Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Schrijver, A.; Geudens, G.; Augusto, L.; Staelens, J.; Mertens, J.; Wuyts, K.; Gielis, L.; Verheyen, K. The effect of forest type on throughfall deposition and seepage flux: A review. Oecologia 2007, 153, 663–674. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.-M.; Du, C.-Y.; Jiang, Y.-M.; Su, X.-K.; Xiang, R.-J.; Huang, L.; Xu, M.; Zhang, C. Deposition patterns in bulk precipitation and throughfall in a subtropical mixed forest in central-south China. For. Int. J. For. Res. 2007, 80, 211–221. [Google Scholar] [CrossRef]
- Gandois, L.; Tipping, E.; Dumat, C.; Probst, A. Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall. Atmos. Environ. 2010, 44, 824–833. [Google Scholar] [CrossRef]
- Pristova, T.A. Chemical composition of atmospheric precipitation, undercrown and surface waters in the middle taiga deciduous plantations of post-cutting origin. Theor. Appl. Ecol. 2022, 2, 63–69. [Google Scholar] [CrossRef]
- Pierret, M.-C.; Viville, D.; Dambrine, E.; Cotel, S.; Probst, A. Twenty-five year record of chemicals in open field precipitation and throughfall from a medium-altitude forest catchment (Strengbach—NE France): An obvious response to atmospheric pollution trends. Atmos. Environ. 2019, 202, 296–314. [Google Scholar] [CrossRef]
- Shiltsova, G.V.; Lastochkina, V.G. Influence of the canopy of pine and birch forests on the chemical composition of precipitation in the Kivach Nature Reserve. Proc. Karal Sci. Cent. Russ. Acad. Sci. 2006, 10, 180–184. [Google Scholar]
- Lovett, G.M.; Lindberg, S.E. Dry Deposition and Canopy Exchange in a Mixed Oak Forest as Determined by Analysis of Throughfall. J. Appl. Ecol. 1984, 21, 1013. [Google Scholar] [CrossRef]
- Özsoy, T.; Örnektekin, S. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean. Atmos. Res. 2009, 94, 203–219. [Google Scholar] [CrossRef]
- HouBao, F.; Wei, H.; Zhuang, M.; Kosuke, W. Acidity and chemistry of bulk precipitation, throughfall and stemflow in a Chinese fir plantation in Fujian, China. For. Ecol. Manag. 1999, 122, 243–248. [Google Scholar] [CrossRef]
- Hamburg, S.P.; Lin, T.-C.; Staelens, J.; De Schrijver, A.; Verheyen, K.; Hsia, Y.-J.; King, H.-B.; Wang, L.-J.; Lin, K.-C. Throughfall chemistry of an ecotonal forest on the edge of the Great Plains. Can. J. For. Res. 1998, 28, 1456–1463. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, G.; Huang, G.; Jiang, Y.; Liu, H. Exchange of Ca2+, Mg2+ and K+ and uptake of H+, NH4+ for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China. Plant Sci. 2005, 168, 259–266. [Google Scholar] [CrossRef]
- Cheng, B.R.; Xu, G.S.; Gao, S.T. Biogeochemical response of forest canopies to acid precipitation. China Environ. Sci. 1989, 9, 155–157. [Google Scholar]
- Sayre, R.G.; Fahey, T.J. Effects of rainfall acidity and ozone on foliar leaching in red spruce (Picea rubens). Can. J. For. Res. 1999, 29, 487–496. [Google Scholar] [CrossRef]
- Butler, T.; Likens, G. A direct comparison of throughfall plus stemflow to estimates of dry and total deposition for sulfur and nitrogen. Atmos. Environ. 1995, 29, 1253–1265. [Google Scholar] [CrossRef]
- Migon, C.; Journel, B.; Nicolas, E. Measurement of trace metal wet, dry and total atmospheric fluxes over the Ligurian Sea. Atmos. Environ. 1997, 31, 889–896. [Google Scholar] [CrossRef]
- Takamatsu, T.; Takada, J.; Matsushita, R.; Sase, H. Aerosol elements on tree leaves—Antimony as a possible indicator ofair pollution. Glob. Environ. Res. 2000, 4, 49–60. [Google Scholar]
