Optimizing Hardwood Lignin Precipitation from Kraft Black Liquor: A Study of Temperature and pH Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Methods
2.3. C, H, N, and S Elemental Analysis
2.4. Higher Heating Value (HHV)
2.5. Near-Infrared (NIR) Analysis
2.6. UV-VIS Analysis
- (a)
- Non-conjugated phenolic structures (I + III)
- (b)
- Conjugated phenolic structures (II + IV)
- (c)
- Total amount of phenolic hydroxyl groups
2.7. Optimization of the Selected Parameters
2.8. Production of Lignin under the Piloting Conditions
3. Results
3.1. Elemental Composition and Higher Heating Value (HHV)
3.2. Structural Characterization of Lignin via NIR Spectroscopy
3.2.1. Mn, ÐM, and COOH Groups’ Concentration
3.2.2. Hydroxyl and Methoxyl Groups
3.3. Structural Characterization of Lignin via UV-VIS Spectroscopy
3.4. Production of Lignin under the Piloting Conditions
4. Discussion
4.1. Elemental Composition and Higher Heating Value (HHV)
4.2. Structural Characterization of Lignin via NIR Spectroscopy
4.2.1. Mn, ÐM, and COOH Groups’ Concentration
4.2.2. Hydroxyl and Methoxyl Groups
4.3. Structural Characterization of Lignin via UV-VIS Spectroscopy
4.4. Production of Lignin under Piloting Conditions
5. Conclusions
- The phenolic and aliphatic hydroxyl groups’ concentration is crucially influenced by the precipitation conditions, specifically the temperature and pH, showcasing the potential for targeted property modification.
- The conjugated hydroxyl groups demonstrate a synergistic dependency on both the pH and temperature, whereas the non-conjugated hydroxyl groups exhibit a quadratic dependency primarily on the temperature.
- Scaling up the lignin extraction process from the lab to pilot process under the industrial conditions has validated the applicability of our results.
- The differences between the DoE predictions and actual measurements highlight the inherent complexities of lignin chemistry and the necessity for empirical adjustments.
- Broadening the scope of the DoE to include pilot-scale experiments, thereby providing a more comprehensive understanding of the scalability and industrial applicability of the process.
- Investigating additional parameters that may influence the lignin properties, such as acid concentration and type, to refine the predictive model and optimize lignin’s functional characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosillo-Calle, F.; de Groot, P.; Hemstock, S.L. Non Woody Biomass and Secondary Fuels. In The Biomass Assessment Handbook: Energy for a Sustainable Environment; Rosillo-Calle, F., de Groot, P., Hemstock, S.L., Woods, J., Eds.; Routledge: London, UK, 2015; pp. 1–336. ISBN 9781138019652. [Google Scholar]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin Biosynthesis and Structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1984; ISBN 3935638396. [Google Scholar]
- Keyoumu, A.; Sjödahl, R.; Henriksson, G.; Ek, M.; Gellerstedt, G.; Lindström, M.E. Continuous Nano- and Ultra-Filtration of Kraft Pulping Black Liquor with Ceramic Filters: A Method for Lowering the Load on the Recovery Boiler While Generating Valuable Side-Products. Ind. Crops Prod. 2004, 20, 143–150. [Google Scholar] [CrossRef]
