. RStudio: Integrated Development Environment for R; Posit Software; PBC: Boston, MA, USA, 2025. [Google Scholar]
  57. Nuske, R.; Staupendahl, K.; Albert, M. et.nwfva: Forest Yield Tables for Northwest Germany and their Application (0.2.0). 2025. Available online: https://cran.r-project.org/web/packages/et.nwfva/et.nwfva.pdf (accessed on 2 October 2025).
  58. Zhang, H.; Liu, S.; Yu, J.; Li, J.; Shangguan, Z.; Deng, L. Thinning increases forest ecosystem carbon stocks. For. Ecol. Manag. 2024, 555, 121702. [Google Scholar] [CrossRef]
  59. Erkan, N.; Güner, Ş.; Aydın, A. Thinning effects on stand growth, carbon stocks, and soil properties in Brutia pine plantations. Carbon Balance Manag. 2023, 18, 6. [Google Scholar] [CrossRef]
  60. Garcia-Gonzalo, J.; Peltola, H.; Briceño, E.; Kellomäki, S. Changed thinning regimes may increase carbon stock under climate change: A case study from a Finnish boreal forest. Clim. Change 2007, 81, 431–454. [Google Scholar] [CrossRef]
  61. Pretzsch, H.; Del Río, M.; Ammer, C.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Dirnberger, G.; Drössler, L.; et al. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2015, 134, 927–947. [Google Scholar] [CrossRef]
  62. Forrester, D.; Benneter, A.; Bouriaud, O.; Bauhus, J. Diversity and competition influence tree allometric relationships - developing functions for mixed-species forests. J. Ecol. 2016, 105, 761–774. [Google Scholar] [CrossRef]
  63. Rewald, B.; Leuschner, C. Belowground competition in a broad-leaved temperate mixed forest: Pattern analysis and experiments in a four-species stand. Eur. J. For. Res. 2009, 128, 387–398. [Google Scholar] [CrossRef]
  64. Burschel, P.; Krsten, E.; Larson, B.C.; Weber, M. Present role of German forests and forestry in the national carbon budget and options to its increase. Water Air Soil Pollut. 1993, 70, 325–340. [Google Scholar] [CrossRef]
  65. Wirth, C.; Schumacher, J.; Schulze, E.D. Generic biomass functions for Norway spruce in Central Europe–a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 2004, 24, 121–139. [Google Scholar] [CrossRef]
  66. Martin, A.R.; Doraisami, M.; Thomas, S.C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 2018, 11, 915–920. [Google Scholar] [CrossRef]
  67. Rivoire, M.; Le Moguedec, G. A generalized self-thinning relationship for multi-species and mixed-size forests. Ann. For. Sci. 2012, 69, 207–219. [Google Scholar] [CrossRef]
  68. Bravo-Oviedo, A.; Condés, S.; del Río, M.; Pretzsch, H.; Ducey, M.J. Maximum stand density strongly depends on species-specific wood stability, shade and drought tolerance. For. Int. J. For. Res. 2018, 91, 459–469. [Google Scholar] [CrossRef]
  69. Pretzsch, H.; Hilmers, T.; del Río, M. The effect of structural diversity on the self-thinning line, yield level, and density-growth relationship in even-aged stands of Norway spruce. For. Ecol. Manag. 2024, 556, 121736. [Google Scholar]
  70. Forrester, D.I.; Baker, T.G.; Elms, S.R.; Hobi, M.L.; Ouyang, S.; Wiedemann, J.C.; Xiang, W.; Zell, J.; Pulkkinen, M. Self-thinning tree mortality models that account for vertical stand structure, species mixing and climate. For. Ecol. Manag. 2021, 487, 118936. [Google Scholar] [CrossRef]
  71. Caicoya, A.T.; Biber, P.; del Río, M.; Ruiz-Peinado, R.; Arcangeli, C.; Matthews, R.; Pretzsch, H. Self-thinning of Scots pine across Europe changes with solar radiation, precipitation and temperature but does not show trends in time. For. Ecol. Manag. 2024, 552, 121585. [Google Scholar]
  72. Janda, P.; Tepley, A.J.; Schurman, J.S.; Brabec, M.; Nagel, T.A.; Bače, R.; Begovič, K.; Chaskovskyy, O.; Čada, V.; Dušátko, M.; et al. Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. For. Ecol. Manag. 2019, 435, 196–204. [Google Scholar] [CrossRef]
  73. Klein, D.; Schulz, C. LWF Merkblatt 27, 2023. Verantwortlich: Dr. Peter Pröbstle, Präsident der LWF. Bayerische Landesanstalt fuerWald und Forstwirtschaft. Available online: https://www.lwf.bayern.de/service/publikationen/lwf_merkblatt/022680/index.php (accessed on 2 October 2025).
  74. Rueter, S. Der Beitrag der Stofflichen Nutzung von Holz zum Klimaschutz. Ph.D. Thesis, Technische Universitaet Muenchen, Muenchen, Germany, 2016. [Google Scholar]
  75. Huynh, T.; Lee, D.J.; Applegate, G.; Lewis, T. Field methods for above and belowground biomass estimation in plantation forests. MethodsX 2021, 8, 101192. [Google Scholar] [CrossRef] [PubMed]
  76. Assmann, F. Waldertragskunde; Bayerischer Landwirtschaftsverlag: München, Germany, 1961; p. 490. [Google Scholar]
Figure 1. CO2 stock of Oak for different site indices and different ages.
Figure 1. CO2 stock of Oak for different site indices and different ages.
Forests 16 01580 g001
Figure 2. Total CO2 production of Oak for different site indices and different ages.
Figure 2. Total CO2 production of Oak for different site indices and different ages.
Forests 16 01580 g002
Figure 3. Mean annual increment CO 2 of oak for different site indices and different ages.
