Discrepancies and Evaluation of Needle-Leaf and Tracheid Traits of Qinhai Spruce in Qilian Mountains, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Laboratory Analysis
2.3. Data Processing
3. Results
3.1. Multiple Comparisons of Tracheid and Needle-Leaf Traits
3.2. Analysis of Variation in Tracheid and Needle-Leaf Traits
3.3. Correlation Analysis of Tracheid and Needle-Leaf Traits
3.4. Cluster Analysis of Tracheid and Needle-Leaf Traits
3.5. Principal Component Analysis and Comprehensive Evaluation of Tracheid and Needle-Leaf Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, F.; Wen, S.; Wei, S.; Ou, H.B.; Wang, Z.H. Variation Analysis of Seed and Leaf Phenotypic Traits of Albizia Odoratissima from Different Provenances. J. Cent. South Univ. For. Technol. 2023, 2, 1–10. [Google Scholar] [CrossRef]
- Varghese, M.; Harwood, C.E.; Bush, D.J.; Baltunis, B.; Kamalakannan, R.; Suraj, P.G.; Hegde, D.; Meder, R. Growth and wood properties of natural provenances, local seed sources and clones of Eucalyptus camaldulensis in southern India: Implications for breeding and deployment. New For. 2017, 48, 67–82. [Google Scholar] [CrossRef]
- Perek, M.; Hodge, G.; Tambarussi, E.V.; Biernaski, F.A.; Acosta, J. Predicted genetic gains for growth traits and wood resistance in Pinus maximinoi and Pinus tecunumanii. Crop Breed. Appl. Biotechnol. 2022, 22, e391022213. [Google Scholar] [CrossRef]
- Gao, J.; Yang, B.; Peng, X.; Rossi, S. Tracheid development under a drought event producing intra-annual density fluctuations in the semi-arid China. Agric. For. Meteorol. 2021, 308, 108572. [Google Scholar] [CrossRef]
- Chin, A.R.; Sillett, S.C. Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer. Am. J. Bot. 2016, 103, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zhao, G.H.; Zhang, L.S.; Sun, X.Y.; Yin, S.P.; De, Y.L.; Li, Y.; Mi, Z.; Zhao, X. Genetic and variation analyses of growth traits of half-sib Larix olgensis families in northeastern China. Euphytica 2016, 212, 387–397. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, H.; Tan, J.; Feng, Y.; Huang, Y. Selection of superior families of Pinus massoniana in southern China for large-diameter construction timber. J. For. Res. 2020, 31, 475–484. [Google Scholar] [CrossRef]
- Benavides, R.; Carvalho, B.; Bastias, C.C.; López-Quiroga, D.; Mas, A.; Cavers, S.; Gray, A.; Albet, A.; Alía, R.; Ambrosio, O.; et al. The GenTree Leaf Collection: Inter-and intraspecific leaf variation in seven forest tree species in Europe. Glob. Ecol. Biogeogr. 2021, 30, 590–597. [Google Scholar] [CrossRef]
- Zhao, R.; Chu, X.; He, Q.; Liu, W.; Zhu, Z. Leaf phenotypic variation in natural populations of Carpinus tschonoskii in China. J. For. Res. 2023, 34, 1591–1602. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Chen, X.Y. Phenotypic diversity of natural populations in Picea crassifolia in Qilian mountains. Sci. Silvae Sin. 2008, 44, 70–77. [Google Scholar]
