Quantifying Non-Linearities and Interactions in Urban Forest Cooling Using Interpretable Machine Learning
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Land Cover Classification
2.3. Calculation of LST and Cooling Intensity
2.4. Selections and Definitions of Landscape Indicators
2.5. XGBoost-SHAP Interpretable Machine Learning Framework
3. Results
3.1. Basic Information on Cooling Intensity and Model Validation
3.2. Identification of Dominant Drivers and Non-Linear Threshold Effect
3.3. Interaction and Interaction Thresholds of Landscape Drivers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gogoi, P.P.; Vinoj, V.; Swain, D.; Roberts, G.; Dash, J.; Tripathy, S. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef] [PubMed]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Anderson, G.B.; Michelle, L. Bell Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C. Global risk of deadly heat. Nat. Clim. Change 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Kusaka, H.; Hara, M.; Takane, Y. Urban climate projection by the WRF model at 3 km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya. J. Meteorol. Soc. Japan 2012, 90b, 47–63. [Google Scholar] [CrossRef]
- Walter V Reid Biodiversity hotspots. Trends Ecol. Evol. 1998, 13, 275–280. [CrossRef]
- IPCC. AR6 Synthesis Report Climate Change 2023; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R. Progress in urban greenery mitigation science–assessment methodologies advanced technologies and impact on cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Zhang, Z.; Cao, W.; Wu, T. How can urban green spaces be planned to mitigate urban heat island effect under different climatic backgrounds? A threshold-based perspective. Sci. Total Environ. 2023, 890, 164422. [Google Scholar] [CrossRef]
- Du, H.; Song, X.; Jiang, H.; Kan, Z.; Wang, Z.; Cai, Y. Research on the cooling island effects of water body: A case study of Shanghai, China. Ecol. Indic. 2016, 67, 31–38. [Google Scholar] [CrossRef]
- Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sens. Environ. 2021, 252, 112135. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Dugord, P.-A.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land use patterns, temperature distribution, and potential heat stress risk—the case study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef]
- Fei, F.; Wang, Y.; Yao, W.; Gao, W.; Wang, L. Coupling mechanism of water and greenery on summer thermal environment of waterfront space in China’s cold regions. Build. Environ. 2022, 214, 108912. [Google Scholar] [CrossRef]
- Shi, D.; Song, J.; Huang, J.; Zhuang, C.; Guo, R.; Gao, Y. Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: A case study in Chongqing, China. Sustain. Cities Soc. 2020, 55, 102065. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Sci. Total Environ. 2022, 823, 153806. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y.; Fadaei, M. The effects of land use on spatial pattern of urban green spaces and their cooling ability. Urban Clim. 2021, 35, 100743. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Suzhou Local Chronicles Compilation Office Suzhou Chronicles: Nature Environment. Available online: https://dfzb.suzhou.gov.cn/dfzb/jzyg/202411/fadda033bf744f669a446dd40103f180.shtml (accessed on 6 May 2024). (In Chinese)
- Suzhou Municipal Bureau Statistics Suzhou Statistical Yearbook 2023. Available online: https://tjj.sh.gov.cn/tjnj/20250331/9f8ec62cc2234485b0aa411b8d967c37.html (accessed on 6 May 2024). (In Chinese)
- Natural Resources Satellite Remote Sensing Cloud Service Platform: Gaofen-1 Satellite. Available online: http://114.116.226.59/chinese/satellite/chinese/gf1 (accessed on 6 September 2025). (In Chinese).
- Zhou, W.; Yu, W.; Wu, T. An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landsc. Urban Plan. 2022, 225, 104449. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- McGarial, K.; Marks, B. FRAGSTAT: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 1995.
