The Entry of Pollinating Fig Wasps Plays a Pivotal Role in the Developmental Phase and Metabolic Expression Changes in Ficus hookeriana Figs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Materials
2.2. Controlled Experiment in the Field
2.3. Data Analysis
2.4. Metabolomic Analysis
2.4.1. LC-MS Sample Preparation
2.4.2. LC Conditions and MS Method
2.4.3. Data Processing and Multivariate Analysis
3. Results
3.1. The Duration of Fig Receptivity Following Pollinator Entry and in the Absence of Pollinators
3.2. Metabolomic Analysis of Pre- and Post-Pollinator Entry Figs
3.2.1. Data Quality Assessment
3.2.2. Metabolite Composition Analysis
3.2.3. Screening of Differentially Accumulated Metabolites (DAMs)
3.2.4. Major Differential Metabolic Pathways in Fig Flower
3.2.5. Linoleic Acid Metabolism Pathway Analysis
3.2.6. Phenylpropanoid Biosynthesis and Flavonoid Biosynthesis Pathway Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, S.; Chen, J.; Gui, P. Molecular phylogeny of Ficus section Ficus in China based on four DNA regions. J. Syst. Evol. 2012, 50, 422–432. [Google Scholar] [CrossRef]
- Francis, J.K. Tropical Ecosystems|Ficus spp. (and other important Moraceae). In Encyclopedia of Forest Sciences; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1699–1704. [Google Scholar]
- Stover, E.; Aradhya, M.; Ferguson, L.; Crisosto, C.H. The Fig: Overview of an Ancient Fruit. HortScience 2007, 42, 1083–1087. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef]
- Rhett, D.H. Figs and the Diversity of Tropical Rainforests. BioScience 2005, 55, 1053–1064. [Google Scholar]
- Di Giusto, B.; Bain, A. Local ecological factors, not interference competition, drive the foundress number of two species of fig wasp sharing Ficus septica figs. PLoS ONE 2024, 19, e0290439. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.J.; Bain, A.; Chou, L.S.; Cruaud, A.; Gonzales, R.; Hossaert-McKey, M.; Rasplus, J.Y.; Tzeng, H.Y.; Kjellberg, F. Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia. BMC Evol. Biol. 2017, 17, 207. [Google Scholar] [CrossRef] [PubMed]
- Cruaud, A.; Ronsted, N.; Chantarasuwan, B.; Chou, L.S.; Clement, W.L.; Couloux, A.; Cousins, B.; Genson, G.; Harrison, R.D.; Hanson, P.E.; et al. An extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Syst. Biol. 2012, 61, 1029–1047. [Google Scholar] [CrossRef] [PubMed]
- Dunn, D.W. Stability in fig tree–fig wasp mutualisms: How to be a cooperative fig wasp. Biol. J. Linn. Soc. Lond. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Weiblen, G.D. How to be a fig wasp. Annu. Rev. Entomol. 2002, 47, 299–330. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D.R.; Peng, Y.Q.; Compton, S.G. Costs of inflorescence longevity for an Asian fig tree and its pollinator. Evol. Ecol. 2012, 26, 513–527. [Google Scholar] [CrossRef]
- Borges, M. Interactions Between Figs and Gall-Inducing Fig Wasps: Adaptations, Constraints, and Unanswered Questions. Front. Ecol. Evol. 2021, 9, 685542. [Google Scholar] [CrossRef]
- Proffit, M.; Bessière, J.; Schatz, B.; Hossaert-McKey, M. Can fine-scale post-pollination variation of fig volatile compounds explain some steps of the temporal succession of fig wasps associated with Ficus racemosa? Acta Oecol. 2017, 90, 81–90. [Google Scholar] [CrossRef]
- Li, Z.T.; Peng, Y.Q.; Wen, X.L.; Jandér, K.C. Selective resource allocation may promote a sex ratio in pollinator fig wasps more beneficial for the host tree. Sci. Rep. 2016, 6, 35159. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.W.; Shi, A.N.; Zhang, X.W.; Liu, M.; Jandér, K.C.; Dunn, W. Asymmetric and uncertain interactions within mutualisms. J. Plant Ecol. 2024, 17, rtad042. [Google Scholar] [CrossRef]
- Hall, C.R.; Robertson, L.P.; Carroll, A.R.; Kitchinget, R. The effect of Psephodiplosis rubi (Diptera: Cecidomyiidae) leaf galls on the secondary metabolite profiles of two congeneric host plants. Austral Entomol. 2018, 57, 228–237. [Google Scholar] [CrossRef]
- Escudero, N.; Marhuenda-Egea, F.C.; Ibanco-Cañete, R.; Zavala-Gonzalez, E.A.; Lopez-Llorca, L.V. A metabolomic approach to study the rhizodeposition in the tritrophic interaction: Tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics 2014, 10, 788–804. [Google Scholar] [CrossRef]