- Zhou, C.; Guo, Y.; Chen, Y.; Zhang, H.; El-Kassaby, Y.A.; Li, W. Genome Wide Association Study Identifies Candidate Genes Related to the Earlywood Tracheid Properties in Picea crassifolia Kom. Forests 2022, 13, 332. [Google Scholar] [CrossRef]
- Qin, H.; Jiao, L.; Zhou, Y.; Wu, J.; Che, X. Elevation affects the ecological stoichiometry of Qinghai spruce in the Qilian Mountains of northwest China. Front. Plant Sci. 2022, 13, 917755. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Yang, B.; Li, G. Assessing the influence of local environment, regional climate and tree species on radial growth in the Hexi area of arid northwest China. Front. Plant Sci. 2022, 13, 1046462. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Han, Y.; Yuan, S.; Gao, Y.; Rong, Z.; Zhao, C. Simulating the canopy photosynthesis of Qinghai spruce (Picea crassifolia Kom.) in the Qilian Mountains, Northwestern China. New For. 2022, 53, 511–531. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, B.P.; Zhao, F.; Yao, Y.H.; Zhang, S.; Qi, W.W. Omni-directional distribution patterns of montane coniferous forest in the Helan Mountains of China. J. Mt. Sci. 2013, 10, 724–733. [Google Scholar] [CrossRef]
- Bakeer, S.M.; Makpoul, K.R.; Abou-Ellail, M. Evaluation of ten jojoba clones (Simmondsia chinensis) grown under Middle Sinai conditions. Ind. Crops Prod. 2017, 107, 30–37. [Google Scholar] [CrossRef]
- Ji, M.; Deng, J.; Yao, B.; Chen, R.; Fan, Z.; Guan, J.; Li, X.; Wu, F.; Niklas, K.J. Ecogeographical variation of 12 morphological traits within Pinus tabulaeformis: The effects of environmental factors and demographic histories. J. Plant Ecol. 2017, 10, 386–396. [Google Scholar] [CrossRef]
- Cardoso, G.C.; Cortesao, M.; Garcia, C. Ecological marginalization facilitated diversification in conifers. Evol. Biol. 2015, 42, 146–155. [Google Scholar] [CrossRef]
- Weng, Y.H.; Liu, K.J.; Chen, Y.B.; Li, Y.; Wang, J.; Meng, Q.F. Variation in cone and seed traits in a clonal seed orchard of red pine (Pinus koraiensis Sieb. et Zucc.). Scand. J. For. Res. 2020, 35, 1–9. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, H.; Zhang, L.; Guan, C. Genetic variation of 17-year-old hybrid larch and its superior family selection. J. Northeast For. Univ. 2010, 38, 8–11. [Google Scholar] [CrossRef]
- Dong, X.S.; Chen, X.X.; Gai, Z.S.; Zhai, J.T.; Guo, X.F.; Han, X.L.; Zhang, S.H.; Wu, Z.H.; Li, Z.J. Phenotypic Diversity and Variation in Natural Populus euphratica Populations Shaped by Environmental Factors. Contemp. Probl. Ecol. 2023, 16, 230–252. [Google Scholar] [CrossRef]