- FAO. Pulp and Paper Capacities, Survey 2020–2025|Capacités de la Pâte et du Papier, Enquête 2020–2025|Capacidades de Pulpa y Papel, Estudio 2020–2025; FAO: Rome, Italy, 2021. [Google Scholar]
- Nadányi, R.; Ház, A.; Lisý, A.; Jablonský, M.; Šurina, I.; Majová, V.; Baco, A. Lignin Modifications, Applications, and Possible Market Prices. Energies 2022, 15, 6520. [Google Scholar] [CrossRef]
- Yue, X.; Suopajärvi, T.; Sun, S.; Mankinen, O.; Mikkelson, A.; Huttunen, H.; Komulainen, S.; Romakkaniemi, I.; Ahola, J.; Telkki, V.V.; et al. High-Purity Lignin Fractions and Nanospheres Rich in Phenolic Hydroxyl and Carboxyl Groups Isolated with Alkaline Deep Eutectic Solvent from Wheat Straw. Bioresour. Technol. 2022, 360, 127570. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Fakayode, O.A.; Ahmed Yagoub, A.E.G.; Ji, Q.; Zhou, C. Lignin Fractionation from Lignocellulosic Biomass Using Deep Eutectic Solvents and Its Valorization. Renew. Sustain. Energy Rev. 2022, 156, 111986. [Google Scholar] [CrossRef]
- Deepa, K.; Arthanareeswaran, G. Influence of Various Shapes of Alumina Nanoparticle in Integrated Polysulfone Membrane for Separation of Lignin from Woody Biomass and Salt Rejection. Environ. Res. 2022, 209, 112820. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Kollberg, L.; Almqvist, H.; Xu, B.; Hulteberg, C. Maximizing Yield of Liquid-Lignin from Membrane Filtration Retentate of Kraft Black Liquor. Ind. Crops Prod. 2021, 169, 113657. [Google Scholar] [CrossRef]
- Kienberger, M.; Maitz, S.; Pichler, T.; Demmelmayer, P. Systematic Review on Isolation Processes for Technical Lignin. Processes 2021, 9, 804. [Google Scholar] [CrossRef]
- Zhu, W.; Westman, G.; Theliander, H. Investigation and Characterization of Lignin Precipitation in the Lignoboost Process. J. Wood Chem. Technol. 2014, 34, 77–97. [Google Scholar] [CrossRef]
- Lake, M.A.; Blackburn, J.C. SLRPTM-An innovative lignin-recovery technology. Cellulose Chem. Technol. 2014, 48, 799–804. [Google Scholar]
- Kouisni, L.; Holt-Hindle, P.; Maki, K.; Paleologou, M. The Lignoforce systemtm: A New Process for the Production of High-Quality Lignin from Black Liquor. J. Sci. Technol. For. Prod. Process. 2012, 2, 4. [Google Scholar]
- Jardim, J.M.; Hart, P.W.; Lucia, L.A.; Jameel, H.; Chang, H.M. The Effect of the Kraft Pulping Process, Wood Species, and PH on Lignin Recovery from Black Liquor. Fibers 2022, 10, 16. [Google Scholar] [CrossRef]
- Santos, R.B.; Capanema, E.A.; Balakshin, M.Y.; Chang, H.M.; Jameel, H. Lignin Structural Variation in Hardwood Species. J. Agric. Food Chem. 2012, 60, 4923–4930. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Goto, H.; Nawawi, D.S.; Syafii, W.; Matsumoto, Y.; Meshitsuka, G. Erythro/Threo Ratio of β-O-4-Structures as an Important Structural Characteristic of Lignin. Part 4: Variation in the Erythro/Threo Ratio in Softwood and Hardwood Lignins and Its Relation to Syringyl/Guaiacyl Ratio. Holzforschung 2005, 59, 276–281. [Google Scholar] [CrossRef]
