Integrating Active and Passive Remote Sensing Data for Forest Age Estimation in Shangri-La City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. ICESat-2 Spaceborne LiDAR Data
2.2.2. Optical and Radar Remote Sensing Data
- (a)
- Sentinel-1A (ESA, Paris, France): We used the synthetic aperture radar (SAR) sensor onboard Sentinel-1A, comprising VV and VH C-band polarizations acquired at 10 m spatial resolution and then resampled at 30 m in line with the specifications of other data sources. Data from Sentinel-1A are ideal because the SAR sensor penetrates cloud cover and provides a complementary data source to optical modalities, enabling a detailed analysis of forest structure [30].
- (b)
- Landsat 7 and 8 (NASA, Washington, DC, USA): We selected Landsat 8 images with the highest quality in 2020 covering the study area. After cloud removal processing, we mosaicked them and cropped them to the region of interest. Then, we extracted the spectral indices and textural features that are relevant for forest age estimation [6].
- (c)
- Sentinel-2 (ESA, Paris, France): We use a Sentinel-2 image from 2 June 2016 in the study area. The Level-2A product (atmospherically corrected) was used. All bands were resampled to have a 30 m resolution to be consistent with other sources [31].
2.2.3. Auxiliary Environmental Data
- (a)
- Digital elevation model (DEM): Elevation information and slope data were derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) data. The ASTER GDEM was obtained from the Geospatial Data Cloud platform (https://www.gscloud.cn (accessed on 1 May 2024)) with a spatial resolution of 30 m.
- (b)
- Climate data: We downloaded data on the annual average temperature and annual precipitation of each grid cell from the Earth Resource Data Cloud platform (http://gis5g.com/ (accessed on 1 May 2024)). We then downscaled these datasets, which were originally at 1 km resolution and were based on the interpolation of data from 2472 meteorological stations across China into a 30 m resolution, to match the other datasets at that resolution. The climate data were resampled to a 30 m spatial resolution via pixel resampling in ArcGIS (Version 10.8, Esri, Redlands, CA, USA).
2.2.4. Field Survey Data
2.3. Methodology
2.3.1. Canopy Height Extrapolation
- (a)
- ICESat-2 Data Preprocessing
- (b)
- Feature Extraction
- (c)
- Random Forest Regression
- (d)
- Continuous Canopy Height Prediction
- (e)
- Validation
2.3.2. Forest Age Estimation Models
- (a)
- Climate-dependent Exponential Relationship Model
- (b)
- Random Forest Regression Model
2.3.3. Model Comparison and Validation
3. Results
3.1. Spatially Continuous Canopy Height Inversion in Shangri-La City
- P. asperata: slope, SWIR1, and VRE1;
- P. yunnanensis: precipitation, slope, and S2REP;
- Q. aquifolioides: slope, elevation, and precipitation;
- A. fabri: precipitation, elevation, and slope;
- P. densata: precipitation, temperature, and slope.
