Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Schrijver, A.; Geudens, G.; Augusto, L.; Staelens, J.; Mertens, J.; Wuyts, K.; Gielis, L.; Verheyen, K. The effect of forest type on throughfall deposition and seepage flux: A review. Oecologia 2007, 153, 663–674. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.-M.; Du, C.-Y.; Jiang, Y.-M.; Su, X.-K.; Xiang, R.-J.; Huang, L.; Xu, M.; Zhang, C. Deposition patterns in bulk precipitation and throughfall in a subtropical mixed forest in central-south China. For. Int. J. For. Res. 2007, 80, 211–221. [Google Scholar] [CrossRef]
- Gandois, L.; Tipping, E.; Dumat, C.; Probst, A. Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall. Atmos. Environ. 2010, 44, 824–833. [Google Scholar] [CrossRef]
- Pristova, T.A. Chemical composition of atmospheric precipitation, undercrown and surface waters in the middle taiga deciduous plantations of post-cutting origin. Theor. Appl. Ecol. 2022, 2, 63–69. [Google Scholar] [CrossRef]
- Pierret, M.-C.; Viville, D.; Dambrine, E.; Cotel, S.; Probst, A. Twenty-five year record of chemicals in open field precipitation and throughfall from a medium-altitude forest catchment (Strengbach—NE France): An obvious response to atmospheric pollution trends. Atmos. Environ. 2019, 202, 296–314. [Google Scholar] [CrossRef]
- Shiltsova, G.V.; Lastochkina, V.G. Influence of the canopy of pine and birch forests on the chemical composition of precipitation in the Kivach Nature Reserve. Proc. Karal Sci. Cent. Russ. Acad. Sci. 2006, 10, 180–184. [Google Scholar]
- Lovett, G.M.; Lindberg, S.E. Dry Deposition and Canopy Exchange in a Mixed Oak Forest as Determined by Analysis of Throughfall. J. Appl. Ecol. 1984, 21, 1013. [Google Scholar] [CrossRef]
- Özsoy, T.; Örnektekin, S. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean. Atmos. Res. 2009, 94, 203–219. [Google Scholar] [CrossRef]
- HouBao, F.; Wei, H.; Zhuang, M.; Kosuke, W. Acidity and chemistry of bulk precipitation, throughfall and stemflow in a Chinese fir plantation in Fujian, China. For. Ecol. Manag. 1999, 122, 243–248. [Google Scholar] [CrossRef]
- Hamburg, S.P.; Lin, T.-C.; Staelens, J.; De Schrijver, A.; Verheyen, K.; Hsia, Y.-J.; King, H.-B.; Wang, L.-J.; Lin, K.-C. Throughfall chemistry of an ecotonal forest on the edge of the Great Plains. Can. J. For. Res. 1998, 28, 1456–1463. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, G.; Huang, G.; Jiang, Y.; Liu, H. Exchange of Ca2+, Mg2+ and K+ and uptake of H+, NH4+ for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China. Plant Sci. 2005, 168, 259–266. [Google Scholar] [CrossRef]
- Cheng, B.R.; Xu, G.S.; Gao, S.T. Biogeochemical response of forest canopies to acid precipitation. China Environ. Sci. 1989, 9, 155–157. [Google Scholar]
- Sayre, R.G.; Fahey, T.J. Effects of rainfall acidity and ozone on foliar leaching in red spruce (Picea rubens). Can. J. For. Res. 1999, 29, 487–496. [Google Scholar] [CrossRef]