- Garcia, R.; Siepielski, A.M.; Benkman, C.W. Cone and seed trait variation in whitebark pine (Pinus albicaulis; Pinaceae) and the potential for phenotypic selection. Am. J. Bot. 2009, 96, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Lv, D.; Zhao, M.; Zhao, X.P.; Zhao, H.; Li, W. Genetic structure analysis of Picea crassifolia based on genome-wide SNP molecular markers. Bull. Bot. Res. 2022, 42, 373–382. [Google Scholar]
- Chen, Y.L.; Lv, D.; Zhao, M.; Zhao, H.; Zhao, X.P.; Li, W. Half-sib progeny test and evaluation of parents of Picea crassifolia. J. Beijing For. Univ. 2021, 43, 17–24. [Google Scholar] [CrossRef]
- Yücedağ, C.; Gezer, A.; Orhan, H. The genetic variation in Crimean juniper populations from the Lakes District of Turkey. Rom. Biotechnol. Lett. 2010, 15, 5487–5492. [Google Scholar]
- Li, Q.; Wang, J.; Li, D.; Hu, C.; Qi, S. Genetic variation of wood traits in asexual lines of Qinghai spruce. J. Northeast For. Univ. 2015, 43, 12–16+35. [Google Scholar] [CrossRef]
- Bodare, S. Conservation Genetics and Speciation in Asian Forest Trees. Doctoral Dissertation, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2013. [Google Scholar]
- Zhang, S.; Zhang, H.; Ding, L.; Xia, Y.; Dai, W.; Han, X.; Siqin, T.; You, X. Evaluation and Selection of Excellent Provenances of Eleutherococcus senticosus. Forests 2023, 14, 1359. [Google Scholar] [CrossRef]
- Donaldson, L.A. Within-and between-tree variation in microfibril angle in Pinus radiata. N. Z. J. For. Sci. 1992, 22, 77–86. [Google Scholar]
- Pan, Y.; Li, S.; Wang, C.; Ma, W.; Xu, G.; Shao, L.; Li, K.; Zhao, X.; Jiang, T. Early evaluation of growth traits of Larix kaempferi clones. J. For. Res. 2018, 29, 1031–1039. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Liu, R.J.; Yao, L.H.; Guo, Y. Compative ative study on the tracheid moprphology and basic density of clonal chinese fir. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2020, 41, 54–60. [Google Scholar] [CrossRef]
- Gao, X.X.; Chen, J.; Xu, R.; Yu, J.; Yang, C.M.; Peng, F.; Zhang, Y.Q.; Peng, Y.L. Variation and correlation analysis on phenotypic traits of Scutellaria baicalensis from different strains. China J. Chin. Mater. Medica 2016, 41, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, Y.F.; Tang, L.; Yang, C.Y.; Li, R.Y.; Ma, X.J. Phenotypic Trait Variation, Principal Component, Correlation and Path Analysis of Paris polyphylla var. Yunnanensis. J. Chin. Med. Mater. 2015, 38, 1339–1342. [Google Scholar] [CrossRef]
- Du, Q.; Xu, B.; Gong, C.; Yang, X.; Pan, W.; Tian, J.; Li, B.; Zhang, D. Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China. Can. J. For. Res. 2014, 44, 326–339. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Ma, J.; Zhang, X.; Xu, L.A. Phenotypic variation in Phoebe bournei populations preserved in the primary distribution area. J. For. Res. 2018, 29, 35–44. [Google Scholar] [CrossRef]