- Jardim, J.M.; Hart, P.W.; Lucia, L.; Jameel, H. Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery. Polymers 2020, 12, 1795. [Google Scholar] [CrossRef] [PubMed]
- Ziesig, R.; Tomani, P.; Schweinebarth, H.; Norberg, L. Production of a Pure Lignin Product, Part 1: Distribution and Removal of Inorganics in Eucalyptus Globulus Kraft Lignin. Tappi J. 2014, 13, 65–72. [Google Scholar]
- Ziesig, R.; Tomani, P.; Theliander, H. Production of a pure lignin product part 2: Separation of lignin from membrane filtration permeates of black liquor. Cellul. Chem. Technol. 2014, 48, 805–811. [Google Scholar]
- Tomani, P. The lignoboost process. Cellulose Chem. Technol. 2010, 44, 53–58. [Google Scholar]
- Öhman, F.; Wallmo, H.; Theliander, H. Precipitation and Filtration of Lignin from Black Liquor of Different Origin. Nord. Pulp Paper Res. J. 2007, 22, 188–193. [Google Scholar] [CrossRef]
- Öhman, F.; Wallmo, H.; Theliander, H. A Novel Method for Washing Lignin Precipitated from Kraft Black Liquor–Laboratory Trials. Nord. Pulp Paper Res. J. 2007, 22, 9–16. [Google Scholar] [CrossRef]
- Wallmo, H.; Theliander, H.; Richards, T. Lignin Precipitation from Kraft Black Liquors: Kinetics and Carbon Dioxide Absorption. Pap. Puu Pap. Timber 2007, 89, 436–442. [Google Scholar]
- Norgren, M.; Lindström, B. Dissociation of Phenolic Groups in Kraft Lignin at Elevated Temperatures. Holzforschung 2000, 54, 519–527. [Google Scholar] [CrossRef]
- Chakar, F.S.; Ragauskas, A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crops Prod. 2004, 20, 131–141. [Google Scholar] [CrossRef]
- Gierer, J. The Reactions of Lignin during Pulping. Sven. Papperstidning 1970, 18, 571–596. [Google Scholar]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review. Renew. Sustain. Energy Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- Gierer, J. Chemistry of Delignification–Part 1: General Concept and Reactions during Pulping. Wood Sci. Technol. 1985, 19, 289–312. [Google Scholar] [CrossRef]
- Ragnar, M.; Lindgren, C.T.; Nilvebrant, N.O. PKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2008, 20, 277–305. [Google Scholar] [CrossRef]
- Andeme Ela, R.C.; Spahn, L.; Safaie, N.; Ferrier, R.C.; Ong, R.G. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustain. Chem. Eng. 2020, 8, 13997–14005. [Google Scholar] [CrossRef]
- Crestini, C.; Lange, H.; Sette, M.; Argyropoulos, D.S. On the Structure of Softwood Kraft Lignin. Green Chem. 2017, 19, 4104–4121. [Google Scholar] [CrossRef]
- Singh, S.P.; Jawaid, M.; Yadav, B.; Sarmin, S.N. Effect of PH, Temperature, and Solids Content on Rheological Properties of Wheat Straw Black Liquor. Biomass Convers. Biorefin. 2023, 13, 10865–10875. [Google Scholar] [CrossRef]
- Quan, P.; Kiziltas, A.; Ong, R.G.; DeVallance, D.; Xu, J.; Xie, X. Lignin with Tunable and Predictable Yield and Molecular Properties. ACS Sustain. Chem. Eng. 2023, 11, 2861–2870. [Google Scholar] [CrossRef]