Figure 3. Mean annual increment CO 2 of oak for different site indices and different ages.
Forests 16 01580 g003
Figure 4. CO2 stock of oak for different site indices and different ages based on stand expansion factors.
Figure 4. CO2 stock of oak for different site indices and different ages based on stand expansion factors.
Forests 16 01580 g004
Figure 5. Deviation of expansion factors to equation-based calculation for the CO 2 stock.
Figure 5. Deviation of expansion factors to equation-based calculation for the CO 2 stock.
Forests 16 01580 g005
Figure 6. Screenshot from the interactive online application.
Figure 6. Screenshot from the interactive online application.
Forests 16 01580 g006
Table 1. Empirically observed and validated minimum and maximum ages of different tree species and site indices [40].
Table 1. Empirically observed and validated minimum and maximum ages of different tree species and site indices [40].
Tree Species/Site Index−I0IIIIII
Stand age range (years)
Spruce (Picea abies)20–7520–9525–11030–12040–120
Pine (Pinus sylvestris)20–9020–12025–12030–12040–120
Douglas fir (Douglas fir)15–9515–11520–12020–12020–120
Beech (Fagus sylvatica)25–11530–12535–14540–15045–150
Oak (Quercus robur/petraea)15–17520–18025–18030–18040–180
Table 2. Species-specific coefficients of the biomass function for trees H < 1.3 m [18].
Table 2. Species-specific coefficients of the biomass function for trees H < 1.3 m [18].
Species b 0 b 1
Coniferous0.230592.20101
Deciduous0.049402.54946
Table 3. Species-specific coefficients for the biomass function for trees H > 1.3 m, d < 10 cm [18].
Table 3. Species-specific coefficients for the biomass function for trees H > 1.3 m, d < 10 cm [18].
Species b 0 b s b 3
Spruce (Picea abies)0.410826.631220.0137
Pine (Pinus sylvestris)0.410819.999430.00916
Beech (Fagus sylvatica)0.0964433.223280.01162
Oak (Quercus robur/petraea)0.0964428.947820.01501
Table 4. Species-specific coefficients for trees with a diameter ≥ 10 cm [18].
Table 4. Species-specific coefficients for trees with a diameter ≥ 10 cm [18].
Species b 0 b 1 b 2 b 3 k 1 k 2
Spruce (Picea abies)0.752852.849856.030360.621884224
Pine (Pinus sylvestris)0.337782.840556.349640.627551823
Beech (Fagus sylvatica)0.167876.254526.647520.8074511135
Oak (Quercus robur/petraea)0.0942810.269988.138940.558454008
Table 5. Species-specific threshold diameters [cm] for the linearisation of the Marklund function, developed by Riedel and Kändler (2017) [18].
Table 5. Species-specific threshold diameters [cm] for the linearisation of the Marklund function, developed by Riedel and Kändler (2017) [18].
Speciesd
Spruce (Picea abies)69 cm
Pine (Pinus sylvestris)59 cm
Beech (Fagus sylvatica)86 cm
Oak (Quercus robur/petraea)94 cm
Table 6. Species-specific coefficients of belowground biomass [18].
Table 6. Species-specific coefficients of belowground biomass [18].
Species b 0 b 1 Source
Spruce (Picea abies)0.0037202.792465[48]
Pine (Pinus sylvestris)0.0060892.739073[49]
Beech (Fagus sylvatica)0.0182562.321997[48]
Oak (Quercus robur/petraea)0.0280002.440000[48,50]
Douglas fir (Pseudotsuga menziesii)0.0182562.321997[47,48]
Table 7. Stand expansion factors [22], where R is the specific wood density, e b r is the brushwood factor, e l is the litter factor, and e b r and root factor.
Table 7. Stand expansion factors [22], where R is the specific wood density, e b r is the brushwood factor, e l is the litter factor, and e b r and root factor.
SpeciesR (kg m 3 ) e br e l e r
Spruce (Picea abies)377.11.451.001.25
Pine (Pinus sylvestris)430.71.451.001.25
Beech (Fagus sylvatica)554.31.451.051.25
Oak (Quercus robur/petraea)561.11.451.031.25
Douglas Fir (Pseudotsuga menziesii)412.41.451.001.25
Table 8. Species-specific factors for the Stand Density Index [52].
Table 8. Species-specific factors for the Stand Density Index [52].
Speciesb
Spruce (Picea abies)1.664
Pine (Pinus sylvestris)1.593
Beech (Fagus sylvatica)1.789
Oak (Quercus robur/petraea)1.424
Douglas Fir (Pseudotsuga menziesii)1.664
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Brinkord, M.; Seintsch, B.; Elsasser, P. CO2 Estimation of Tree Biomass in Forest Stands: A Simple and IPCC-Compliant Approach. Forests 2025, 16, 1580. https://doi.org/10.3390/f16101580

AMA Style

Brinkord M, Seintsch B, Elsasser P. CO2 Estimation of Tree Biomass in Forest Stands: A Simple and IPCC-Compliant Approach. Forests. 2025; 16(10):1580. https://doi.org/10.3390/f16101580

Chicago/Turabian Style

Brinkord, Marlen, Björn Seintsch, and Peter Elsasser. 2025. "CO2 Estimation of Tree Biomass in Forest Stands: A Simple and IPCC-Compliant Approach" Forests 16, no. 10: 1580. https://doi.org/10.3390/f16101580

APA Style

Brinkord, M., Seintsch, B., & Elsasser, P. (2025). CO2 Estimation of Tree Biomass in Forest Stands: A Simple and IPCC-Compliant Approach. Forests, 16(10), 1580. https://doi.org/10.3390/f16101580

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop