Mechanical Resistance to Penetration for Improved Diagnosis of Soil Compaction at Grazing and Forest Sites
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strock, C.F.; Rangarajan, H.; Black, C.K.; Schäfer, E.D.; Lynch, J.P. Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture. Ann. Bot. 2022, 129, 315–330. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Medium-term no-tillage, additional compaction, and chiseling as affecting clayey subtropical soil physical properties and yield of corn, soybean and wheat crops. Sustainability 2022, 14, 9717. [Google Scholar] [CrossRef]
- Weber, R.; Zalewski, D.; Hryńczuk, B. Influence of the soil penetration resistance, bulk density and moisture on some components of winter wheat yield. Int. Agrophys. 2004, 18, 91–96. Available online: http://www.international-agrophysics.org/Influence-of-the-soil-penetration-resistance-bulk-density-nand-moisture-on-some-components,106683,0,2.html (accessed on 3 August 2024).
- Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; Silva, V.R. Critical limits of soil penetration resistance in a Rhodic Eutrudox. Rev. Bras. Ciênc. Solo 2014, 38, 288–298. [Google Scholar] [CrossRef]
- Yoshida, F.A.; Stolf, R. Environmental fragility based on the spatial distribution of soil resistance for the environmental protection area (EPA) of Botucatu, Sao Paulo, Brazil. Holos Environ. 2019, 19, 391–405. [Google Scholar] [CrossRef]
- Medvedev, V.V. Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Sci. 2009, 42, 299–309. [Google Scholar] [CrossRef]
- Brasil Neto, E.S.; Russini, A.; Amaral, L.P.; Pinho, P.J.; Farias, M.S.; Giacomeli, R. Spatial variability of soil penetration resistance in the lowland area cultivated with soybean. Ciênc. Rural 2021, 51, e20200452. [Google Scholar] [CrossRef]
- Halde, C.; Hammermeister, A.M.; McLean, N.L.; Webb, K.T.; Martin, R.C. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Plant Sci. 2011, 91, 957–964. [Google Scholar] [CrossRef]
- Prazeres, M.S.; Barbosa, F.T.; Bertol, I.; Fehlauer, T.V. Scarification in no-tillage: Soil physics and plant development. Sci. Agrar. Parana. 2020, 19, 151–160. [Google Scholar] [CrossRef]
- Reichert, J.M.; Morales, C.A.S.; Bastos, F.; Sampietro, J.A.; Cavalli, J.P.; Araújo, E.F.; Srinivasan, R. Tillage recommendation for commercial forest production: Should tillage be based on soil penetrability, bulk density or more complex, integrative properties? Geoderma Reg. 2021, 25, e00381. [Google Scholar] [CrossRef]
- Constantini, A. Relationships between cone penetration resistance, bulk density, and moisture content in uncultivated, repacked, and cultivated hardsetting and non-hardsetting soils from the coastal lowlands of south-east Queensland. N. Z. J. For. Sci. 1996, 26, 395–412. Available online: https://www.scionresearch.com/__data/assets/pdf_file/0005/59531/NZJFS2631996COSTANTINI395-412.pdf (accessed on 22 June 2023).
- Pinzón-Gómez, L.P.; Álvarez-Herrera, J.G.; Mesa-Amezquita, A. Study of the spatial variability of moisture and compaction in soils with different plant covers. Agron. Colomb. 2016, 34, 355–363. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical recovery of forest soil after compaction by heavy machines, revealed by penetration Resistance over multiple decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Jiang, Q.; Cao, M.; Wang, Y.; Wang, J. Estimating soil penetration resistance of paddy soils in the plastic state using physical properties. Agronomy 2020, 10, 1914. [Google Scholar] [CrossRef]
- Souza, J.M.; Bonomo, R.; Pires, F.R. Pedotransfer functions for soil resistance to penetration of a soil under subsoiling. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 1019–1024. [Google Scholar] [CrossRef]
- Magalhães, W.A.; Freddi, O.S.; Amorim, R.S.S.; Marchioro, V.; Di Raimo, L.A.L.; Wruck, F.J. Integrated systems of agricultural production in the north of Mato Grosso and the physical properties of soil. Nativa 2018, 6, 722–728. [Google Scholar] [CrossRef]
- Souza, W.J.O.; Rozane, D.E.; Souza, H.A.; Natale, W.; Santos, P.A.F. Machine traffic and soil penetration resistance in guava tree orchards. Rev. Caatinga 2018, 31, 980–986. [Google Scholar] [CrossRef]
- Florentim, E.T.S.; Correa, H.C.R.; Martins, P.E.B.; Silva, F.C.; Zaviani, W.M.; Serafim, M.E. Physical soil attributes in different eucalyptus crop management systems in western Mato Grosso, Brazil. Floresta 2020, 50, 1679–1688. [Google Scholar] [CrossRef]
- Valadão Junior, D.D.; Biachini, A.; Valadão, F.C.A.; Rosa, R.P. Penetration resistance according to penetration rate, cone base size and different soil conditions. Bragantia 2014, 73, 171–177. [Google Scholar] [CrossRef]
- Lardy, J.M.; DeSutter, T.M.; Daigh, A.L.M.; Meehan, M.A.; Staricka, J.A. Effects of soil bulk density and water content on penetration resistance. Agric. Environ. Lett. 2022, 7, e20096. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Silva, V.R. Soil penetration resistance in a Rhodic Eutrudox affected by machinery traffic and soil water content. Eng. Agríc. 2013, 33, 748–757. [Google Scholar] [CrossRef]
- Bratti, F.; Locatelli, J.L.; Ribeiro, R.H.; Mello, G.R.; Besen, M.R.; Piva, J.T. Soil resistance to penetration in integrated crop-livestock with grazing intensities and fertilization. Sci. Agrar. Parana. 2021, 20, 327–335. [Google Scholar] [CrossRef]
- Oliveira, J.d.M.; Tormena, C.A.; dos Santos, G.R.; Zotarelli, L.; Fernandes, R.B.A.; de Oliveira, T.S. Soil penetration resistance influenced by eucalypt straw management under mechanized harvesting. Agronomy 2022, 12, 1482. [Google Scholar] [CrossRef]
- Marques Filho, A.C.; Rauen, L.; Lanças, K.P. Development of a low-cost electromechanical penetrometer to verify resistance to soil penetration. Eng. Agríc. 2021, 29, 466–473. [Google Scholar] [CrossRef]
- Bianchini, A.; Maia, J.C.S.; Magalhães, P.S.G.; Cappelli, N.; Umezu, C.K. Penetrógrafo eletrônico automático. Rev. Bras. Eng. Agric. Ambient. 2002, 6, 332–336. [Google Scholar] [CrossRef]
- Busscher, W.J. Adjustment of flat-tipped penetrometer resistance data to a commom water content. Trans. ASAE 1990, 3, 519–524. [Google Scholar] [CrossRef]
- Canarache, A. Penetr—A generalized semi-empirical model estimating soil resistance to penetration. Soil Tillage Res. 1990, 16, 51–70. [Google Scholar] [CrossRef]
- Silva, A.P.; Cássio Antonio Tormena, C.A.; Fidalski, J.; Imhoff, S. Funções de pedotransferência para as curvas de retenção de água e de resistência do solo à penetração. Rev. Bras. Ciênc. Solo 2008, 32, 1–10. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Silva, V.R. Correction of resistance to penetration by pedofunctions and a reference soil water content. Rev. Bras. Ciênc. Solo 2012, 36, 1704–1713. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Manieri, J.M.; de Maria, I.C.; van Genuchten, M.T. Scaling the dependency of soil penetration resistance on water content and bulk density of different soils. Soil Sci. Soc. Am. J. 2013, 77, 1488–1495. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Manieri, J.M.; Maria, I.C.; Tuller, M. Modeling and correction of soil penetration resistance for varying soil water content. Geoderma 2011, 166, 92–101. [Google Scholar] [CrossRef]
- Silva, W.M.; Bianchini, A.; Cunha, C.A. Modeling and correction of soil penetration resistance for variations in soil moisture and soil bulk density. Eng. Agríc. 2016, 36, 449–459. [Google Scholar] [CrossRef]
- Mirreh, H.F.; Ketcheson, J.W. Influence of soil bulk density and matric pressure on soil resistance to penetration. Can. J. Soil Sci. 1972, 52, 477–483. [Google Scholar] [CrossRef]
- Whalley, W.R.; Leeds-Harrison, P.B.; Clarka, L.J.; Gowing, D.J.G. Use of effective stress to predict the penetrometer resistance of unsaturated agricultural soils. Soil Tillage Res. 2005, 84, 18–27. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyz, E.A.; Gate, O.P. A method for prediction of soil penetration resistance. Soil Tillage Res. 2007, 93, 412–419. [Google Scholar] [CrossRef]
- Somar Meteorologia. Médias Climatológicas de Butia. Available online: https://irga.rs.gov.br/medias-climatologicas (accessed on 5 May 2022).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (accessed on 8 December 2021).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018; Available online: https://www.embrapa.br/solos/sibcs (accessed on 5 October 2022).
- Suzuki, L.E.A.S.; Reinert, D.J.; Fenner, P.T.; Secco, D.; Reichert, J.M. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. J. S. Am. Earth Sci. 2022, 120, 104113. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. (Eds.) Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017; 212p, Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085209 (accessed on 10 November 2021).
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 635–660. [Google Scholar]
- Casagrande, A. The determination of the pre-consolidation load and its practical significance. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering; Harvard University: Cambridge, MA, USA, 1936; pp. 60–64. [Google Scholar]
- Stolf, R.; Fernandes, J.; Furlani Neto, V. Recomendação para uso do penetrômetro de impacto modelo IAA/Planalsucar-Stolf. Rev. STAB—Açúcar Álcool E Subprodutos 1983, 1, 18–23. Available online: https://www.servidores.ufscar.br/hprubismar/hprubismar_ARTIGOS/24._Recomendacao_para_o_uso_do_penetrometro_de_impacto_modelo_iaa_planalsucar_-_STOLF_(Stolf,R.).pdf (accessed on 16 June 2024).
- SAS Institute, Inc. SAS/STAT® User’s Guide; SAS Institute, Inc.: Cary, NC, USA, 2024; Available online: https://documentation.sas.com/api/collections/pgmsascdc/v_051/docsets/statug/content/statug.pdf?locale=en#nameddest=titlepage (accessed on 3 August 2024).
- Pimentel-Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos E Florestais: Exposição Com Exemplos E Orientações Para Uso de Aplicativos; FEALQ: Piracicaba, Brazil, 2002; 309p. [Google Scholar]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576830/pdf/MMJ2403-0069.pdf (accessed on 3 August 2024).
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Primavesi, O.; Patrizzi, V.C.; Iossi, M.F. Influência da umidade na resistência do solo medida com penetrômetro de impacto. Embrapa Instrumentação Agropecuária. Comun. Técnico 2002, 51, 5. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPDIA/8121/1/CT51_2002.pdf (accessed on 6 July 2023).
- Moraes, M.T.; Silva, V.R.; Zwirtes, A.L.; Carlesso, R. Use of penetrometers in agriculture: A review. Eng. Agríc. 2014, 34, 179–193. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Lima, C.L.R.; Reinert, D.J.; Reichert, J.M.; Pilon, C.N. Condição estrutural de um Argissolo no Rio Grande do Sul, em floresta nativa, em pastagem cultivada e em povoamento com eucalipto. Ciênc. Florest. 2012, 22, 833–843. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Lima, C.L.R.; Reinert, D.J.; Reichert, J.M.; Pillon, C.N. Estrutura e armazenamento de água em um Argissolo sob pastagem cultivada, floresta nativa e povoamento de eucalipto no Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2014, 38, 94–106. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J.; Lima, C.L.R. Degree of compactness and mechanical properties of a subtropical Alfisol with eucalyptus, native forest, and grazed pasture. For. Sci. 2015, 61, 716–722. [Google Scholar] [CrossRef]
- Silva, S.R.; Barros, N.F.; Costa, L.M.; Leite, F.P. Soil compaction and eucalyptus growth in response to forwarder traffic intensity and load. Rev. Bras. Ciênc. Solo 2008, 32, 921–932. [Google Scholar] [CrossRef]
- Collares, G.L.; Reinert, D.J.; Reichert, J.M.; Kaiser, D.R. Compactação superficial de Latossolos sob integração lavoura—pecuária de leite no noroeste do Rio Grande do Sul. Ciênc. Rural 2011, 41, 246–250. [Google Scholar] [CrossRef]
- Kunz, M.; Gonçalves, A.D.M.A.; Reichert, J.M.; Guimarães, R.M.L.; Reinert, D.J.; Rodrigues, M.F. Compactação do solo na integração soja-pecuária de leite em Latossolo argiloso com semeadura direta e escarificação. Rev. Bras. Ciênc. Solo 2013, 37, 1699–1708. [Google Scholar] [CrossRef]
- Redin, C.G.; Longhi, S.J.; Reichert, J.M.; Soares, K.P.; Rodrigues, M.F.; Watzlawick, L.F. Grazing changes the soil-plant relationship in the treeregeneration stratum in the pampa of Souhtern Brazil. Cerne 2017, 23, 193–200. [Google Scholar] [CrossRef]
- Costa, M.A.T.; Tormena, C.A.; Lugão, S.M.B.; Fidalski, J.; Nascimento, W.G.; Medeiros, F.M.R. Resistência do solo à penetração e produção de raízes e de forragem em diferentes níveis de intensificação do pastejo. Rev. Bras. Ciênc. Solo 2012, 36, 993–1004. [Google Scholar] [CrossRef]
- Taylor, H.M.; Roberson, G.M.; Parker, J.J., Jr. Soil strength-root penetration relations for medium to coarse-textured soil materials. Soil Sci. 1966, 102, 18–22. [Google Scholar] [CrossRef]
- Sinnett, D.; Morgan, G.; Williams, M.; Hutchings, T.R. Soil penetration resistance and tree root development. Soil Use Manag. 2008, 24, 273–280. [Google Scholar] [CrossRef]
- Misra, R.K.; Gibbons, A.K. Growth and morphology of eucalypt seedling-roots, in relation to soil strength arising from compaction. Plant Soil 1996, 182, 1–11. [Google Scholar] [CrossRef]
- Bartzen, B.T.; Hoelscher, G.L.; Ribeiro, L.L.O.; Seidel, E.P. How the Soil Resistance to Penetration Affects the Development of Agricultural Crops? J. Exp. Agric. Int. 2019, 30, 1–17. [Google Scholar] [CrossRef]
- Canarache, A.; Horn, R.; Colibas, I. Compressibility of soils in a long term field experiment with intensive deep ripping in Romania. Soil Tillage Res. 2000, 56, 185–196. [Google Scholar] [CrossRef]
- Mosaddeghi, M.R.; Hemmat, A.; Hajabbasi, M.A.; Alexandrou, A. Pre-compression stress and its relation with the physical and mechanical properties of a structurally unstable soil in Central Iran. Soil Tillage Res. 2003, 70, 53–64. [Google Scholar] [CrossRef]
- Dias Junior, M.S.; Silva, A.R.; Fonseca, S.; Leite, F.P. Método alternativo de avaliação da pressão de preconsolidação por meio de um penetrômetro. Rev. Bras. Ciênc. Solo 2004, 28, 805–810. [Google Scholar] [CrossRef]
- Lima, C.L.R.; Silva, A.P.; Imhoff, S.; Leão, T.P. Estimativa da capacidade de suporte de carga do solo a partir da avaliação da resistência à penetração. Rev. Bras. Ciênc. Solo 2006, 30, 217–223. [Google Scholar] [CrossRef]
- Benevenute, P.A.N.; Morais, E.G.; Souza, A.A.; Vasques, I.C.F.; Cardoso, D.P.; Sales, F.R.; Severiano, E.C.; Bruno, G.C.; Homem, B.G.C.; Casagrande, D.R.; et al. Penetration resistance: An effective indicator for monitoring soil compaction in pastures. Ecol. Indic. 2020, 117, 106647. [Google Scholar] [CrossRef]
- Imhoff, S.; Silva, A.P.; Tormena, C.A. Aplicações da curva de resistência no controle da qualidade física de um solo sob pastagem. Pesq. Agropec. Bras. 2000, 35, 1493–1500. [Google Scholar] [CrossRef]
- Assis, R.L.; Lazarini, G.D.; Lanças, K.P.; Cargnelutti Filho, A. Avaliação da resistência do solo à penetração em diferentes solos com a variação do teor de água. Eng. Agríc. 2009, 29, 558–568. [Google Scholar] [CrossRef]
- Pabin, J.; Lipiec, J.; Wlodek, S.; Biskupski, A.; Kaus, A. Critical soil bulk density and strength for pea seedling root growth as related to other soil factors. Soil Tillage Res. 1998, 46, 203–208. [Google Scholar] [CrossRef]
- Silva, A.P.; Kay, B.D.; Perfect, E. Characterization of the least limiting water range of soils. Soil Sci. Soc. Am. J. 1994, 58, 1775–1781. [Google Scholar] [CrossRef]
- Tormena, C.A.; Silva, A.P.; Libardi, P.L. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. Rev. Bras. Ciênc. Solo 1998, 22, 573–581. [Google Scholar] [CrossRef]
- Tormena, C.A.; Silva, A.P.; Libardi, P.L. Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil Tillage Res. 1999, 52, 223–232. [Google Scholar] [CrossRef]
- Silva, V.R. Propriedades Físicas e Hídricas em Solos Sob Diferentes Estados de Compactação. Ph.D. Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2003. [Google Scholar]
- Santos, F.L.; Jesus, V.A.M.; Valente, D.S.M. Modeling of soil penetration resistance using statistical analyses and artificial neural networks. Acta Sci. Agron. 2012, 34, 219–224. [Google Scholar] [CrossRef]
- Molin, J.P.; Magalhães, R.P.; Faulin, G.D.C. Análise espacial da ocorrência do índice de cone em área sob semeadura direta e sua relação com fatores do solo. Eng. Agríc. 2006, 26, 442–452. [Google Scholar] [CrossRef]
- Håkansson, I. A method for characterizing the state of compactness of the plough layer. Soil Tillage Res. 1990, 16, 105–120. [Google Scholar] [CrossRef]
- Silva, A.P.; Kay, B.D.; Perfect, E. Management versus inherent soil properties effects on bulk density and relative compaction. Soil Tillage Res. 1997, 44, 81–93. [Google Scholar] [CrossRef]
Horizon | Description |
---|---|
A1 | Depth of 0–16 cm; the Munsell color of the moist soil is 2.5 YR 3/3; textural class is sandy clay loam; structure is weak; size class ranges from fine to medium; type is subangular blocky; consistency of soil mass is hard (dry), friable (moist), very plastic (plasticity), and very sticky (stickiness); horizon boundary—topography is smooth and the distinctness is gradual. |
AB | Depth of 16–28 cm; the Munsell color of the moist soil is 2.5 YR 3/6; textural class is clay loam; structure is weak; size class ranges from fine to medium; type is subangular blocky; consistency of soil mass is hard (dry), friable (moist), very plastic (plasticity), and very sticky (stickiness); horizon boundary—topography is smooth and the distinctness is gradual. |
Bt1 | Depth of 28–47 cm; the Munsell color of the moist soil is 2.5 YR 4/4; textural class is clay; the structure is weak; size class ranges from fine to medium; type is subangular blocky; consistency of soil mass is hard (dry), friable (moist), very plastic, and very sticky (stickiness); horizon boundary—topography is smooth and the distinctness is diffuse. |
Bt2 | Depth of 47–76 cm; the Munsell color of the moist soil is 2.5 YR 4/5; textural class is clay with gravel; the structure is weak to moderate; size class is medium; type is subangular blocky; consistency of soil mass is hard (dry), friable (moist), plastic (plasticity), and sticky (stickiness); horizon boundary—topography is wavy and the distinctness is gradual. |
Bt3 | Depth of 76–88 cm; the Munsell color of the moist soil is 2.5 YR 4/6; textural class is gravel clay; the structure is weak/moderate; size class is medium; type is subangular blocky; consistency of soil mass is hard (dry), friable (moist), plastic (plasticity), and sticky (stickiness); horizon boundary—topography is wavy and the distinctness is gradual. |
BC | Depth of 88–120 cm; the Munsell color of the moist soil is 2.5 YR 4/6; mottle classification—abundance is common, size is fine, and contrast is prominent. The Munsell color of the moist mottles is 10 YR 6/6; the textural class is gravelly clay loam; the structure is weak; the size class ranges from fine to medium; the type is subangular blocky; the consistency of soil mass is very hard (dry), firm (moist), plastic (plasticity), and sticky (stickiness); horizon boundary—topography is wavy and the distinctness is clear. |
C | Depth of 120–160 cm; the Munsell colors of moist mottles are 2.5 YR 4/6, 10 YR 6/6, 10 YR 6/6, and 2.5 YR 5/6; textural class is silty clay loam; consistency of soil mass is very hard (dry), friable (moist), plastic (plasticity), and sticky (stickiness). |
Correlation Coefficient | Interpretation |
---|---|
0.00–0.10 | Negligible correlation |
0.10–0.39 | Weak correlation |
0.40–0.69 | Moderate correlation |
0.70–0.89 | Strong correlation |
0.90–1.00 | Very strong correlation |
Variable | Mean | Maximum | Minimum | SD | CV |
---|---|---|---|---|---|
A. Forest | |||||
θv, m3 m−3 | 0.320 | 0.363 | 0.290 | 0.02 | 6.39 |
θg, kg kg−1 | 0.250 | 0.267 | 0.234 | 0.01 | 4.21 |
AP, mm h−1 | 24.20 | 81.05 | 0.00 | 23.13 | 95.59 |
KθS, mm h−1 | 17.12 | 90.68 | 0.00 | 26.53 | 154.91 |
Macro, m3 m−3 | θ0.066 | 0.125 | 0.015 | 0.03 | 42.46 |
Micro, m3 m−3 | 0.350 | 0.390 | 0.313 | 0.02 | 5.99 |
TP, m3 m−3 | 0.416 | 0.443 | 0.398 | 0.02 | 3.97 |
BDi, Mg m−3 | 1.28 | 1.43 | 1.20 | 0.06 | 4.51 |
BDf, Mg m−3 | 1.70 | 1.77 | 1.60 | 0.05 | 3.02 |
Def, mm | 0.62 | 0.77 | 0.38 | 0.09 | 14.18 |
RP, MPa | 0.73 | 0.89 | 0.63 | 0.07 | 8.98 |
PCS, kPa | 45.00 | 66.40 | 29.40 | 11.23 | 24.95 |
CI | 0.29 | 0.40 | 0.16 | 0.05 | 18.30 |
Pasture | |||||
θv, m3 m−3 | 0.316 | 0.337 | 0.262 | 0.02 | 5.11 |
θg, kg kg−1 | 0.237 | 0.260 | 0.224 | 0.01 | 4.64 |
AP, mm h−1 | 19.10 | 50.54 | 7.12 | 11.30 | 59.18 |
KθS, mm h−1 | 14.38 | 121.45 | 1.37 | 27.69 | 192.58 |
Macro, m3 m−3 | 0.064 | 0.163 | 0.036 | 0.03 | 43.59 |
Micro, m3 m−3 | 0.352 | 0.375 | 0.286 | 0.02 | 5.68 |
TP, m3 m−3 | 0.416 | 0.448 | 0.396 | 0.01 | 3.77 |
BDi, Mg m−3 | 1.34 | 1.42 | 1.13 | 0.07 | 5.08 |
BDf, Mg m−3 | 1.71 | 1.77 | 1.64 | 0.03 | 1.99 |
Def, mm | 0.55 | 0.87 | 0.45 | 0.09 | 17.13 |
RP, MPa | 0.92 | 1.22 | 0.74 | 0.13 | 14.39 |
PCS, kPa | 37.79 | 59.90 | 21.30 | 12.24 | 32.39 |
CI | 0.23 | 0.39 | 0.18 | 0.05 | 21.18 |
Variable | Mean | Maximum | Minimum | SD | CV |
---|---|---|---|---|---|
Eucalyptus 20 | |||||
θv, m3 m−3 | 0.232 | 0.292 | 0.178 | 0.03 | 14.99 |
θg, kg kg−1 | 0.201 | 0.221 | 0.180 | 0.01 | 6.35 |
AP, mm h−1 | 191.11 | 413.81 | 24.88 | 124.42 | 65.10 |
KθS, mm h−1 | 71.01 | 161.14 | 0.00 | 59.58 | 83.90 |
Macro, m3 m−3 | 0.062 | 0.121 | 0.002 | 0.03 | 56.46 |
Micro, m3 m−3 | 0.275 | 0.350 | 0.217 | 0.05 | 16.99 |
TP, m3 m−3 | 0.337 | 0.451 | 0.219 | 0.07 | 21.17 |
BDi, Mg m−3 | 1.15 | 1.36 | 0.96 | 0.13 | 11.12 |
BDf, Mg m−3 | 1.78 | 1.88 | 1.68 | 0.07 | 4.02 |
Def, mm | 0.74 | 0.87 | 0.52 | 0.11 | 15.59 |
RP, MPa | 0.93 | 1.22 | 0.62 | 0.24 | 25.94 |
PCS, kPa | 40.25 | 70.60 | 18.40 | 13.96 | 34.67 |
CI | 0.47 | 0.78 | 0.24 | 0.14 | 29.30 |
Eucalyptus 4.5 | |||||
θv, m3 m−3 | 0.260 | 0.302 | 0.218 | 0.02 | 9.36 |
θg, kg kg−1 | 0.177 | 0.215 | 0.152 | 0.02 | 9.50 |
AP, mm h−1 | 23.95 | 59.41 | 3.54 | 19.78 | 82.58 |
KθS, mm h−1 | 12.33 | 56.73 | 0.00 | 15.59 | 126.49 |
Macro, m3 m−3 | 0.072 | 0.136 | 0.037 | 0.03 | 39.01 |
Micro, m3 m−3 | 0.299 | 0.332 | 0.276 | 0.01 | 4.96 |
TP, m3 m−3 | 0.371 | 0.422 | 0.318 | 0.03 | 7.52 |
BDi, Mg m−3 | 1.47 | 1.64 | 1.33 | 0.09 | 6.38 |
BDf, Mg m−3 | 1.85 | 1.93 | 1.76 | 0.05 | 2.69 |
Def, mm | 0.51 | 0.67 | 0.38 | 0.09 | 16.91 |
RP, MPa | 0.89 | 1.22 | 0.62 | 0.20 | 21.92 |
PCS, kPa | 46.39 | 65.40 | 30.80 | 10.79 | 23.26 |
CI | 0.20 | 0.29 | 0.12 | 0.05 | 24.27 |