- Butler, T.; Likens, G. A direct comparison of throughfall plus stemflow to estimates of dry and total deposition for sulfur and nitrogen. Atmos. Environ. 1995, 29, 1253–1265. [Google Scholar] [CrossRef]
- Migon, C.; Journel, B.; Nicolas, E. Measurement of trace metal wet, dry and total atmospheric fluxes over the Ligurian Sea. Atmos. Environ. 1997, 31, 889–896. [Google Scholar] [CrossRef]
- Takamatsu, T.; Takada, J.; Matsushita, R.; Sase, H. Aerosol elements on tree leaves—Antimony as a possible indicator ofair pollution. Glob. Environ. Res. 2000, 4, 49–60. [Google Scholar]
- Balestrini, R.; Tagliaferri, A. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmos. Environ. 2001, 35, 6421–6433. [Google Scholar] [CrossRef]
- Avila, A.; Rodrigo, A. Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmos. Environ. 2004, 38, 171–180. [Google Scholar] [CrossRef]
- Ambe, Y.; Nishikawa, M. Temporal variation of trace element concentrations in selected rainfall events at Tsukuba, Japan. Atmos. Environ. 1986, 20, 1931–1940. [Google Scholar] [CrossRef]
- Mukai, H.; Ambe, Y.; Shibata, K.; Muku, T.; Takeshita, K.; Fukuma, T.; Takahashi, J.; Mizota, S. Long-term variation of chemical camposition of atmospheric aerosol on the Oki Islands in the Sea of Japan. Atmos. Environ. 1990, 24A, 1390–1397. [Google Scholar]
- Takeda, K.; Marumoto, K.; Minamikawa, T.; Sakugawa, H.; Fujiwara, K. Three-year determination of trace metals and the lead isotope ratio in rain and snow depositions collected in Higashi–Hiroshima, Japan. Atmos. Environ. 2000, 34, 4525–4535. [Google Scholar] [CrossRef]
- Hou, H.; Takamatsu, T.; Koshikawa, M.; Hosomi, M. Trace metals in bulk precipitation and throughfall in a suburban area of Japan. Atmos. Environ. 2005, 39, 3583–3595. [Google Scholar] [CrossRef]
- Varenik, A.V.; Konovalov, S.K. Variations in Concentrations and Ratio of Soluble Forms of Nutrients in Atmospheric Depositions and Effects for Marine Coastal Areas of Crimea, Black Sea. Appl. Sci. 2021, 11, 11509. [Google Scholar] [CrossRef]
- Ilyin, Y.P. The state of pollution of atmospheric precipitation in the city of Sevastopol in 1997–2006. Sci. Work. UkrNDGMI 2006, 255, 166–184. [Google Scholar]
- Myslina, M.; Varenik, A. Inorganic nitrogen deposition with the atmospheric precipitations to the Sevastopol Bay in 2015–2016. Ekol. Bezop. Pribrezhnoy I Shel’fovoy Zon Morya 2019, 1, 78–82. [Google Scholar] [CrossRef]
- Varenik, A.; Kozlovskaya, O.; Simonova, Y. Estimation of Nutrient Flux Input to the Crimean Southern Coast (Katsiveli) Supplied by the Atmospheric Precipitation in 2010–2015. Phys. Oceanogr. 2016, 5, 61–70. [Google Scholar] [CrossRef]
- Varenik, A.V.; Konovalov, S.K. Contribution of Atmospheric Depositions to Inventory of Nutrients in the Coastal Waters of Crimea. Appl. Sci. 2023, 13, 3178. [Google Scholar] [CrossRef]