- Zhu, W.; Theliander, H. Precipitation of Lignin from Softwood Black Liquor: An Investigation of the Equilibrium and Molecular Properties of Lignin. Bioresources 2015, 10, 1696–1714. [Google Scholar] [CrossRef]
- Lourençon, T.V.; de Lima, G.G.; Ribeiro, C.S.P.; Hansel, F.A.; Maciel, G.M.; da Silva, K.; Winnischofer, S.M.B.; de Muniz, G.I.B.; Magalhães, W.L.E. Antioxidant, Antibacterial and Antitumoural Activities of Kraft Lignin from Hardwood Fractionated by Acid Precipitation. Int. J. Biol. Macromol. 2021, 166, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, K.; Ravikumar, P. Determination of Higher Heating Value of Biodiesels. Int. J. Eng. Sci. Technol. (IJEST) 2011, 3, 7981–7987. [Google Scholar]
- Telmo, C.; Lousada, J. The Explained Variation by Lignin and Extractive Contents on Higher Heating Value of Wood. Biomass Bioenergy 2011, 35, 1663–1667. [Google Scholar] [CrossRef]
- Sumerskii, I.; Böhmdorfer, S.; Tsetsgee, O.; Sulaeva, I.; Khaliliyan, H.; Musl, O.; Dorninger, K.; Tischer, A.; Potthast, K.; Rosenau, T.; et al. Tapping the Full Potential of Infrared Spectroscopy for the Analysis of Technical Lignins. ChemSusChem 2024, 17, e202301840. [Google Scholar] [CrossRef] [PubMed]
- Zakis, G.F. Functional Analysis of Lignins and Their Derivatives; Joyce, T., Brezny, R., Eds.; Tappi Press: Riga, Latvia, 1994; ISBN 0898522587. [Google Scholar]
- Gärtner, A.; Gellerstedt, G.; Tamminen, T. Determination of Phenolic Hydroxyl Groups in Residual Lignin Using a Modified UV-Method. Nord. Pulp Paper Res. J. 1999, 14, 163–170. [Google Scholar] [CrossRef]
- Jablonský, M.; Kočiš, J.; Ház, A.; Šima, J. Characterization and Comparison by UV Spectroscopy of Precipitated Lignins and Commercial Lignosulfonates. Cellul. Chem. Technol. 2015, 49, 267–274. [Google Scholar]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of Agricultural Residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Sami, M.; Annamalai, K.; Wooldridge, M. Co-Firing of Coal and Biomass Fuel Blends. Prog. Energy Combust. Sci. 2001, 27, 171–214. [Google Scholar] [CrossRef]
- Sheng, C.; Azevedo, J.L.T. Estimating the Higher Heating Value of Biomass Fuels from Basic Analysis Data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Özkan, K.; Işık, Ş.; Günkaya, Z.; Özkan, A.; Banar, M. A Heating Value Estimation of Refuse Derived Fuel Using the Genetic Programming Model. Waste Manag. 2019, 100, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Li, Q.; Zhang, Z.; Wang, X.; Hu, J.; Cao, W. Prediction of Higher Heating Values of Biochar from Proximate and Ultimate Analysis. Fuel 2020, 265, 116925. [Google Scholar] [CrossRef]
- Maksimuk, Y.; Antonava, Z.; Krouk, V.; Korsakova, A.; Kursevich, V. Prediction of Higher Heating Value (HHV) Based on the Structural Composition for Biomass. Fuel 2021, 299, 120860. [Google Scholar] [CrossRef]
- Rupasinghe, R.L.; Perera, P.; Bandara, R.; Amarasekera, H.; Vlosky, R. Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis. Energies 2024, 17, 54. [Google Scholar] [CrossRef]