A. Forest | Pasture | Eucalyptus 20 | Eucalyptus 4.5 | All Uses | |
---|---|---|---|---|---|
Variable | RP | RP | RP | RP | RP |
Gravel | 0.69 ** | 0.05 ns | 0.37 ns | 0.62 ** | 0.34 ** |
Total sand | −0.60 ** | 0.38 ns | 0.02 ns | −0.67 ** | −0.19 ns |
Coarse sand | −0.55 * | 0.35 ns | 0.10 ns | −0.63 ** | −0.16 ns |
Fine sand | −0.40 ns | 0.32 ns | −0.09 ns | −0.63 ** | −0.21 ns |
Silt | −0.55 * | 0.29 ns | −0.36 ns | −0.55 * | −0.32 ** |
Clay | 0.66 ** | −0.41 ns | 0.03 ns | 0.66 ** | 0.26 * |
Silt + clay | 0.60 ** | −0.38 ns | −0.02 ns | 0.67 ** | 0.19 ns |
θv | 0.15 ns | −0.13 ns | 0.44 ns | −0.23 ns | −0.13 ns |
θg | −0.19 ns | −0.24 ns | −0.08 ns | −0.10 ns | −0.27 * |
AP | −0.23 ns | 0.16 ns | −0.67 ** | 0.31 ns | −0.08 ns |
KθS | −0.34 ns | −0.11 ns | −0.35 ns | 0.40 ns | −0.00 ns |
Macro | 0.24 ns | −0.09 ns | 0.61 ** | 0.12 ns | 0.24 * |
Micro | −0.26 ns | 0.07 ns | 0.38 ns | −0.00 ns | −0.05 ns |
TP | 0.08 ns | −0.07 ns | 0.55 * | 0.12 ns | 0.10 ns |
BDi | 0.37 ns | 0.14 ns | 0.42 ns | −0.18 ns | 0.12 ns |
BDf | 0.47 * | 0.12 ns | 0.22 ns | −0.06 ns | 0.27 * |
Def | −0.03 ns | −0.10 ns | 0.79 * | 0.23 ns | 0.20 ns |
PCS | −0.13 ns | 0.28 ns | 0.30 ns | 0.08 ns | 0.08 ns |
CI | −0.14 ns | −0.07 ns | −0.40 ns | 0.22 ns | −0.06 ns |
Step | Model | R2 | Significance |
---|---|---|---|
1 | RP = 1.67372 − 0.00448 Silt | 0.18 | 1% |
2 | RP = 2.04690 − 1.80565 ϴg − 0.00435 silt | 0.29 | 1% |
3 | RP = 0.52711 − 3.90300 ϴg + 0.00132 silt + 0.00217 clay | 0.45 | 1% |
4 | The silt was not significant in the step 3, then, the equation may be simplified: RP = 0.83614 − 3.58215 ϴg + 0.00185 clay | 0.44 | 1% |
5 | RP = 0.81254 − 3.27152 ϴg + 0.00030606 gravel + 0.00171 clay | 0.50 | 1% |
6 | RP = 1.99928 − 3.64842 ϴg + 0.00033108 gravel − 0.00371 fine sand + 0.00054539 clay | 0.53 | 1% |
7 | The clay was not significant in the step 6, then, the equation may be simplified: RP = 2.47436 − 3.69516 ϴg + 0.00034709 gravel − 0.00513 fine sand | 0.53 | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.E.A.S.; Reinert, D.J.; Pillon, C.N.; Reichert, J.M. Mechanical Resistance to Penetration for Improved Diagnosis of Soil Compaction at Grazing and Forest Sites. Forests 2024, 15, 1369. https://doi.org/10.3390/f15081369
Suzuki LEAS, Reinert DJ, Pillon CN, Reichert JM. Mechanical Resistance to Penetration for Improved Diagnosis of Soil Compaction at Grazing and Forest Sites. Forests. 2024; 15(8):1369. https://doi.org/10.3390/f15081369
Chicago/Turabian StyleSuzuki, Luis Eduardo Akiyoshi Sanches, Dalvan José Reinert, Clenio Nailto Pillon, and José Miguel Reichert. 2024. "Mechanical Resistance to Penetration for Improved Diagnosis of Soil Compaction at Grazing and Forest Sites" Forests 15, no. 8: 1369. https://doi.org/10.3390/f15081369
APA StyleSuzuki, L. E. A. S., Reinert, D. J., Pillon, C. N., & Reichert, J. M. (2024). Mechanical Resistance to Penetration for Improved Diagnosis of Soil Compaction at Grazing and Forest Sites. Forests, 15(8), 1369. https://doi.org/10.3390/f15081369