- Popović, V.; Nikolić, B.; Lučić, A.; Rakonjac, L.; Šešlija Jovanović, D.; Miljković, D. Morpho-anatomical trait variability of the Norway spruce (Picea abies (L.) Karst.) needles in natural populations along elevational diversity gradient. Trees 2022, 36, 1131–1147. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Xin, Y.; Wang, F.; Xin, P.; Gao, J. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. Chin. J. Plant Ecol. 2023, 47, 833–846. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.Q.; Sun, P.; Huang, X.J.; Li, S.Q.; Huang, C.L. Phenotypic variation in natural population of Picea asperata. J. Northeast For. Univ. 2003, 31, 9–11. [Google Scholar]
- Luo, J.; Gu, W.C. Cone and seed variation of natural population in Picea asperata. J. Northwest Sci-Tech Univ. Agri. For. 2004, 32, 60–66. [Google Scholar]
- Luo, J.; Gu, W.C. Study on phenotypic diversity of natural population in Picea asperata. Sci. Silvae Sin. 2005, 41, 66–73. [Google Scholar]
- Meng, J.; Chen, X.; Huang, Y.; Wang, L.; Xing, F.; Li, Y. Environmental contribution to needle variation among natural populations of Pinus tabuliformis. J. For. Res. 2019, 30, 1311–1322. [Google Scholar] [CrossRef]
- Lewandowska, A.; Boratynska, K.; Marcysiak, K.; Gómez, D.; Romo, A.; Malicki, M.; Iszkulo, G.; Boratynski, A. Phenotypic differentiation of Rhododendron ferrugineum populations in European mountains. Dendrobiology 2022, 87, 1–12. [Google Scholar] [CrossRef]
- Gülcü, S.; Üçler, A.Ö. Genetic variation of Anatolian black pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) in the lakes district of Turkey. Silvae Genet. 2008, 57, 1–5. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, Y.; Zhang, J.; Li, Y. Variation of phenotypic and physiological traits of Robinia pseudoacacia L. from 20 provenances. PLoS ONE 2022, 17, e0262278. [Google Scholar] [CrossRef] [PubMed]
- MacLachlan, I.R.; Wang, T.; Hamann, A.; Smets, P.; Aitken, S.N. Selective breeding of lodgepole pine increases growth and maintains climatic adaptation. For. Ecol. Manag. 2017, 391, 404–416. [Google Scholar] [CrossRef]
- Liu, K.; Han, Y.; Wang, X.; Li, L.; Shen, Q.; Zheng, Y.; Rong, J.; Chen, L. Difference and evaluation of grow traits of Fokienia hodginsii caused by different provenances. J. Cent. South Univ. For. Technol. 2023, 43, 62–72. [Google Scholar] [CrossRef]
- He, Q.; Yang, S.; Li, Y.; Shen, X.; Liu, X. Phenotypic variations in seed and fruit traits of Liquidambar formosana populations. Chin. J. Plant Ecol. 2018, 42, 752–763. [Google Scholar] [CrossRef]
- Metougui, M.L.; Mokhtari, M.; Maughan, P.J.; Jellen, E.N.; Benlhabib, O. Morphological variability, heritability and correlation studies within an argan tree population (Argania spinosa (L.) Skeels) preserved in situ. Int. J. Agric. For. 2017, 7, 42–51. [Google Scholar]
- Chen, Y. Selection of Superior Half-Sib Families and Genome-Wide Association Study of Important Traits in Picea crassifolia. Master’s Thesis, Beijing Forestry University, Beijing, China, 2021. [Google Scholar] [CrossRef]
- Kaviriri, D.K.; Li, Y.; Zhang, D.; Li, H.; Fan, Z.; Wang, J.; Wang, L.; Wang, Q.; Wang, D.; Chiang, V.L.; et al. Clonal variations in cone, seed and nut traits in a Pinus koraiensis seed orchard in Northeast China. J. For. Res. 2021, 32, 171–179. [Google Scholar] [CrossRef]
- Barzdajn, W. An assessment of diagnostic value of morphological traits of Norway spruce (Picea abies (L.) Karst.) cones for discrimination of spruce provenances. Sylwan 1996, 140, 61–75. [Google Scholar]
Material Sources | Longitude | Latitude | Elevation (m) | Quantity |
---|---|---|---|---|
XS | 100°03′~100°23′ | 38°23′~38°48′ | 2735 | 5 |
LC | 102°26′~102°55′ | 36°33′~36°48′ | 2790 | 5 |
DHS | 101°00′~101°30′ | 38°20′~38°30′ | 2752 | 5 |
HX | 102°01′~102°51′ | 37°16′~37°45′ | 2613 | 5 |
DDS | 100°45′~100°51′ | 39°00′~39°04′ | 2712 | 5 |
LCH | 99°32′~100°01′ | 38°39′~38°56′ | 2589 | 5 |
GC | 102°26′~102°51′ | 36°45′~37°07′ | 2595 | 5 |
DHK | 100°31′~100°56′ | 37°54′~38°31′ | 2468 | 5 |
QL | 102°06′~102°25′ | 37°31′~37°51′ | 2485 | 5 |
XYH | 102°24′~102°66′ | 36°57′~37°25′ | 2605 | 5 |
Needle-Leaf | Abridge | Earlywood | Abridge | Latewood | Abridge |
---|---|---|---|---|---|
Fresh weight | NFW | Length | ETL | Length | LTL |
Length | NL | Diameter | ETD | Diameter | LTD |
Width | NW | Lumen diameter | ETLD | Lumen diameter | LTLD |
Thickness | NT | Wall thickness | ETWT | Wall thickness | LTWT |
Dry weight | NDW | Length/diameter ratio | ETLEDR | Length/diameter ratio | LTLEDR |
Length/width ratio | NLWR | Lumen/diameter ratio | ETLUDR | Lumen/diameter ratio | LTLUDR |
Width/thickness ratio | NWTR | Wall/lumen ratio | ETWLR | Wall/lumen ratio | LTWLR |
Moisture content | NMC |
Provenance | Earlywood Tracheid (μm) | ||||||
---|---|---|---|---|---|---|---|
ETL | ETD | ETLD | ETWT | ETLEDR | ETLUDR | ETWLR | |
XS | 3370.68 ± 63.38 b | 52.18 ± 0.86 bcd | 44.33 ± 0.85 cd | 7.85 ± 0.22 ab | 65.48 ± 1.54 ab | 0.85 ± 0.04 c | 0.18 ± 0.01 a |
LC | 3101.49 ± 70.41 c | 51.13 ± 0.90 cd | 44.31 ± 0.86 cd | 6.83 ± 0.19 cde | 61.64 ± 1.62 bcd | 0.87 ± 0.01 a | 0.16 ± 0.01 c |
DHS | 3402.97 ± 65.54 b | 52.82 ± 1.01 bc | 46.16 ± 1.01 abc | 6.66 ± 0.18 de | 65.87 ± 1.81 ab | 0.87 ± 0.01 a | 0.15 ± 0.01 c |
HX | 3674.02 ± 60.06 a | 53.51 ± 0.88 abc | 45.59 ± 0.92 bc | 7.91 ± 0.22 a | 69.51 ± 1.44 a | 0.85 ± 0.01 bc | 0.18 ± 0.01 ab |
DDS | 3303.31 ± 73.26 b | 54.54 ± 1.14 ab | 47.64 ± 1.11 ab | 6.90 ± 0.19 cde | 61.39 ± 1.50 bcd | 0.87 ± 0.01 a | 0.15 ± 0.01 c |
LCH | 2906.80 ± 85.47 c | 51.81 ± 1.14 bcd | 45.40 ± 1.34 bc | 6.40 ± 0.19 e | 56.76 ± 1.66 d | 0.87 ± 0.01 a | 0.15 ± 0.01 c |