- Antonino, L.D.; Gouveia, J.R.; de Sousa Júnior, R.R.; Garcia, G.E.S.; Gobbo, L.C.; Tavares, L.B.; Dos Santos, D.J. Reactivity of Aliphatic and Phenolic Hydroxyl Groups in Kraft Lignin towards 4,4′ MDI. Molecules 2021, 26, 2131. [Google Scholar] [CrossRef] [PubMed]
- Šurina, I.; Jablonský, M.; Ház, A.; Sladková, A.; Briškárová, A.; Kačík, F.; Šima, J. Characterization of Non-Wood Lignin Precipitated with Sulphuric Acid of Various Concentrations. Bioresources 2015, 10, 1408–1423. [Google Scholar] [CrossRef]
- Elniski, A.; Dongre, P.; Bujanovic, B.M. Lignin Use in Enhancing the Properties of Willow Pellets. Forests 2023, 14, 2041. [Google Scholar] [CrossRef]
- Rueda, S.J.; de Vasconcelos, B.R.; Duret, X.; Lavoie, J.M. Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill. Energies 2022, 15, 3007. [Google Scholar] [CrossRef]
- Bhat, A.H.; Dasan, Y.K.; Khan, I. Extraction of Lignin from Biomass for Biodiesel Production. In Agricultural Biomass Based Potential Materials; Springer: Berlin/Heidelberg, Germany, 2015; pp. 155–179. [Google Scholar] [CrossRef]
- Bušić, A.; Kundas, S.; Morzak, G.; Belskaya, H.; Mardetko, N.; Šantek, M.I.; Komes, D.; Novak, S.; Šantek, B. Recent Trends in Biodiesel and Biogas Production. Food Technol. Biotechnol. 2018, 56, 152. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products and Their Environmental Impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value-Added Chemicals from Biomass–Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2007. [CrossRef]
- Huang, J.; Fu, S.; Gan, L. (Eds.) Structure and Characteristics of Lignin. In Lignin Chemistry and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 25–50. ISBN 978-0-12-813941-7. [Google Scholar]
- Verdini, F.; Gaudino, E.C.; Canova, E.; Tabasso, S.; Behbahani, P.J.; Cravotto, G. Lignin as a Natural Carrier for the Efficient Delivery of Bioactive Compounds: From Waste to Health. Molecules 2022, 27, 3598. [Google Scholar] [CrossRef]
- Mandal, S.; Chatterjee, B.; Layek, B. Cellulose-Based Nanomaterials in Drug Delivery Applications. In Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications; Bera, H., Hossain, C.H.M., Saha, S., Eds.; Academic Press: London, UK, 2021; pp. 57–86. ISBN 9780128208748. [Google Scholar]
- Capanema, E.A.; Balakshin, M.Y.; Kadla, J.F. Quantitative Characterization of a Hardwood Milled Wood Lignin by Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2005, 53, 9639–9649. [Google Scholar] [CrossRef] [PubMed]
- Intapun, J.; Rungruang, T.; Suchat, S.; Cherdchim, B.; Hiziroglu, S. The Characteristics of Natural Rubber Composites with Klason Lignin as a Green Reinforcing Filler: Thermal Stability, Mechanical and Dynamical Properties. Polymers 2021, 13, 1109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Zhu, Z.; Fu, S. High-Value Utilization of Hydroxymethylated Lignin in Polyurethane Adhesives. Int. J. Biol. Macromol. 2020, 152, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.J.; Wu, T.Y. Recent Advances in the Application of Alcohols in Extracting Lignin with Preserved β-O-4 Content from Lignocellulosic Biomass. Bioresour. Technol. 2023, 384, 129238. [Google Scholar] [CrossRef] [PubMed]
- Ahvazi, B.; Ngo, T.-D.; Ahvazi, B.; Ngo, T.-D. Application of Lignins in Formulation and Manufacturing Bio- Based Polyurethanes by 31P NMR Spectroscopy. In Lignin–Trends and Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Stepanova, S.; Van Aelst, K.; Sels, B.F. Consider Lignin’s Hydroxyl Groups Content and Type, Its Molecular Weight and Content When Converting It into Epoxy Resin. Curr. Opin. Green Sustain. Chem. 2023, 40, 100750. [Google Scholar] [CrossRef]
- Kazzaz, A.; Feizi, Z.; Chemistry, P.F.-G. Grafting Strategies for Hydroxy Groups of Lignin for Producing Materials. 2019. Available online: https://pubs.rsc.org/en/content/articlehtml/2019/gc/c9gc02598g (accessed on 10 January 2023).
- Lee, J.H.; Kim, T.M.; Choi, I.G.; Choi, J.W. Phenolic Hydroxyl Groups in the Lignin Polymer Affect the Formation of Lignin Nanoparticles. Nanomaterials 2021, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.Z. Determination of Phenolic Hydroxyl Groups. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 423–434. ISBN 978-3-642-74065-7. [Google Scholar]
- Kenny, J.K.; Medlin, J.W.; Beckham, G.T. Quantification of Phenolic Hydroxyl Groups in Lignin via 19F NMR Spectroscopy. ACS Sustain. Chem. Eng. 2023, 11, 5644–5655. [Google Scholar] [CrossRef]
- Liitiä, T.; Tamminen, T. Direct Method for the Determination of Phenolic Hydroxyl Groups in Pulp. Holzforschung 2007, 61, 623–627. [Google Scholar] [CrossRef]
- Gioia, C.; Colonna, M.; Tagami, A.; Medina, L.; Sevastyanova, O.; Berglund, L.A.; Lawoko, M. Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. Biomacromolecules 2020, 21, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, R.V.; Srivastava, S.; Mahanwar, P.A.; Gadekar, P.T.; Gadhave, R.V.; Srivastava, S.; Mahanwar, P.A.; Gadekar, P.T. Lignin: Renewable Raw Material for Adhesive. Open J. Polym. Chem. 2019, 9, 27–38. [Google Scholar] [CrossRef]
- Li, X.; Meng, Y.; Cheng, Z.; Li, B. Research Progress and Prospect of Stimuli-Responsive Lignin Functional Materials. Polymers 2023, 15, 3372. [Google Scholar] [CrossRef] [PubMed]
- Bostan, L.; Hosseinaei, O.; Fourné, R.; Herrmann, A.S. Upscaling of Lignin Precursor Melt Spinning by Bicomponent Spinning and Its Use for Carbon Fibre Production. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200334. [Google Scholar] [CrossRef] [PubMed]
- Svensson, I.; Roncal, T.; De Winter, K.; Van Canneyt, A.; Tamminen, T.; Mikkelson, A.; Barrio, A. Valorisation of hydrolysis lignin rest from bioethanol pilot plant: Process development and upscaling. Ind. Crops Prod. 2020, 156, 112869. [Google Scholar] [CrossRef]
- Sewring, T.; Durruty, J.; Schneider, L.; Schneider, H.; Mattsson, T.; Theliander, H. Acid Precipitation of Kraft Lignin from Aqueous Solutions: The Influence of PH, Temperature, and Xylan. J. Wood Chem. Technol. 2019, 39, 1–13. [Google Scholar] [CrossRef]
- Adamcyk, J.; Serna-loaiza, S.; Beisl, S.; Miltner, M.; Friedl, A. Influence of Temperature and Lignin Concentration on Formation of Colloidal Lignin Particles in Solvent-Shifting Precipitation. Sustainability 2022, 14, 1219. [Google Scholar] [CrossRef]