3.2. Modeling of Tree Height–Age Exponential Function Relationships
3.3. Random Forest Model
3.3.1. Feature Variable Extraction Based on Multisource Remote Sensing Data
3.3.2. Selection of Characteristic Variables
3.4. Accuracy Comparison of the Forest Age Inversion Models
3.5. Mapping and Analysis of Forest Age Inversion Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, R.; Chen, J.M.; Xu, M.; Lin, X.; Li, P.; Yu, G.; He, N.; Xu, L.; Gong, P.; Liu, L.; et al. China’s current forest age structure will lead to weakened carbon sinks in the near future. Innovation 2023, 4, 100515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.; Wang, X.; Liu, Y.; Piao, S. Mapping spatial distribution of forest age in China. Earth Space Sci. 2017, 4, 108–116. [Google Scholar] [CrossRef]
- Racine, E.B.; Coops, N.C.; St-Onge, B.; Bégin, J. Estimating forest stand age from LiDAR-derived predictors and nearest neighbor imputation. For. Sci. 2014, 60, 128–136. [Google Scholar] [CrossRef]
- Baghdadi, N.; Le Maire, G.; Fayad, I.; Bailly, J.S.; Nouvellon, Y.; Lemos, C.; Hakamada, R. Testing different methods of forest height and aboveground biomass estimations from ICESat/GLAS data in eucalyptus plantations in Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 290–299. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Guitet, S.; Bailly, J.S.; Hérault, B.; Gond, V.; El Hajj, M.; Minh, D.H.T. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 502–514. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Wu, Z.; Yu, Y.; Li, F.; Fan, W. Forest age mapping based on multiple-resource remote sensing data. Environ. Monit. Assess. 2020, 192, 734. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Champion, I.; Germain, C.; Da Costa, J.P.; Alborini, A.; Dubois-Fernandez, P. Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix. IEEE Geosci. Remote Sens. Lett. 2014, 11, 5–9. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Dang, Y.; Bashir, B.; Xie, B.; Huang, Z. Estimates of forest canopy height using a combination of ICESat-2/ATLAS data and stereo-photogrammetry. Remote Sens. 2020, 12, 3649. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Xu, Y.; Bastos, A.; Ciais, P.; Peng, S. The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophys. Res. Lett. 2017, 44, 3209–3218. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Yan, Y.; Chen, T.; Cheng, P. Tree Height Estimation of Forest Plantation in Mountainous Terrain from Bare-Earth Points Using a DoG-Coupled Radial Basis Function Neural Network. Remote Sens. 2019, 11, 1271. [Google Scholar] [CrossRef]
- Hu, T.; Su, Y.; Xue, B.; Liu, J.; Zhao, X.; Fang, J.; Guo, Q. Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sens. 2016, 8, 565. [Google Scholar] [CrossRef]
- Peng, X.H.; Yang, R.Q.; Yin, Y.L.; Shankar, P.; Xu, T.L.; Fu, P.L.; Ge, S.; Fan, Z.X. Radial growth response of Pinus densata to climate factors in Baima Snow Mountain, Northwest Yunnan. Acta Ecol. Sin. 2023, 43, 8884–8893. [Google Scholar] [CrossRef]
- Panthi, S.; Bräuning, A.; Zhou, Z.K.; Fan, Z.X. Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, Southwestern China. Dendrochronologia 2018, 47, 1–9. [Google Scholar] [CrossRef]
- Bi, Y.; Xu, J.; Gebrekirstos, A.; Guo, L.; Zhao, M.; Liang, E.; Yang, X. Assessing drought variability since 1650 AD from tree-rings on the Jade Dragon Snow Mountain, Southwest China. Int. J. Climatol. 2015, 35, 4057–4065. [Google Scholar] [CrossRef]
- Yang, R.Q.; Fan, Z.X.; Li, Z.S.; Wen, Q.Z. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, Northwest Yunnan, China. Acta Ecol. Sin. 2018, 38, 8983–8991. [Google Scholar] [CrossRef]
- Tang, C.Q.; Matsui, T.; Ohashi, H.; Dong, Y.F.; Momohara, A.; Herrando-Moraira, S.; Qian, S.; Yang, Y.; Ohsawa, M.; Luu, H.T.; et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 2018, 9, 4488. [Google Scholar] [CrossRef]
- Wangda, P.; Ohsawa, M. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. For. Ecol. Manag. 2006, 230, 136–150. [Google Scholar] [CrossRef]
- Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Filella, I. Phenology. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Pan, J.; Wang, J.; Liu, Q.; Zhang, J. Mapping of forest biomass in Shangri-La City based on LiDAR technology and other remote sensing data. Remote Sens. 2022, 14, 5816. [Google Scholar] [CrossRef]
- Buras, A.; Menzel, A. Projecting tree species composition changes of European forests for 2061-2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.R. Forest Biomass Estimation in Shangri-La County Based on Remote Sensing. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2012. [Google Scholar]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the forest canopy height in Northern China by synergizing ICESat-2 with sentinel-2 using a stacking algorithm. Remote Sens. 2021, 13, 1535. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with sentinel-1, sentinel-2 and landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, F.; Wang, J.; Yi, B.; Bao, Y. Comparative study on remote sensing methods for forest height mapping in complex mountainous environments. Remote Sens. 2023, 15, 2275. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A. Copernicus sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Escasio, J.C.L.; Santillan, J.R.; Makinano-Santillan, M. Using machine learning classifiers and regression models for estimating the stand ages of falcata plantations from sentinel data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-4/W6-2022, 465–472. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, F.; Wang, J.; Duan, P.; Wang, J. Forest canopy height extraction method based on ICESat-2/ATLAS data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5700814. [Google Scholar] [CrossRef]
- Valbuena, R.; Maltamo, M.; Mehtätalo, L.; Packalen, P. Key structural features of boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sens. Environ. 2017, 194, 437–446. [Google Scholar] [CrossRef]
- Li, D.; Ju, W.; Fan, W.; Gu, Z. Estimating the age of deciduous forests in Northeast China with enhanced thematic mapper plus data acquired in different phenological seasons. J. Appl. Remote Sens. 2014, 8, 083670. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Relationships between forest stand parameters and landsat TM spectral responses in the Brazilian Amazon Basin. For. Ecol. Manag. 2004, 198, 149–167. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Wulder, M.A.; Healey, S.P.; Moisen, G.G. Mapping wildfire and clearcut harvest disturbances in boreal forests with landsat time series data. Remote Sens. Environ. 2011, 115, 1421–1433. [Google Scholar] [CrossRef]
- GB/T38590-2020; Technical Regulations for Continuous Forest Inventory. National Forest Resources Standardization Technical Committee: Beijing, China, 2020.
- Cheng, K.; Chen, Y.; Xiang, T.; Yang, H.; Liu, W.; Ren, Y.; Guan, H.; Hu, T.; Ma, Q.; Guo, Q. A 2020 forest age map for China with 30 m resolution. Earth Syst. Sci. Data 2024, 16, 803–819. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Burrascano, S.; Keeton, W.S.; Sabatini, F.M.; Blasi, C. Commonality and variability in the structural attributes of moist temperate old-growth forests: A global review. For. Ecol. Manag. 2013, 291, 458–479. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Thom, D.; Rammer, W.; Seidl, R. The impact of future forest dynamics on climate: Interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 2017, 87, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Margolis, H.A.; Nelson, R.F.; Montesano, P.M.; Beaudoin, A.; Sun, G.; Andersen, H.E.; Wulder, M.A. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Can. J. For. Res. 2015, 45, 838–855. [Google Scholar] [CrossRef]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, C.; Nie, S.; Pan, F.; Xi, X.; Hu, Z. Mapping forest height using photon-counting LiDAR data and landsat 8 OLI data: A case study in Virginia and North Carolina, USA. Ecol. Indic. 2020, 114, 106287. [Google Scholar] [CrossRef]