GC | 3304.39 ± 56.70 b | 51.39 ± 0.89 bcd | 44.39 ± 0.89 cd | 7.01 ± 0.18 cde | 65.32 ± 1.53 ab | 0.86 ± 0.01 ab | 0.16 ± 0.01 c |
DHK | 2924.40 ± 55.41 c | 49.58 ± 0.85 d | 42.21 ± 0.82 d | 7.37 ± 0.24 abc | 59.66 ± 1.28 cd | 0.85 ± 0.01 bc | 0.18 ± 0.01 ab |
QL | 3396.29 ± 50.89 b | 56.20 ± 1.32 a | 48.94 ± 1.33 a | 7.26 ± 0.17 bcd | 62.82 ± 2.07 bc | 0.87 ± 0.01 a | 0.16 ± 0.01 c |
XYH | 3056.54 ± 63.75 c | 52.99 ± 1.20 bc | 46.31 ± 1.21 abc | 6.68 ± 0.23 de | 58.75 ± 1.44 cd | 0.87 ± 0.01 a | 0.15 ± 0.01 c |
F-value | 13.805 ** | 3.292 ** | 3.418 ** | 6.196 ** | 5.809 ** | 4.805 ** | 4.595 ** |
Provenance | Latewood Tracheid (μm) | ||||||
---|---|---|---|---|---|---|---|
LTL | LTD | LTLD | LTWT | LTLEDR | LTLUDR | LTWLR | |
XS | 3637.78 ± 64.19 ab | 40.67 ± 0.61 abc | 20.53 ± 0.51 b | 20.14 ± 0.41 a | 90.47 ± 1.94 a | 0.50 ± 0.01 b | 1.03 ± 0.04 b |
LC | 3635.91 ± 64.17 ab | 40.84 ± 0.61 abc | 22.20 ± 0.61 ab | 18.64 ± 0.42 bc | 89.59 ± 1.59 a | 0.54 ± 0.01 a | 0.89 ± 0.04 bc |
DHS | 3645.44 ± 68.45 ab | 40.99 ± 0.51 ab | 22.36 ± 0.50 a | 18.63 ± 0.40 bc | 89.34 ± 1.70 a | 0.54 ± 0.01 a | 0.87 ± 0.03 c |
HX | 3728.44 ± 77.22 a | 41.96 ± 0.49 a | 21.98 ± 0.49 ab | 19.98 ± 0.42 ab | 89.03 ± 1.70 a | 0.52 ± 0.01 ab | 0.95 ± 0.03 bc |
DDS | 3456.91 ± 79.43 bc | 41.91 ± 0.48 a | 21.74 ± 0.66 ab | 20.17 ± 0.49 a | 82.87 ± 1.92 b | 0.52 ± 0.01 ab | 1.01 ± 0.05 b |
LCH | 3161.01 ± 93.30 d | 38.05 ± 0.56 de | 17.74 ± 0.53 c | 20.31 ± 0.35 a | 82.82 ± 1.94 b | 0.46 ± 0.01 c | 1.22 ± 0.05 a |
GC | 3598.50 ± 58.38 abc | 40.00 ± 0.65 bc | 20.93 ± 0.61 ab | 19.07 ± 0.34 abc | 90.88 ± 1.70 a | 0.52 ± 0.01 ab | 0.98 ± 0.04 bc |
DHK | 3404.44 ± 50.38 c | 37.47 ± 0.54 e | 17.58 ± 0.47 c | 19.89 ± 0.50 ab | 91.84 ± 1.79 a | 0.47 ± 0.01 c | 1.19 ± 0.05 a |
QL | 3665.32 ± 76.60 ab | 41.57 ± 0.63 ab | 21.65 ± 0.66 ab | 19.92 ± 0.61 ab | 88.70 ± 1.86 a | 0.52 ± 0.01 ab | 0.99 ± 0.05 bc |
XYH | 3389.00 ± 66.38 c | 39.19 ± 0.53 cd | 20.86 ± 0.54 ab | 18.34 ± 0.43 d | 86.90 ± 1.68 ab | 0.53 ± 0.01 ab | 0.93 ± 0.04 bc |
F-value | 6.110 ** | 7.779 ** | 9.620 ** | 2.888 * | 3.091 * | 7.077 ** | 7.320 ** |
Provenance | NL (mm) | NW (mm) | NT (mm) | NFW (mg) | NDW (mg) | NLWR | NWTR | NMC% |
---|---|---|---|---|---|---|---|---|
XS | 15.10 ± 0.22 e | 1.76 ± 0.02 a | 1.26 ± 0.01 b | 21.22 ± 0.58 c | 9.75 ± 0.25 c | 8.61 ± 0.10 f | 1.39 ± 0.01 bc | 53.78 ± 0.30 bc |
LC | 15.92 ± 0.27 d | 1.26 ± 0.02 g | 1.09 ± 0.02 f | 15.49 ± 0.55 f | 7.01 ± 0.26 g | 13.06 ± 0.36 b | 1.16 ± 0.02 f | 54.69 ± 0.55 b |
DHS | 15.56 ± 0.19 de | 1.69 ± 0.01 b | 1.35 ± 0.01 a | 22.58 ± 0.38 b | 10.63 ± 0.19 b | 9.26 ± 0.14 e | 1.25 ± 0.01 d | 52.90 ± 0.17 c |
HX | 13.7 ± 0.19 g | 1.56 ± 0.01 cd | 1.16 ± 0.01 d | 16.40 ± 0.38 f | 7.96 ± 0.17 f | 8.81 ± 0.13 ef | 1.36 ± 0.02 c | 51.16 ± 0.32 d |
