Depth-Dependent Impacts of Long-Term Vegetation Restoration on Soil Carbon Stability and C/N Stoichiometry in Subtropical Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Methods for Sample Analysis
2.3.1. Determination of Soil Physicochemical Properties
2.3.2. Determination of Soil Carbon and Nitrogen Content
2.3.3. Extraction and Determination of Mineral-Associated Organic Carbon
2.4. Statistical Analysis
3. Results
3.1. Variations in Soil Physicochemical Properties Across Soil Depths
3.2. Distribution Characteristics of Carbon and Nitrogen Content in Soil Profile
3.2.1. Distribution of Carbon Forms in Soil
3.2.2. Distribution of Nitrogen Forms in Soil
3.3. The Relationship Between Soil Carbon and Nitrogen Contents and Physicochemical Properties Under Different Vegetation Restoration
4. Discussion
4.1. Distribution Characteristics of Carbon and Nitrogen Content Under Different Vegetation Restoration Scenarios
4.2. Depth-Dependent Differences in the Synergistic Relationships Between SOC and Nitrogen Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, D.; Ye, T.; Lu, Y.; Chen, W.; Cai, P.; Huang, Q. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils. Eur. J. Soil. Sci. 2019, 70, 1153–1163. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Gärdenäs, A.I.; Ågren, G.I.; Bird, J.A.; Clarholm, M.; Hallin, S.; Ineson, P.; Kätterer, T.; Knicker, H.; Nilsson, S.I.; Näsholm, T.; et al. Knowledge gaps in soil carbon and nitrogen interactions—From molecular to global scale. Soil Biol. Biochem. 2011, 43, 702–717. [Google Scholar] [CrossRef]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kogel-Knabner, I.; Lehmann, J.; Manning, D.A.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil. Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil. Sci. 2006, 33, 141–163. [Google Scholar] [CrossRef]
- Rocci, K.S.; Lavallee, J.M.; Stewart, C.E.; Cotrufo, M.F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ. 2021, 793, 148569. [Google Scholar] [CrossRef]
- de Almeida Valente, F.D.; de Castro, M.F.; Lustosa Filho, J.F.; Gomes, L.d.C.; Neves, J.C.L.; da Silva, I.R.; de Oliveira, T.S. Native multispecies and fast-growing forest root biomass increase C and N stocks in a reclaimed bauxite mining area. Environ. Monit. Assess. 2023, 195, 129. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, W.; Xiao, L.; Yang, R.; Xiao, D.; Zhao, J.; Wang, W.; Chen, H.; Wang, K. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region. Geoderma 2019, 352, 70–79. [Google Scholar] [CrossRef]
- Zhu, X.; Fang, X.; Xiang, W.; Chen, L.; Ouyang, S.; Lei, P. Vegetation restoration drives dynamics of soil nitrogen content and availability in the subtropics. Catena 2023, 220, 106720. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; van Groenigen, K.J.; Hungate, B.A.; Cao, J.; Zhou, X.; Wang, R.-w. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 2018, 4, eaaq1689. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Ju, C.; Chen, H.Y.H.; Wilsey, B.J.; Luo, Y.; Fan, W. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Glob. Change Biol. 2021, 27, 1170–1180. [Google Scholar] [CrossRef]
- Ye, C.; Chen, D.; Hall, S.J.; Pan, S.; Yan, X.; Bai, T.; Guo, H.; Zhang, Y.; Bai, Y.; Hu, S. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecol. Lett. 2018, 21, 1162–1173. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, Q.; Katterer, T.; Olesen, J.E.; Ying, S.C.; Ochoa-Hueso, R.; Mueller, C.W.; Weintraub, M.N.; Chen, J. Depth-dependent responses of soil organic carbon under nitrogen deposition. Glob. Change Biol. 2024, 30, e17247. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, S.; Wang, J.; Schuler, J.; Wang, Y.; Luan, J. Nitrogen-fixing plants enhance and stabilize rhizospheric soil organic carbon in tropical rainforests, Hainan Island, China. Forest Sci. 2023, 69, 653–664. [Google Scholar] [CrossRef]
- Zhang, W.; You, Y.; Su, X.; Yan, J.; Gao, G.; Ming, A.; Shen, W.; Huang, X. Introducing N2-fixing tree species into Eucalyptus plantations promotes soil organic carbon sequestration in aggregates by increasing microbial carbon use efficiency. Catena 2023, 231, 107321. [Google Scholar] [CrossRef]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatte, C. Atmosphere-soil carbon transfer as a function of soil depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, H.; Yang, F.; Fu, X.; Fang, H.; Wang, J.; Dai, X.; Kou, L.; Zhao, B. Ecological restoration and sustainable development of forest ecosystem in subtropical red soil hilly region based on long-term observation and research. Bull. Chin. Acad. Sci. 2020, 35, 1525–1536. [Google Scholar]