- Terletskaya, N.V.; Mamirova, A.; Ashimuly, K.; Vibe, Y.P.; Krekova, Y.A. Anatomical and Metabolome Features of Haloxylon aphyllum and Haloxylon persicum Elucidate the Resilience against Gall-Forming Insects. Int. J. Mol. Sci. 2024, 25, 4738. [Google Scholar] [CrossRef]
- Miao, B.G.; Liu, M.X.; Wang, B.; Peng, Y.Q.; Lesne, A.; Kjellberg, F.; Jandér, K.C. Active pollination in a functionally dioecious Ficus species: An interplay between pollinator behaviour and floral morphology. Flora 2023, 302, 152274. [Google Scholar] [CrossRef]
- Jousselin, E.; Hossaert-Mckey, M.; Vernet, D.; Kjellberg, F. Egg deposition patterns of fig pollinating wasps: Implications for studies on the stability of the mutualism. Ecol. Entomol. 2001, 26, 602–608. [Google Scholar] [CrossRef]
- Jandér, K.C.; Herre, E.A. Host sanctions in Panamanian Ficus are likely based on selective resource allocation. Am. J. Bot. 2016, 103, 1753–1762. [Google Scholar] [CrossRef]
- Zhang, X.W.; Dunn, W.; Wang, R.W. Egg load is a cue for offspring sex ratio adjustment in a fig-pollinating wasp with male-eggs-first sex allocation. J. Evol. Biol. 2020, 33, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Zidi, K.; Kati, D.E.; Bachir-bey, M.; Genva, M.; Fauconnier, M.L. Comparative Study of Fig Volatile Compounds Using Headspace Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry: Effects of Cultivars and Ripening Stages. Front. Plant Sci. 2021, 12, 667809. [Google Scholar] [CrossRef] [PubMed]
- Martinson, E.O.; Hackett, J.D.; Machado, C.A.; Arnold, A.E. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction. PLoS ONE 2015, 10, e0130745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, B.; Buyantuev, A.; He, X.; Gao, W.; Wang, Y.; Dawazhaxi; Yang, Z. Urban agglomeration of Kunming and Yuxi cities in Yunnan, China: The relative importance of government policy drivers and environmental constraints. Landsc. Ecol. 2019, 34, 663–679. [Google Scholar] [CrossRef]
- Wei, G.; Zheng, R.; Yang, X. Extraction and the Chemical Composition Analysis of the Essential Oil Flowers of Ficus hookeriana Corner. Adv. Mater. Res. 2012, 581–582, 94–99. [Google Scholar] [CrossRef]
- Cruaud, A.; Jabbour-Zahab, R.; Genson, G.; Cruaud, C.; Couloux, A.; Kjellberg, F.; Van Noort, S.; Rasplus, J.Y. Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics 2010, 26, 359–387. [Google Scholar] [CrossRef]
- Mata-Pérez, C.; Sánchez-Calvo, B.; Begara-Morales, J.C.; Luque, F.; Jiménez-Ruiz, J.; Padilla1, M.N.; Fierro-Risco, J.; Valderrama, R.; Fernández-Ocaña, A.; Corpas, F.J.; et al. Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Front. Plant Sci. 2015, 6, 122. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Zhang, S.; Chen, S.; Wang, Y.; Wen, P.; Ma, X.; Shi, Y.; Qi, R.; Yang, Y.; et al. Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell 2020, 183, 875–889.e17. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.B.; Li, Y.H.; Shu, X.C.; Pu, Y.T.; Wang, X.J.; Wang, T.; Wang, Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023, 28, 3599. [Google Scholar] [CrossRef]
- Wang, G.; Compton, S.G.; Chen, J. The mechanism of pollinator specificity between two sympatric fig varieties: A combination of olfactory signals and contact cues. Ann. Bot. 2012, 111, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Souto-Vilarós, D.; Machac, A.; Michalek, J.; Darwell, C.T.; Sisol, M.; Kuyaiva, T.; Isua, B.; Weiblen, G.D.; Novotný, V.; Segar, T. Faster speciation of fig wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum. Mol. Ecol. 2019, 28, 3958–3976. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Klempien, A.K.; Muhlemann, J.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Trouvelot, S.; Héloir, M.C.; Poinssot, B.; Gauthier, A.; Paris, F.; Guillier, C.; Combier, M.; Trdá, L.; Daire, X.; Adrian, M. Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays. Front. Plant Sci. 2014, 5, 592. [Google Scholar] [CrossRef] [PubMed]
- Näsholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Singer, D.; Chen, G. Protein interactomes for plant lipid biosynthesis and their biotechnological applications. Plant Biotechnol. J. 2014, 21, 1734–1744. [Google Scholar] [CrossRef] [PubMed]
- Tanashvi, S.; Sejal, A.; Shahid, U.; Ravi, G. The intricate role of lipids in orchestrating plant defense responses. Plant Sci. 2024, 338, 111904. [Google Scholar]
- Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant compounds for plant defence and for a healthy human diet. Not. Bot. Horti Agrobot. Cluj Napoca. 2018, 46, 14–21. [Google Scholar] [CrossRef]