DDS | 16.58 ± 0.10 c | 1.58 ± 0.01 c | 1.16 ± 0.01 d | 19.97 ± 0.29 d | 9.14 ± 0.08 de | 10.59 ± 0.12 d | 1.36 ± 0.01 c | 53.59 ± 0.60 bc |
LCH | 16.95 ± 0.30 c | 1.65 ± 0.01 b | 1.17 ± 0.01 d | 23.03 ± 0.75 b | 10.03 ± 0.29 c | 10.28 ± 0.17 d | 1.42 ± 0.01 b | 55.99 ± 0.25 a |
GC | 20.16 ± 0.26 a | 1.52 ± 0.02 de | 1.32 ± 0.01 a | 26.36 ± 0.35 a | 11.40 ± 0.16 a | 13.61 ± 0.32 a | 1.15 ± 0.01 f | 56.72 ± 0.24 a |
DHK | 14.40 ± 0.07 f | 1.67 ± 0.01 b | 1.13 ± 0.01 e | 17.88 ± 0.25 e | 8.65 ± 0.15 e | 8.66 ± 0.08 f | 1.49 ± 0.01 a | 51.64 ± 0.33 d |
QL | 15.52 ± 0.20 de | 1.45 ± 0.01 f | 1.16 ± 0.01 de | 16.33 ± 0.33 f | 7.35 ± 0.13 g | 10.76 ± 0.15 d | 1.26 ± 0.13 d | 54.61 ± 0.38 b |
XYH | 17.80 ± 0.11 b | 1.48 ± 0.02 ef | 1.22 ± 0.01 c | 21.98 ± 0.35 bc | 9.59 ± 0.23 cd | 12.28 ± 0.20 c | 1.21 ± 0.01 e | 56.80 ± 0.37 a |
F-value | 80.108 ** | 73.481 ** | 52.260 ** | 63.212 ** | 50.398 ** | 87.787 ** | 71.004 ** | 27.501 ** |
Trait | Mean | Maximum | Minimum | SD | CV (%) |
---|---|---|---|---|---|
NL/mm | 16.17 | 26.43 | 10.66 | 2.61 | 16.17 |
NW/mm | 1.56 | 2.09 | 0.92 | 0.21 | 13.54 |
NT/mm | 1.20 | 1.52 | 0.83 | 0.14 | 11.33 |
NFW/mg | 20.12 | 36.3 | 9.30 | 5.38 | 26.74 |
NDW/mg | 9.15 | 16.6 | 4.00 | 2.32 | 25.32 |
NLWR | 10.59 | 20.49 | 6.46 | 2.56 | 24.18 |
NWTR | 1.31 | 1.56 | 0.86 | 0.17 | 12.92 |
NMC% | 54.19 | 69.58 | 36.57 | 4.00 | 7.39 |
ETL/μm | 3244.09 | 4753.3 | 1664.4 | 551.34 | 17.00 |
ETD/μm | 52.61 | 78.8 | 27.6 | 8.10 | 15.39 |
ETLD/μm | 45.53 | 70.3 | 21.7 | 8.09 | 17.77 |
ETWT/μm | 7.09 | 13.4 | 2.8 | 1.63 | 23.03 |
ETLEDR | 62.72 | 110.75 | 34.60 | 12.84 | 20.48 |
ETLUDR | 0.86 | 0.95 | 0.72 | 0.04 | 4.18 |
ETWLR | 0.16 | 0.38 | 0.05 | 0.04 | 31.16 |
LTL/μm | 3532.27 | 4838.1 | 2060.0 | 569.05 | 16.11 |
LTD/μm | 40.26 | 55.4 | 25.7 | 4.59 | 11.40 |
LTLD/μm | 20.76 | 43.3 | 8.0 | 4.62 | 22.25 |
LTWT/μm | 19.51 | 33.4 | 9.7 | 3.48 | 17.84 |
LTLEDR | 88.24 | 132.54 | 50.92 | 14.05 | 15.93 |
LTLUDR | 0.51 | 0.78 | 0.28 | 0.08 | 16.24 |
LTWLR | 1.01 | 2.55 | 0.28 | 0.35 | 35.28 |
Provenance | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Aggregate Score (Y) | Ranking |
---|---|---|---|---|---|---|---|---|
XS | −0.6312 | −0.0932 | 0.4073 | 0.1612 | 0.2087 | 0.0537 | −0.0768 | 7 |
LC | −0.1007 | −0.1333 | −0.1822 | −0.3000 | −0.0337 | 0.3033 | −0.1112 | 9 |
DHS | 0.1165 | −0.0592 | 0.2785 | −0.3703 | −0.1027 | −0.2443 | −0.0118 | 4 |
HX | −0.6723 | −0.1302 | 0.9987 | 0.2305 | 0.1187 | −0.2993 | −0.0240 | 6 |
DDS | 0.4938 | 0.1158 | 0.2183 | 0.4022 | −0.3590 | −0.0322 | 0.2085 | 2 |
LCH | 0.7430 | 0.3057 | −0.9878 | 0.1535 | −0.4060 | 0.0403 | 0.0870 | 3 |
GC | −0.2305 | −0.0603 | 0.0663 | −0.3202 | 0.0173 | −0.0960 | −0.1107 | 8 |
DHK | −0.4197 | 0.0190 | −0.7743 | −0.1257 | 0.2632 | 0.3205 | −0.2038 | 10 |
QL | 0.3578 | 0.0623 | 0.6100 | 0.2253 | 0.1815 | −0.0333 | 0.2605 | 1 |