- Yang, F.; Feng, Z.; Wang, H.; Dai, X.; Fu, X. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agr. Forest Meteorol. 2017, 234, 106–114. [Google Scholar] [CrossRef]
- Gao, Y.; He, N.; Yu, G.; Chen, W.; Wang, Q. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecol. Eng. 2014, 67, 171–181. [Google Scholar] [CrossRef]
- Yuan, X.H. The Effects of Land Use Change on the Storage of Organic Carbon for the Land Ecosystems in Red Earth Hilly Area of China; Chinese Academy of Sciences: Beijing, China, 1999. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Sonmez, S.; Buyuktas, D.; Okturen, F.; Citak, S. Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma 2008, 144, 361–369. [Google Scholar] [CrossRef]
- Wu, T.Y.; Schoenau, J.J.; Li, F.M.; Qian, P.Y.; Wang, F.; Malhi, S.S. Soil particle size fractionation with centrifugation method. Chin. J. Appl. Ecol. 2004, 15, 477–481. [Google Scholar]
- Jackson, M.L. Soil chemical Analysis: Advanced Course: A Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility, and Soil Genesis, 2nd ed.; University of Wisconsin-Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Plaza, C.; Giannetta, B.; Benavente, I.; Vischetti, C.; Zaccone, C. Density-based fractionation of soil organic matter: Effects of heavy liquid and heavy fraction washing. Sci. Rep. 2019, 9, 10146. [Google Scholar] [CrossRef]
- Yang, L.; Song, X.; Lyu, S.; Shen, W.; Gao, Y. Dynamics and fractions of soil organic carbon in response to 35 years of afforestation in subtropical China. Plant Soil 2024, 500, 481–494. [Google Scholar] [CrossRef]
- Xu, J.M.; Yuan, K.N. Dissolution and fractionation of calcium-bound and iron-and aluminum-bound humus in soils. Pedosphere 1993, 3, 75–80. [Google Scholar]
- Xu, J.M.; Cheema, S.U.; Yuan, K.N. Studies on organo-mineral complexes in soil. IX. Characteristics of humus in calcium-bound and iron/aluminum-bound organo-mineral complexes in soil. Acta Pedol. Sin. 1999, 36, 168–178. [Google Scholar]
- Semenov, V.M.; Lebedeva, T.N.; Sokolov, D.A.; Zinyakova, N.B.; Lopes de Gerenu, V.O.; Semenov, M.V. Measurement of the soil organic carbon pools isolated using bio-physical-chemical fractionation methods. Eurasian Soil Sci. 2023, 56, 1327–1342. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package “Corrplot”: Visualization of a Correlation Matrix. 2017. Version 0.84. 2021. Available online: https://github.com/taiyun/corrplot (accessed on 1 January 2025).
- Nonghuloo, I.M.; Kharbhih, S.; Suchiang, B.R.; Adhikari, D.; Upadhaya, K.; Barik, S.K. Production, decomposition and nutrient contents of litter in subtropical broadleaved forest surpass those in coniferous forest, Meghalaya. Trop. Ecol. 2020, 61, 5–12. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.J.; Zhang, W.W.; Zhang, Q.; Lu, D.L.; Zhang, Y.K.; Zheng, X.; Xu, S.; Wang, G.G. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. J. Ecol. 2022, 110, 1673–1686. [Google Scholar] [CrossRef]
- Lu, X.; Hou, E.; Guo, J.; Gilliam, F.S.; Li, J.; Tang, S.; Kuang, Y. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Glob. Change Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Change Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Sayer, E.J.; Lambers, H.; Liu, Z.; Lu, X.; Li, Y.; Li, Y.; Li, H.; Wang, F. Nitrogen deposition enhances soil organic carbon and microbial residual carbon in a tropical forest. Plant Soil 2022, 484, 217–235. [Google Scholar] [CrossRef]
- Tang, B.; Rocci, K.S.; Lehmann, A.; Rillig, M.C. Nitrogen increases soil organic carbon accrual and alters its functionality. Glob. Change Biol. 2023, 29, 1971–1983. [Google Scholar] [CrossRef]
- Dawud, S.M.; Raulund-Rasmussen, K.; Domisch, T.; Finér, L.; Jaroszewicz, B.; Vesterdal, L. Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems 2016, 19, 645–660. [Google Scholar] [CrossRef]
- Ostrowska, A.; Porębska, G. Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecol. Indic. 2015, 49, 104–109. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Z.; He, Z.; Yu, Z.; Wang, M.; Davis, M.R.; Yang, Y. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 2014, 387, 103–116. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M.; Zhang, Y.; Hansen, P.M.; Paustian, K.H.; Schipanski, M.; Wallenstein, M.D. In-N-Out: A hierarchical framework to understand and predict soil carbon storage and nitrogen recycling. Glob. Change Biol. 2021, 27, 4465–4468. [Google Scholar] [CrossRef]