- Chaikina, A.V.; Kholoptsev, A.V. Peculiarities of hydrochemical composition of atmospheric precipitation in summer 2004 near the village of Katsiveli (Southern coast of Crimea). Ekol. Bezop. Pribrezhnoy I Shel’fovoy Zon Morya 2005, 12, 215–219. [Google Scholar]
- Kayukova, E.P. Features of the chemical composition of precipitation of the Crimean training site of Saint Petersburg University. Vestn. St. Petersburg Univ. Geol. Geogr. 2011, 3, 26–42. [Google Scholar]
- Poissant, L.; Schmit, J.-P.; Béron, P. Trace inorganic elements in rainfall in the Montreal Island. Atmos. Environ. 1994, 28, 339–346. [Google Scholar] [CrossRef]
- Michopoulos, P.; Bourletsikas, A.; Kaoukis, K.; Daskalakou, E.; Karetsos, G.; Kostakis, M.; Thomaidis, N.S.; Pasias, I.N.; Kaberi, H.; Iliakis, S. The distribution and variability of heavy metals in a mountainous fir forest ecosystem in two hydrological years. Glob. NEST Int. J. 2018, 20, 188–197. [Google Scholar] [CrossRef]
- Topchaya, V.; Kotova, E.; Starodymova, D.; Chechko, V. Distribution, Substantial and Chemical Composition of Sedimentary Matter of Rain Receiving to the Territory of the Kaliningrad Region of the RF. Adv. Mod. Nat. Sci. 2020, 1, 47–53. [Google Scholar] [CrossRef]
- Trushkina, L.Y.; Trushkin, A.G.; Demyanova, L.M. Hygiene and Human Ecology: Textbook, 4th ed.; Revised and Expanded; TK Velby, Prospekt Publishing House: Moscow, Russia, 2006; 528p. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Andreev, V.V.; Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Elansky, N.F.; Zhamsueva, G.S.; Zayakhanov, A.S.; Ivlev, G.A.; Kozlov, A.V.; Kotel’Nikov, S.N.; et al. Surface ozone concentration over the Russian territory in the first half of 2020. Opt. Atmos. Okeana 2020, 33, 671–681. [Google Scholar] [CrossRef]
- GOST R 59024-2020; Water: General Requirements for Sampling. National Standard of the Russian Federation: Moscow, Russia, 2020.
- Aničić, M.; Tasić, M.; Frontasyeva, M.; Tomašević, M.; Rajšić, S.; Mijić, Z.; Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ. Pollut. 2009, 157, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Duce, R.A.; Hoffman, E.J. Chemical Fractionation at the Air/Sea Interface. Annu. Rev. Earth Planet. Sci. 1976, 4, 187–228. [Google Scholar] [CrossRef]
- Chester, R.; Nimmo, M.; Murphy, K.J.T.; Nicholas, E. Atmospheric trace metals transported to the western Mediterranean: Data from a station on Cap Ferrat. In Proceedings of the Second EROS 2000 Workshop, Blanes, Spain, 6–9 February 1990; Water Pollution Research Reports. Volume 20, pp. 597–612. [Google Scholar]
- Katanaeva, V.G.; Selyanin, A.V. Assessment of the content of heavy metals and their entry into the salt lakes of the forest-steppe zone of the right bank of the Ishim region. Bull. Tyumen State Univ. 2011, 5, 39–48. [Google Scholar]
- Vinogradov, A.P. Average contents of chemical elements in the main types of igneous rocks of the earth’s crust. Geochem 1962, 7, 555–571. [Google Scholar]