- Marilyn, S.S.; Duck-Kee, K.; Sa-Youl, G. Linoleic acid-induced expression of defense genes and enzymes in tobacco. J. Plant Physiol. 2014, 171, 1757–1762. [Google Scholar]
- Takahashi, H.; Kamakari, K.; Suzuki, H.; Mohri, S.; Goto, T.; Takahashi, N.; Matsumura, Y.; Shibata, D.; Kawada, T. Localization of 9- and 13-oxo-octadecadienoic acids in tomato fruit. Biosci. Biotechnol. Biochem. 2014, 78, 1761–1764. [Google Scholar] [CrossRef]
- Zhang, Z.; Bi, X.; Du, X.; Liu, H.; An, T.; Zhao, Y.; Yu, H.; Chen, Y.; Wen, J. Comparative metabolomics reveal the participation of soybean unique rhizosphere metabolites in susceptibility and resistance of host soybean to Phytophthora sojae. Plant Soil 2022, 480, 185–199. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Yang, X.; Ren, L.; Wang, Y.; Ma, D.; Fan, P.; Wang, H.; Liu, L.; Dong, B.; et al. Effects of phenanthrene on the essential oil composition and leaf metabolome in peppermint plants (Mentha piperita L.). Ind. Crops. Prod. 2022, 187, 115383. [Google Scholar] [CrossRef]
- Yao, T.; Feng, K.; Xie, M.; Barros, J.; Tschaplinski, T.J.; Tuskan, G.A.; Muchero, W.; Chen, J.G. Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Front. Plant Sci. 2021, 12, 704697. [Google Scholar] [CrossRef]
- Schenck, C.A.; Maeda, H.A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 2018, 149, 82–102. [Google Scholar] [CrossRef]
- Mughal, A.; Jabeen, N.; Ashraf, K.; Sultan, K.; Farhan, M.; Hussain, M.I.; Deng, G.; Alsudays, I.M.; Saleh, M.A.; Tariq, S.; et al. Exploring the role of caffeic acid in mitigating abiotic stresses in plants: A review. Plant Stress 2024, 12, 100487. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, N.; Liu, R.; Bai, H.; Tao, W.; Chen, J.; Shi, Z. Cinnamaldehyde Facilitates Cadmium Tolerance by Modulating Ca2+ in Brassica rapa. Water Air Soil Pollut. 2021, 232, 19. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, T.; Kontturi, E.; Vuorinen, T. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry 2011, 72, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Varbanova, M.; Porter, K.; Lu, F.; Ralph, J.; Hammerschmidt, R.; Jones, A.D.; Day, B. Molecular and Biochemical Basis for Stress-Induced Accumulation of Free and Bound p-Coumaraldehyde in Cucumber. Plant Physiol. 2011, 157, 1056–1066. [Google Scholar] [CrossRef]
- Diehn, S.; Kirby, N.; Ben-Zeev, S.; Saranga, Y.; Elbaum, R. Raman developmental markers in root cell walls are associated with lodging tendency in tef. Planta 2024, 259, 54. [Google Scholar] [CrossRef] [PubMed]
- Bar, M.; Schuster, S.; Leibman, M.; Ezer, R.; Avni, A. The function of EHD2 in endocytosis and defense signaling is affected by SUMO. Plant Mol. Biol. 2014, 84, 509–518. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, X.; Zhao, Y.; Zhu, H.; Fu, Q.; Lu, X.; Huang, W.; Yang, X.; Zhou, X.; Wu, L.; et al. Phytoalexin sakuranetin attenuates endocytosis and enhances resistance to rice blast. Nat. Commun. 2024, 15, 3437. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Farooq, A.; Qudsia, T. A Centum of Valuable Plant Bioactives; Academic Press: Cambridge, MA, USA, 2021; pp. 467–489. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guan, Y.; Li, Z.; Wang, Y.; Chen, C.; Yang, X.; Zhang, Y. The Entry of Pollinating Fig Wasps Plays a Pivotal Role in the Developmental Phase and Metabolic Expression Changes in Ficus hookeriana Figs. Forests 2025, 16, 165. https://doi.org/10.3390/f16010165
Zhang Y, Guan Y, Li Z, Wang Y, Chen C, Yang X, Zhang Y. The Entry of Pollinating Fig Wasps Plays a Pivotal Role in the Developmental Phase and Metabolic Expression Changes in Ficus hookeriana Figs. Forests. 2025; 16(1):165. https://doi.org/10.3390/f16010165
Chicago/Turabian StyleZhang, Ying, Yunfang Guan, Zongbo Li, Yan Wang, Changqi Chen, Xiaoyan Yang, and Yuan Zhang. 2025. "The Entry of Pollinating Fig Wasps Plays a Pivotal Role in the Developmental Phase and Metabolic Expression Changes in Ficus hookeriana Figs" Forests 16, no. 1: 165. https://doi.org/10.3390/f16010165
APA StyleZhang, Y., Guan, Y., Li, Z., Wang, Y., Chen, C., Yang, X., & Zhang, Y. (2025). The Entry of Pollinating Fig Wasps Plays a Pivotal Role in the Developmental Phase and Metabolic Expression Changes in Ficus hookeriana Figs. Forests, 16(1), 165. https://doi.org/10.3390/f16010165