- Posoknistakul, P.; Tangkrakul, C.; Chaosuanphae, P.; Deepentham, S.; Techasawong, W.; Phonphirunrot, N.; Bairak, S.; Sakdaronnarong, C.; Laosiripojana, N. Fabrication and Characterization of Lignin Particles and Their Ultraviolet Protection Ability in PVA Composite Film. ACS Omega 2020, 5, 20976–20982. [Google Scholar] [CrossRef] [PubMed]
- Priyanto, S.; Intan, A.P.; Rianto, B.; Kusworo, T.D.; Pramudono, B.; Untoro, E.; Ratu, P. The Effect of Acid Concentration (H2SO4) on the Yield and Functional Group during Lignin Isolation of Biomass Waste Pulp and Paper Industry. Reaktor 2019, 19, 162–167. [Google Scholar] [CrossRef]
- Sun, R.; Tomkinson, J.; Bolton, J. Effects of Precipitation PH on the Physico-Chemical Properties of the Lignins Isolated from the Black Liquor of Oil Palm Empty Fruit Bunch Fibre Pulping. Polym. Degrad. Stab. 1999, 63, 195–200. [Google Scholar] [CrossRef]
- Zhu, W. Equilibrium of Lignin Precipitation the Effects of PH, Temperature, Ion Strength and Wood Origins. Master’s Thesis, Forest Products and Chemical Engineering, Gothenburg, Sweden, 2013. [Google Scholar]
- Hu, G.; Hu, J.; Chen, H.; Song, S.; Chu, F. Influence of PH and Ionic Strength on the Aggregation Behaviors of Xylan Rich Hemicelluloses with Alkaline Lignins. Bioresources 2021, 16, 7608–7622. [Google Scholar] [CrossRef]
# N | Coded Values | Real Values | ||
---|---|---|---|---|
T | pH | T [°C] | pH | |
1 | −1 | −1 | 33.05 | 2.37 |
2 | 1 | −1 | 71.95 | 2.37 |
3 | −1 | 1 | 33.05 | 4.13 |
4 | 1 | 1 | 71.95 | 4.13 |
5 | −1.414 | 0 | 25.00 | 3.25 |
6 | 1.414 | 0 | 80.00 | 3.25 |
7 | 0 | −1.414 | 52.50 | 2.00 |
8 | 0 | 1.414 | 52.50 | 4.50 |
9 | 0 | 0 | 52.50 | 3.25 |
10 | 0 | 0 | 52.50 | 3.25 |
11 | 0 | 0 | 52.50 | 3.25 |
12 | 0 | 0 | 52.50 | 3.25 |
13 | 0 | 0 | 52.50 | 3.25 |
Sample | C [%] | H [%] | N [%] | S [%] | HHV [MJ/kg] |
---|---|---|---|---|---|
1 | 59.44 ± 0.07 | 5.83 ± 0.11 | 0.20 ± 0.02 | 1.65 ± 0.04 | 25.10 |
2 | 60.63 ± 0.12 | 5.80 ± 0.09 | 0.24 ± 0.03 | 1.70 ± 0.03 | 24.54 |
3 | 58.14 ± 0.46 | 5.69 ± 0.15 | 0.22 ± 0.03 | 1.42 ± 0.08 | 24.71 |
4 | 59.85 ± 0.15 | 5.56 ± 0.05 | 0.25 ± 0.004 | 1.62 ± 0.02 | 25.20 |
5 | 59.45 ± 0.11 | 5.63 ± 0.03 | 0.25 ± 0.04 | 1.52 ± 0.02 | 22.43 |
6 | 60.73 ± 0.27 | 5.63 ± 0.05 | 0.23 ± 0.01 | 1.55 ± 0.02 | 22.85 |
7 | 59.22 ± 0.12 | 5.58 ± 0.05 | 0.27 ± 0.04 | 1.76 ± 0.02 | 25.21 |
8 | 59.48 ± 0.17 | 5.65 ± 0.04 | 0.21 ± 0.01 | 1.41 ± 0.01 | 25.58 |
9 | 60.64 ± 0.13 | 5.58 ± 0.003 | 0.25 ± 0.03 | 1.70 ± 0.03 | 24.39 |
10 | 58.93 ± 0.35 | 5.57 ± 0.03 | 0.26 ± 0.01 | 1.55 ± 0.01 | 25.63 |
11 | 59.02 ± 0.19 | 5.54 ± 0.01 | 0.20 ± 0.03 | 1.56 ± 0.01 | 25.38 |
12 | 58.93 ± 0.31 | 5.50 ± 0.04 | 0.20 ± 0.03 | 1.60 ± 0.03 | 25.18 |
13 | 58.19 ± 0.26 | 5.56 ± 0.05 | 0.22 ± 0.02 | 1.66 ± 0.01 | 24.97 |
Sample | Mw [g/mol] | Mn [g/mol] | ÐM | Ph-OH [mmol/g] | R-OH [mmol/g] | OCH3 [mmol/g] | COOH [mmol/] | S-Unit [mmol/g] | G-Unit [mmol/g] |
---|---|---|---|---|---|---|---|---|---|
1 | 6250 | 3650 | 1.7 | 3.60 | 1.44 | 5.53 | 0.34 | 2.60 | 1.10 |