- Stachurski, A.; Zimka, J. Atmospheric input of elements to forest ecosystems: A method of estimation using artificial foliage placed above rain collectors. Environ. Pollut. 2000, 110, 345–356. [Google Scholar] [CrossRef]
- Rea, A.W.; Lindberg, S.E.; Keeler, G.J. Assessment of Dry Deposition and Foliar Leaching of Mercury and Selected Trace Elements Based on Washed Foliar and Surrogate Surfaces. Environ. Sci. Technol. 2000, 34, 2418–2425. [Google Scholar] [CrossRef]
- Al-Momani, I. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: Acidity and possible sources. Atmos. Environ. 2003, 37, 4507–4515. [Google Scholar] [CrossRef]
- Lapchenko, V.A.; Zvyagintsev, A.M. Minor Atmospheric Gases in Karadag Nature Reserve in Crimea. Atmos. Ocean. Opt. 2015, 28, 308–311. [Google Scholar] [CrossRef]
- Jain, C.D.; Madhavan, B.; Ratnam, M.V. Source apportionment of rainwater chemical composition to investigate the transport of lower atmospheric pollutants to the UTLS region. Environ. Pollut. 2019, 248, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Kaya, G.; Tuncel, G. Trace element and major ion composition of wet and dry depositon in Ankara, Turkey. Atmos. Environ. 1997, 31, 3985–3998. [Google Scholar] [CrossRef]
- Nikanorov, A.M. Hydrochemistry; Gidrometeoizdat: St. Petersburg, Russia, 2001; 444p. [Google Scholar]
- Moreda-Piñeiro, J.; Alonso-Rodríguez, E.; Moscoso-Pérez, C.; Blanco-Heras, G.; Turnes-Carou, I.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmos. Environ. 2014, 88, 30–38. [Google Scholar] [CrossRef]
- Khwaja, H.A.; Husain, L. Chemical characterization of acid precipitation in Albany, New York. Atmos. Environ. Part A Gen. Top. 1990, 24, 1869–1882. [Google Scholar] [CrossRef]
- Prado-Fiedler, R. On the relationship between precipitation amount and wet deposition of nitrate and ammonium. Atmos. Environ. Part A Gen. Top. 1990, 24, 3061–3065. [Google Scholar] [CrossRef]
- Sakugawa, H.; Kaplan, I.R.; Shepard, L.S. Measurements of H2O2, aldehydes and organic acids in Los Angeles rainwater: Their sources and deposition rates. Atmos. Environ. Part B Urban Atmos. 1993, 27, 203–219. [Google Scholar] [CrossRef]
- Draaijers, G.P.J.; Van Ek, R.; Bleuten, W. Atmospheric deposition in complex forest landscapes. Bound. Layer Meteorol. 1994, 69, 343–366. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M. Atmospheric deposition of trace elements at urban and forest sites in central Poland—Insight into seasonal variability and sources. Atmos. Res. 2017, 198, 123–131. [Google Scholar] [CrossRef]
- GN 2.1.5.1315-03; Maximum Permissible Concentrations (MAC) of Chemicals in the Water of Water Bodies of Drinking and Domestic Water Use. Available online: https://gostrf.com/normadata/1/4294815/4294815336.pdf (accessed on 1 August 2023).
- Kiekens, L. Zinc. In Heavy Metals in Soils; Alloway, B.J., Ed.; Blackie: Glasgow, Scotland; London, UK; Wiley: New York, NY, USA, 1990; pp. 261–279. [Google Scholar]
- Halstead, M.J.; Cunninghame, R.G.; Hunter, K.A. Wet deposition of trace metals to a remote site in Fiordland, New Zealand. Atmos. Environ. 2000, 34, 665–676. [Google Scholar] [CrossRef]