- Lalonde, K.; Mucci, A.; Ouellet, A.; Gelinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 2012, 483, 198–200. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, S.; Dai, X.; Chen, F.; Wang, H. Effect of nitrogen and phosphorus addition on soil aggregation and its associated organic carbon. Chem. Ecol. 2021, 37, 603–615. [Google Scholar] [CrossRef]
Feature | Particulate Organic Carbon | Mineral-Associated Organic Carbon |
---|---|---|
Particle size | >53 µm (coarse fraction) | <53 µm (fine fraction) |
Chemical composition | Fresh, labile organic matter (e.g., carbohydrates, proteins, plant debris) | Recalcitrant, humified carbon (e.g., lignin derivatives, microbial by-products) |
Decomposition rate | Rapid | Slow |
Stability | Low | High |
Role in carbon storage | Short-term carbon pool, dynamic and easily influenced | Long-term carbon reservoir, key to soil carbon sequestration |
Protection mechanism | Minimal protection | Chemically and physically bound to minerals |
Formation process | Derived from fresh plant residues and organic inputs | Formed through interactions between organic compounds and soil minerals |
Microbial accessibility | Easily accessible to soil microbes | Limited accessibility due to mineral protection |
Turnover time | Short (days to years) | Long (decades to centuries) |
Response to management | Quickly influenced by land-use change or organic inputs | Relatively stable, less sensitive to management |
Role in soil fertility | Provides immediate nutrient release and supports microbial activity | Enhances long-term nutrient storage and soil cation exchange capacity |
Aggregation role | Promotes formation of macroaggregates | Stabilizes microaggregates and binds to minerals |
Response to climate change | Rapidly decomposed under warming, releasing CO₂ | More resistant to warming and less responsive to temperature changes |
Chemical stability | Chemically unstable and prone to degradation | Chemically stable due to organo-mineral complexes |
Primary constituents | Carbohydrates, proteins, and partially decomposed plant materials | Humic substances, lignin derivatives, and microbial by-products |
Type | Slope Gradient (°) | Slope Aspect | Shannon–Wiener Index | Total Biomass of Arbor Trees (kg ha−1) | Dominant Species | Mean Diameter at Breast Height (cm) | Density (Plants ha−1) | Biomass (kg ha−1) |
---|---|---|---|---|---|---|---|---|
Enclosed Masson pine forest | 11.4 | 288° (West) | 1.797 | 118,966 | Pinus massoniana | 18.3 | 600 | 118,592 |
Dalbergia hupeana | 3.7 | 200 | 163 | |||||
Toxicodendron vernicifluum | 5.5 | 125 | 211 | |||||
Masson pine forest | 5.3 | 133° (Southeast) | 2.052 | 159,612 | Pinus massoniana | 20.1 | 650 | 128,333 |
Pinus elliottii | 25.1 | 175 | 19,717 | |||||
Liriodendron chinense | 9.4 | 150 | 11,562 | |||||
Slash pine forest | 7.9 | 163° (Southeast) | 1.619 | 75,065 | Pinus elliottii | 23.5 | 575 | 70,042 |
Alniphyllum fortunei | 8.9 | 50 | 5023 | |||||
Mixed conifer-broadleaf forest | 13.2 | 152° (Southeast) | 2.205 | 129,761 | Schima superba | 14.8 | 1033 | 59,706 |
Pinus massoniana | 30.2 | 333 | 59,133 | |||||
Pinus elliottii | 22.7 | 133 | 10,922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Yang, L.; Nong, H.; Lyu, S.; Wang, J. Depth-Dependent Impacts of Long-Term Vegetation Restoration on Soil Carbon Stability and C/N Stoichiometry in Subtropical Plantations. Forests 2025, 16, 108. https://doi.org/10.3390/f16010108
Song X, Yang L, Nong H, Lyu S, Wang J. Depth-Dependent Impacts of Long-Term Vegetation Restoration on Soil Carbon Stability and C/N Stoichiometry in Subtropical Plantations. Forests. 2025; 16(1):108. https://doi.org/10.3390/f16010108
Chicago/Turabian StyleSong, Xianwei, Lu Yang, Haiqin Nong, Sidan Lyu, and Jingyuan Wang. 2025. "Depth-Dependent Impacts of Long-Term Vegetation Restoration on Soil Carbon Stability and C/N Stoichiometry in Subtropical Plantations" Forests 16, no. 1: 108. https://doi.org/10.3390/f16010108
APA StyleSong, X., Yang, L., Nong, H., Lyu, S., & Wang, J. (2025). Depth-Dependent Impacts of Long-Term Vegetation Restoration on Soil Carbon Stability and C/N Stoichiometry in Subtropical Plantations. Forests, 16(1), 108. https://doi.org/10.3390/f16010108