2 | 5850 | 2750 | 2.1 | 3.92 | 1.45 | 5.93 | 0.36 | 2.77 | 1.19 |
3 | 6650 | 3800 | 1.8 | 3.67 | 1.47 | 5.62 | 0.35 | 2.64 | 1.15 |
4 | 6100 | 2900 | 2.1 | 3.96 | 1.54 | 6.05 | 0.32 | 2.80 | 1.18 |
5 | 6100 | 3500 | 1.7 | 3.82 | 1.47 | 5.83 | 0.35 | 2.71 | 1.19 |
6 | 6400 | 2700 | 2.4 | 3.82 | 1.43 | 5.72 | 0.36 | 2.68 | 1.23 |
7 | 5650 | 3500 | 1.6 | 3.60 | 1.26 | 5.22 | 0.33 | 2.55 | 1.28 |
8 | 6850 | 4000 | 1.7 | 3.55 | 1.46 | 5.47 | 0.33 | 2.55 | 1.14 |
9 | 6000 | 3650 | 1.6 | 3.39 | 1.36 | 5.17 | 0.32 | 2.46 | 1.11 |
10 | 6900 | 4000 | 1.7 | 3.41 | 1.46 | 5.30 | 0.32 | 2.47 | 1.10 |
11 | 6500 | 3500 | 1.9 | 3.46 | 1.45 | 5.32 | 0.32 | 2.49 | 1.11 |
12 | 6550 | 3750 | 1.8 | 3.60 | 1.46 | 5.54 | 0.33 | 2.59 | 1.14 |
13 | 6550 | 3800 | 1.7 | 3.48 | 1.44 | 5.37 | 0.32 | 2.52 | 1.11 |
Sample | Non-Conjugated OH [mmol/g] | Conjugated OH [mmol/g] | Total Ph-OH [mmol/g] |
---|---|---|---|
1 | 1.91 | 0.28 | 2.19 |
2 | 1.06 | 0.20 | 1.26 |
3 | 1.73 | 0.24 | 1.97 |
4 | 2.21 | 0.33 | 2.54 |
5 | 1.92 | 0.27 | 2.19 |
6 | 2.89 | 0.35 | 3.24 |
7 | 2.58 | 0.33 | 2.91 |
8 | 1.43 | 0.24 | 1.67 |
9 | 1.81 | 0.26 | 2.07 |
10 | 1.94 | 0.30 | 2.24 |
11 | 1.16 | 0.27 | 1.43 |
12 | 1.57 | 0.29 | 1.86 |
13 | 1.36 | 0.22 | 1.59 |
Sample | Non-Conjugated OH [mmol/g] | Conjugated OH [mmol/g] | Total Ph-OH [mmol/g] | Ph-OH [mmol/g] | R-OH [mmol/g] | OCH3 [mmol/g] | Mw [g/mol] |
---|---|---|---|---|---|---|---|
LL—model | 2.0 ± 1.1 | 0.235 ± 0.086 | 2.22 | 4.13 ± 0.23 | 1.35 ± 0.11 | 6.01 ± 0.41 | 5530 ± 680 |
LL—real values | 1.64 | 0.30 | 1.94 | 3.89 | 1.27 | 5.49 | 7130 |
PL—real values | 2.02 | 0.30 | 2.32 | 3.53 | 3.53 | 4.89 | 7130 |
Ending Group | Max. Value | Min. Value |
---|---|---|
α = 0.05 | ||
Ph-OH [mmol/g] | 4.13 ± 0.23 | 3.46 ± 0.23 |
R-OH [mmol/g] | 1.55 ± 0.11 | 1.32 ± 0.11 |
OCH3 [mmol/g] | 6.24 ± 0.41 | 5.31 ± 0.41 |
Ending Group | Max. Value | Min. Value |
---|---|---|
α = 0.05 | ||
Conjugated OH [mmol/g] | 0.392 ± 0.086 | 0.181 ± 0.086 |
Non-conjugated OH [mmol/g] | 3.1 ± 1.1 | 1.4 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadányi, R.; Zinovyev, G.; Majerčiak, M.; Štosel, M.; Jablonský, M.; Ház, A. Optimizing Hardwood Lignin Precipitation from Kraft Black Liquor: A Study of Temperature and pH Effects. Forests 2024, 15, 1028. https://doi.org/10.3390/f15061028
Nadányi R, Zinovyev G, Majerčiak M, Štosel M, Jablonský M, Ház A. Optimizing Hardwood Lignin Precipitation from Kraft Black Liquor: A Study of Temperature and pH Effects. Forests. 2024; 15(6):1028. https://doi.org/10.3390/f15061028
Chicago/Turabian StyleNadányi, Richard, Grigory Zinovyev, Matúš Majerčiak, Martin Štosel, Michal Jablonský, and Aleš Ház. 2024. "Optimizing Hardwood Lignin Precipitation from Kraft Black Liquor: A Study of Temperature and pH Effects" Forests 15, no. 6: 1028. https://doi.org/10.3390/f15061028
APA StyleNadányi, R., Zinovyev, G., Majerčiak, M., Štosel, M., Jablonský, M., & Ház, A. (2024). Optimizing Hardwood Lignin Precipitation from Kraft Black Liquor: A Study of Temperature and pH Effects. Forests, 15(6), 1028. https://doi.org/10.3390/f15061028