- Berg, T.; Røyset, O.; Steinnes, E. Trace elements in atmospheric precipitation at Norweigan background stations (1989–1990) measured by ICP-MS. Atmos. Environ. 1994, 28, 3519–3536. [Google Scholar] [CrossRef]
Elements | Open Area | Under the Forest Canopy | ||
---|---|---|---|---|
Maximum–Minimum Value, µg/L | Average Value | Maximum–Minimum Value, µg/L | Average Value | |
Na | 34,348.56–483.97 | 4414.32 | 16,746.47–244.74 | 4115.50 |
Mg | 14,482.59–129.49 | 1401.68 | 4149.72–153.91 | 930.09 |
Al | 38.45–0.00 | 10.59 | 52.73–0.24 | 20.73 |
K | 10,246.75–180.62 | 2457.01 | 13,128.05–702.88 | 5405.70 |
Ca | 28,872.74–699.74 | 10,316.33 | 17,439.83–728.05 | 8044.44 |
V | 1.27–0.17 | 0.45 | 2.09–0.23 | 0.66 |
Cr | 4.39–0.36 | 1.27 | 6.36–0.41 | 1.49 |
Mn | 59.37–0.73 | 16.25 | 220.87–0.20 | 49.09 |
Fe | 358.65–25.93 | 144.08 | 212.42–47.18 | 138.70 |
Co | 27.79–0.41 | 4.87 | 12.15–0.17 | 2.23 |
Ni | 32.33–0.17 | 9.96 | 14.14–0.54 | 4.97 |
Cu | 31.88–0.19 | 8.79 | 33.93–0.55 | 11.09 |
Zn | 629.44–6.72 | 127.90 | 254.00–3.23 | 55.76 |
Cd | 3.32–0.00 | 0.71 | 3.06–0.01 | 0.74 |
Pb | 7.46–0.00 | 1.16 | 5.96–0.02 | 1.34 |
Sr | 268.60–1.56 | 30.58 | 109.94–1.93 | 25.78 |
Ba | 19.15–1.16 | 6.37 | 40.36–1.87 | 8.38 |
Na | Mg | Al | K | Ca | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Sr | Cd | Ba | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | 1.00 | 0.98 | −0.08 | −0.01 | 0.37 | 0.84 | 0.84 | −0.10 | 0.41 | −0.06 | 0.24 | 0.07 | 0.02 | 0.96 | −0.12 | 0.24 | 0.00 |
Mg | 1.00 | −0.22 | 0.06 | 0.44 | 0.83 | 0.84 | −0.16 | 0.40 | −0.15 | 0.11 | −0.07 | −0.09 | 0.93 | −0.25 | 0.10 | −0.10 | |
Al | 1.00 | −0.07 | −0.45 | −0.04 | −0.17 | 0.74 | 0.11 | 0.68 | 0.76 | 0.94 | 0.80 | 0.10 | 0.83 | 0.85 | 0.32 | ||
K | 1.00 | 0.74 | 0.11 | 0.18 | 0.07 | 0.75 | −0.28 | −0.19 | −0.21 | −0.33 | −0.09 | −0.14 | −0.14 | −0.02 | |||
Ca | 1.00 | 0.38 | 0.56 | −0.41 | 0.81 | −0.49 | −0.34 | −0.49 | −0.55 | 0.17 | −0.55 | −0.29 | −0.12 | ||||
V | 1.00 | 0.88 | −0.03 | 0.42 | −0.04 | 0.18 | −0.01 | 0.00 | 0.80 | −0.13 | 0.20 | −0.16 | |||||
Cr | 1.00 | −0.17 | 0.55 | −0.15 | 0.10 | −0.10 | −0.10 | 0.74 | −0.33 | 0.11 | −0.12 | ||||||
Mn | 1.00 | 0.04 | 0.59 | 0.65 | 0.69 | 0.60 | 0.08 | 0.65 | 0.71 | 0.12 | |||||||
Fe | 1.00 | −0.05 | 0.17 | 0.07 | −0.04 | 0.31 | −0.13 | 0.25 | 0.13 | ||||||||
Co | 1.00 | 0.77 | 0.71 | 0.91 | 0.10 | 0.30 | 0.75 | 0.36 | |||||||||
Ni | 1.00 | 0.88 | 0.85 | 0.37 | 0.52 | 0.90 | 0.50 | ||||||||||
Cu | 1.00 | 0.86 | 0.25 | 0.76 | 0.91 | 0.40 | |||||||||||
Zn | 1.00 | 0.19 | 0.49 | 0.81 | 0.42 | ||||||||||||
Sr | 1.00 | 0.04 | 0.39 | −0.03 | |||||||||||||
Cd | 1.00 | 0.59 | 0.30 | ||||||||||||||
Ba | 1.00 | 0.27 | |||||||||||||||
Pb | 1.00 |
Elements | R | Elements | R |
---|---|---|---|
Na | −0.44 | Co | 0.34 |
Mg | −0.41 | Ni | −0.20 |
Al | 0.36 | Cu | −0.01 |
K | −0.05 | Zn | 0.49 |
Ca | −0.30 | Sr | −0.40 |