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Xiao, Y.; Piao, Y.; Pan, C.; Lee, D.; Zhao, B. Using buffer analysis to determine urban park cooling intensity: Five estimation methods for Nanjing, China. Sci. Total Environ. 2023, 868, 161463. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Joharestani, M.Z.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction based on random forest, XGBoost, and Deep learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Manteghi, G.; Limit, H.; Remaz, D. Water bodies an urban microclimate: A Review. Mod. Appl. Sci. 2015, 9, 1. [Google Scholar] [CrossRef]
- Liao, W.; Guldmann, J.-M.; Hu, L.; Cao, Q.; Gan, D.; Li, X. Linking urban park cool island effects to the landscape patterns inside and outside the park: A simultaneous equation modeling approach. Landsc. Urban Plan. 2023, 232, 104681. [Google Scholar] [CrossRef]
- Weng, Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F.; Wang, G. Effects of spatial pattern of forest vegetation on urban cooling in a compact megacity. Forests 2019, 10, 282. [Google Scholar] [CrossRef]
Camera | Band Order | Description | Wavelength (μm) | Spatial Resolution (m) |
---|---|---|---|---|
PMS | Band 1 | Panchromatic | 0.45–0.90 | 2 |
Band 2 | Blue | 0.45–0.52 | 8 | |
Band 3 | Green | 0.52–0.59 | 8 | |
Band 4 | Red | 0.63–0.69 | 8 | |
Band 5 | Near-infrared | 0.77–0.89 | 8 | |
WFV | Band 6 | Blue | 0.45–0.52 | 16 |
Band 7 | Green | 0.52–0.59 | 16 | |
Band 8 | Red | 0.63–0.69 | 16 | |
Band 9 | Near-infrared | 0.77–0.89 | 16 |
Seasons | Scene ID | Acquisition Date | Acquisition Time (BJT) |
---|---|---|---|
Spring | LC09_L2SP_119038_20240319_20240320_02_T1 | 19 March 2024 | 10:31 a.m. |
Summer | LC08_L2SP_119038_20210623_20210630_02_T1 | 23 June 2021 | 10:31 a.m. |
Autumn | LC09_L2SP_119038_20211109_20220119_02_T1 | 9 November 2021 | 10:31 a.m. |
Winter | LC09_L2SP_119038_20221227_20230316_02_T1 | 27 December 2022 | 10:31 a.m. |
Season | MSE | RMSE | MAE | R2 | Five-Fold Cross-Validation (R2) | |
---|---|---|---|---|---|---|
Spring | training dataset | 0.989 | 0.994 | 0.782 | 0.460 | 0.394 (±0.022) |
testing dataset | 1.028 | 1.014 | 0.796 | 0.439 | ||
Summer | training dataset | 2.552 | 1.597 | 1.243 | 0.615 | 0.543 (±0.026) |
testing dataset | 2.589 | 1.609 | 1.257 | 0.609 | ||
Autumn | training dataset | 0.445 | 0.667 | 0.518 | 0.352 | 0.309 (±0.026) |
testing dataset | 0.446 | 0.668 | 0.519 | 0.324 | ||
Winter | training dataset | 0.418 | 0.646 | 0.494 | 0.316 | 0.247 (±0.023) |
testing dataset | 0.410 | 0.641 | 0.491 | 0.307 |
Regulatory Factor | Interacting Indicator | Season | Threshold | Pre-Threshold Effect | Post-Threshold Effect |
---|---|---|---|---|---|
NDVI | NWP | Spring | 0.19 | Positive (+) | Negative (−) |
Summer | 0.32 | Positive (+) | Negative (−) | ||
Autumn | NA | NA | NA | ||
Winter | 0.19 | Positive (+) | Negative (−) | ||
SHAPE | NDVI | Spring | 3.0 | Positive (+) | Negative (−) |
NDVI | Summer | 3.0 | Negative (−) | Positive (+) | |
NDVI | Autumn | 3.0 | Positive (+) | Negative (−) | |
NGP | Winter | 3.0 | Negative (−) | Positive (+) | |
NWP | NDVI | Spring | 7% | Positive (+) | Negative (−) |
Summer | 7% | Positive (+) | Negative (−) | ||
Autumn | NA | NA | NA | ||
Winter | 7% | Positive (+) | Negative (−) | ||
NWP | NGP | Spring | 15% | Positive (+) | Negative (−) |
Summer | 10% | Positive (+) | Negative (−) | ||
Autumn | NA | NA | NA | ||
Winter | NA | NA | NA | ||
NGP | NWP | Spring | 40% | Positive (+) | Negative (−) |
Summer | 48% | Positive (+) | Negative (−) | ||
Autumn | 38% | Positive (+) | Negative (−) | ||
Winter | NA | NA | NA | ||
NGP | NDVI | Spring | NA | NA | NA |
Summer | 38% | Positive (+) | Negative (−) | ||
Autumn | 48% | Negative (−) | Positive (+) | ||
Winter | 44% | Negative (−) | Positive (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Y.; Yu, Y.; Peng, K.; Zhang, R.; Zhou, W. Quantifying Non-Linearities and Interactions in Urban Forest Cooling Using Interpretable Machine Learning. Forests 2025, 16, 1514. https://doi.org/10.3390/f16101514
Zong Y, Yu Y, Peng K, Zhang R, Zhou W. Quantifying Non-Linearities and Interactions in Urban Forest Cooling Using Interpretable Machine Learning. Forests. 2025; 16(10):1514. https://doi.org/10.3390/f16101514
Chicago/Turabian StyleZong, Yixuan, Yiqi Yu, Kexin Peng, Rui Zhang, and Wen Zhou. 2025. "Quantifying Non-Linearities and Interactions in Urban Forest Cooling Using Interpretable Machine Learning" Forests 16, no. 10: 1514. https://doi.org/10.3390/f16101514
APA StyleZong, Y., Yu, Y., Peng, K., Zhang, R., & Zhou, W. (2025). Quantifying Non-Linearities and Interactions in Urban Forest Cooling Using Interpretable Machine Learning. Forests, 16(10), 1514. https://doi.org/10.3390/f16101514