- Hayashi, M.; Saigusa, N.; Oguma, H.; Yamagata, Y.; Takao, G. Quantitative assessment of the impact of typhoon disturbance on a Japanese forest using satellite laser altimetry. Remote Sens. Environ. 2015, 156, 216–225. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Ding, J.; Guo, Z.; Tang, S.; Wang, C.; Huang, Q.; Liu, R.; Chen, J.M. A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height. Remote Sens. Environ. 2016, 174, 24–43. [Google Scholar] [CrossRef]
- Lin, X.; Shang, R.; Chen, J.M.; Zhao, G.; Zhang, X.; Huang, Y.; Yu, G.; He, N.; Xu, L.; Jiao, W. High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agric. For. Meteorol. 2023, 339, 109592. [Google Scholar] [CrossRef]
- Bauhus, J.; Puettmann, K.; Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 2009, 258, 525–537. [Google Scholar] [CrossRef]
- Puettmann, K.J.; Wilson, S.M.; Baker, S.C.; Donoso, P.J.; Drössler, L.; Amente, G.; Harvey, B.D.; Knoke, T.; Lu, Y.; Nocentini, S.; et al. Silvicultural alternatives to conventional even-aged forest management—What limits global adoption? For. Ecosyst. 2015, 2, 8. [Google Scholar] [CrossRef]
Dominant Tree Species | a (SE) | b (SE) | c (SE) | d (SE) | R2 | RMSE |
---|---|---|---|---|---|---|
P. densata | 1.2186 (0.0898) *** | 0.0038 (0.0010) *** | 0.0126 (0.0028) *** | 0.4711 (0.0260) *** | 0.639 | 2.0468 |
A. fabri | 1.4825 (0.2066) *** | 0.0035 (0.0009) *** | 0.0124 (0.0021) *** | 0.4296 (0.0341) *** | 0.4222 | 3.4209 |
P. asperata | 0.5321 (0.0471) *** | −0.0002 (0.0010) | 0.0084 (0.0029) ** | 0.6788 (0.0278) *** | 0.8421 | 2.7553 |
Q. aquifolioides | 0.9082 (0.1040) *** | −0.0009 (0.0007) | 0.0127 (0.0025) *** | 0.4687 (0.0300) *** | 0.4878 | 2.5242 |
P. yunnanensis | 1.4553 (0.1051) *** | −0.0040 (0.0013) ** | 0.0133 (0.0023) *** | 0.4973 (0.0210) *** | 0.6445 | 1.8571 |
Tree Species | Category | Age Group | ||||
---|---|---|---|---|---|---|
Young | Middle-Aged | Near-Mature | Mature | Overmature | ||
P. densata | Age range (year) | ≤20 | 21–30 | 31–40 | 41–60 | ≥61 |
Area (km2) | 0.376 | 4.322 | 40.311 | 625.078 | 1073.927 | |
Proportion (%) | 0.02 | 0.25 | 2.31 | 35.84 | 61.58 | |
Q. aquifolioides | Age range (year) | ≤40 | 41–60 | 61–80 | 81–120 | ≥121 |
Area (km2) | 0.036 | 0.461 | 23.877 | 746.536 | 397.915 | |
Proportion (%) | 0.00 | 0.04 | 2.04 | 63.87 | 34.04 | |
A. fabri | Age range (year) | ≤40 | 41–60 | 61–80 | 81–120 | ≥121 |
Area (km2) | 0.0072 | 0.9792 | 78.993 | 1669.96 | 293.208 | |
Proportion (%) | 0.00 | 0.05 | 3.87 | 81.73 | 14.35 | |
P. asperata | Age range (year) | ≤40 | 41–60 | 61–80 | 81–120 | ≥121 |
Area (km2) | 2.924 | 46.605 | 156.52 | 457.159 | 94.442 | |
Proportion (%) | 0.39 | 6.15 | 20.66 | 60.34 | 12.47 | |
P. yunnanensis | Age range (year) | ≤20 | 21–30 | 31–40 | 41–60 | ≥61 |
Area (km2) | None | None | 9.792 | 571.209 | 165.382 | |
Proportion (%) | None | None | 1.31 | 76.53 | 22.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, F.; Yang, R.; Wu, J. Integrating Active and Passive Remote Sensing Data for Forest Age Estimation in Shangri-La City, China. Forests 2024, 15, 1622. https://doi.org/10.3390/f15091622
Cheng F, Yang R, Wu J. Integrating Active and Passive Remote Sensing Data for Forest Age Estimation in Shangri-La City, China. Forests. 2024; 15(9):1622. https://doi.org/10.3390/f15091622
Chicago/Turabian StyleCheng, Feng, Ruijiao Yang, and Junen Wu. 2024. "Integrating Active and Passive Remote Sensing Data for Forest Age Estimation in Shangri-La City, China" Forests 15, no. 9: 1622. https://doi.org/10.3390/f15091622
APA StyleCheng, F., Yang, R., & Wu, J. (2024). Integrating Active and Passive Remote Sensing Data for Forest Age Estimation in Shangri-La City, China. Forests, 15(9), 1622. https://doi.org/10.3390/f15091622