V | −0.16 | Cd | 0.31 |
Cr | −0.25 | Ba | −0.18 |
Mn | 0.37 | Pb | −0.11 |
Fe | −0.26 |
Elements | R | Elements | R |
---|---|---|---|
Na | 0.88 | Co | −0.14 |
Mg | 0.81 | Ni | 0.62 |
Al | −0.16 | Cu | 0.52 |
K | −0.13 | Zn | 0.37 |
Ca | 0.66 | Sr | 0.97 |
V | 0.84 | Cd | −0.25 |
Cr | 0.73 | Ba | 0.89 |
Mn | 0.35 | Pb | −0.12 |
Fe | 0.26 |
Present Work | Bakhchisarai (Crimea) [29] | Kaliningrad Region [31] | Spain [49] | Poland [54] | Republic of Komi [3] | China [2] | Canada [30] | Kivach [6] | MPC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | Open Area | Under the Forest Canopy | Open Area | Under the Forest Canopy | Open Area | Under the Forest Canopy | Open Area | Under the Forest Canopy | ||||||
Na | 4414.32 | 4115.50 | 1,780,000 | 188,200 | 200,000 | 290,000 | 13,000 | 25,600 | 370,000 | 820,000 | 200,000 | |||
Mg | 1401.68 | 930.09 | 880,000 | 53,700 | 70,000 | 700,000 | 37,000 | 65,800 | 170,000 | 810,000 | 50,000 | |||
Al | 10.59 | 20.73 | 172.4 | 8762 | 49.4 | 7.48 | 8.65 | 17.5 | 500 | |||||
K | 2457.01 | 5405.70 | 2,370,000 | 15,100 | 540,000 | 7,380,000 | 17,400 | 100,400 | 850,000 | 6,960,000 | ||||
Ca | 10,316.33 | 8044.44 | 6,340,000 | 121,700 | 310,000 | 2,460,000 | 150,000 | 382,000 | 600,000 | 1,430,000 | ||||
V | 0.45 | 0.66 | 0.787 | 17.3 | 0.83 | 0.75 | 100 | |||||||
Cr | 1.27 | 1.49 | 5.19 | 32.6 | 0.28 | 1.64 | 0.01 | * | 1.52 | 500 | ||||
Mn | 16.25 | 49.09 | 13.38 | 232 | 6.4 | 2.66 | 9.65 | 9.46 | 100 | |||||
Fe | 144.08 | 138.70 | 366.2 | 11.4 | 11.4 | 90.5 | 300 | |||||||
Co | 4.87 | 2.23 | 0.177 | 4.9 | 5.0 | 0.01 | * | 0.13 | 100 | |||||
Ni | 9.96 | 4.97 | 6.78 | 73.9 | 1.0 | 6.42 | 0.36 | 1.28 | 2.82 | 20 | ||||
Cu | 8.79 | 11.09 | 30.43 | 81.5 | 2.1 | 11.94 | 1.46 | 2.54 | 4.00 | 1000 | ||||
Zn | 127.90 | 55.76 | 78.22 | 438 | 55.7 | 37 | 22.02 | 32.47 | 28.1 | 1000 | ||||
Sr | 30.58 | 25.78 | 37.49 | 34 | 5.5 | 7.74 | 7000 | |||||||
Cd | 0.71 | 0.74 | 0.117 | 3.7 | 0.14 | 0.18 | 0.13 | 0.26 | 1 | |||||
Ba | 6.37 | 8.38 | 148.8 | 94 | 15.2 | 100 | ||||||||
Pb | 1.16 | 1.34 | 4.279 | 73.3 | 0.51 | 13.23 | * | 0.05 | 5.14 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, C.N.; Gorbunov, R.; Lapchenko, V.; Gorbunova, T.; Tabunshchik, V. Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater. Forests 2024, 15, 612. https://doi.org/10.3390/f15040612
Pham CN, Gorbunov R, Lapchenko V, Gorbunova T, Tabunshchik V. Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater. Forests. 2024; 15(4):612. https://doi.org/10.3390/f15040612
Chicago/Turabian StylePham, Cam Nhung, Roman Gorbunov, Vladimir Lapchenko, Tatiana Gorbunova, and Vladimir Tabunshchik. 2024. "Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater" Forests 15, no. 4: 612. https://doi.org/10.3390/f15040612
APA StylePham, C. N., Gorbunov, R., Lapchenko, V., Gorbunova, T., & Tabunshchik, V. (2024). Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater. Forests, 15(4), 612. https://doi.org/10.3390/f15040612