XYH | 0.3433 | −0.0237 | −0.6342 | −0.0547 | 0.1083 | −0.0123 | −0.0170 | 5 |
Provenance | Y1 | Y2 | Aggregate Score (Y) | Ranking |
---|---|---|---|---|
XS | 0.0609 | 1.4362 | 0.5414 | 3 |
LC | −1.0277 | −2.2020 | −1.2386 | 10 |
DHS | 0.8066 | 1.0488 | 0.7289 | 2 |
HX | −1.5218 | 0.5850 | −0.4563 | 8 |
DDS | −0.1550 | 0.1337 | −0.0203 | 6 |
LCH | 0.5074 | 0.5300 | 0.4120 | 4 |
GC | 2.6336 | −0.9829 | 0.8001 | 1 |
DHK | −1.3141 | 1.2407 | −0.1299 | 7 |
QL | −0.9471 | −0.8134 | −0.7054 | 9 |
XYH | 0.9574 | −0.9754 | 0.0690 | 5 |
Provenance | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Aggregate Score (Y) | Ranking |
---|---|---|---|---|---|---|---|---|---|---|
XS | −0.7318 | −0.6743 | 0.6520 | 1.1422 | −0.2018 | −0.2838 | 0.1687 | 0.0660 | −0.2673 | 8 |
LC | 1.2015 | −0.3890 | −1.6312 | −1.3222 | 0.5777 | 0.3677 | −0.0532 | 0.2500 | 0.6518 | 3 |
DHS | 0.3607 | 0.5868 | 0.5065 | 1.2618 | −0.0417 | −0.6615 | 0.0085 | −0.2113 | −0.2148 | 7 |
HX | −0.6992 | −1.3117 | −1.1083 | 1.1628 | 0.2830 | 0.0447 | −0.0193 | −0.2967 | −0.2087 | 6 |
DDS | −0.1943 | 0.4730 | −0.2350 | 0.2970 | −0.1237 | 0.3465 | −0.4102 | −0.0283 | −0.1022 | 5 |
LCH | −0.9135 | 0.7135 | 0.8720 | −0.8945 | −0.8605 | −0.0573 | −0.4532 | 0.0428 | −1.2065 | 9 |
GC | 1.6305 | 1.0318 | 1.8897 | −0.4747 | 0.9290 | 0.2473 | 0.3768 | −0.0528 | 2.0397 | 1 |
DHK | −1.7358 | −1.1343 | 0.0355 | −0.2713 | −1.0073 | −0.6677 | 0.0123 | 0.3643 | −1.8655 | 10 |
QL | 0.1535 | 0.2693 | −1.5728 | 0.2105 | 0.0940 | 0.2718 | 0.4845 | −0.2550 | 0.3658 | 4 |
XYH | 0.7334 | 0.3933 | 0.0501 | −0.7806 | 0.2875 | 0.3629 | 0.0345 | 0.0275 | 0.6984 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Xu, E.; Lv, D.; Wang, Y.; Zhao, X.; Wei, N.; Zhang, Z.; Yuan, H.; Ma, X.; Wu, X.; et al. Discrepancies and Evaluation of Needle-Leaf and Tracheid Traits of Qinhai Spruce in Qilian Mountains, Northwest China. Forests 2024, 15, 960. https://doi.org/10.3390/f15060960
Zhao H, Xu E, Lv D, Wang Y, Zhao X, Wei N, Zhang Z, Yuan H, Ma X, Wu X, et al. Discrepancies and Evaluation of Needle-Leaf and Tracheid Traits of Qinhai Spruce in Qilian Mountains, Northwest China. Forests. 2024; 15(6):960. https://doi.org/10.3390/f15060960
Chicago/Turabian StyleZhao, Hu, Erwen Xu, Dong Lv, Yanxia Wang, Xingpeng Zhao, Na Wei, Zhengzhong Zhang, Hao Yuan, Xuee Ma, Xiurong Wu, and et al. 2024. "Discrepancies and Evaluation of Needle-Leaf and Tracheid Traits of Qinhai Spruce in Qilian Mountains, Northwest China" Forests 15, no. 6: 960. https://doi.org/10.3390/f15060960
APA StyleZhao, H., Xu, E., Lv, D., Wang, Y., Zhao, X., Wei, N., Zhang, Z., Yuan, H., Ma, X., Wu, X., & Liu, X. (2024). Discrepancies and Evaluation of Needle-Leaf and Tracheid Traits of Qinhai Spruce in Qilian Mountains, Northwest China. Forests, 15(6), 960. https://doi.org/10.3390/f15060960