- Balestrini, R.; Tagliaferri, A. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmos. Environ. 2001, 35, 6421–6433. [Google Scholar] [CrossRef]
- Avila, A.; Rodrigo, A. Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmos. Environ. 2004, 38, 171–180. [Google Scholar] [CrossRef]
- Ambe, Y.; Nishikawa, M. Temporal variation of trace element concentrations in selected rainfall events at Tsukuba, Japan. Atmos. Environ. 1986, 20, 1931–1940. [Google Scholar] [CrossRef]
- Mukai, H.; Ambe, Y.; Shibata, K.; Muku, T.; Takeshita, K.; Fukuma, T.; Takahashi, J.; Mizota, S. Long-term variation of chemical camposition of atmospheric aerosol on the Oki Islands in the Sea of Japan. Atmos. Environ. 1990, 24A, 1390–1397. [Google Scholar]
- Takeda, K.; Marumoto, K.; Minamikawa, T.; Sakugawa, H.; Fujiwara, K. Three-year determination of trace metals and the lead isotope ratio in rain and snow depositions collected in Higashi–Hiroshima, Japan. Atmos. Environ. 2000, 34, 4525–4535. [Google Scholar] [CrossRef]
- Hou, H.; Takamatsu, T.; Koshikawa, M.; Hosomi, M. Trace metals in bulk precipitation and throughfall in a suburban area of Japan. Atmos. Environ. 2005, 39, 3583–3595. [Google Scholar] [CrossRef]
- Varenik, A.V.; Konovalov, S.K. Variations in Concentrations and Ratio of Soluble Forms of Nutrients in Atmospheric Depositions and Effects for Marine Coastal Areas of Crimea, Black Sea. Appl. Sci. 2021, 11, 11509. [Google Scholar] [CrossRef]
- Ilyin, Y.P. The state of pollution of atmospheric precipitation in the city of Sevastopol in 1997–2006. Sci. Work. UkrNDGMI 2006, 255, 166–184. [Google Scholar]
- Myslina, M.; Varenik, A. Inorganic nitrogen deposition with the atmospheric precipitations to the Sevastopol Bay in 2015–2016. Ekol. Bezop. Pribrezhnoy I Shel’fovoy Zon Morya 2019, 1, 78–82. [Google Scholar] [CrossRef]
- Varenik, A.; Kozlovskaya, O.; Simonova, Y. Estimation of Nutrient Flux Input to the Crimean Southern Coast (Katsiveli) Supplied by the Atmospheric Precipitation in 2010–2015. Phys. Oceanogr. 2016, 5, 61–70. [Google Scholar] [CrossRef]
- Varenik, A.V.; Konovalov, S.K. Contribution of Atmospheric Depositions to Inventory of Nutrients in the Coastal Waters of Crimea. Appl. Sci. 2023, 13, 3178. [Google Scholar] [CrossRef]
- Chaikina, A.V.; Kholoptsev, A.V. Peculiarities of hydrochemical composition of atmospheric precipitation in summer 2004 near the village of Katsiveli (Southern coast of Crimea). Ekol. Bezop. Pribrezhnoy I Shel’fovoy Zon Morya 2005, 12, 215–219. [Google Scholar]
- Kayukova, E.P. Features of the chemical composition of precipitation of the Crimean training site of Saint Petersburg University. Vestn. St. Petersburg Univ. Geol. Geogr. 2011, 3, 26–42. [Google Scholar]
- Poissant, L.; Schmit, J.-P.; Béron, P. Trace inorganic elements in rainfall in the Montreal Island. Atmos. Environ. 1994, 28, 339–346. [Google Scholar] [CrossRef]
- Michopoulos, P.; Bourletsikas, A.; Kaoukis, K.; Daskalakou, E.; Karetsos, G.; Kostakis, M.; Thomaidis, N.S.; Pasias, I.N.; Kaberi, H.; Iliakis, S. The distribution and variability of heavy metals in a mountainous fir forest ecosystem in two hydrological years. Glob. NEST Int. J. 2018, 20, 188–197. [Google Scholar] [CrossRef]
- Topchaya, V.; Kotova, E.; Starodymova, D.; Chechko, V. Distribution, Substantial and Chemical Composition of Sedimentary Matter of Rain Receiving to the Territory of the Kaliningrad Region of the RF. Adv. Mod. Nat. Sci. 2020, 1, 47–53. [Google Scholar] [CrossRef]
- Trushkina, L.Y.; Trushkin, A.G.; Demyanova, L.M. Hygiene and Human Ecology: Textbook, 4th ed.; Revised and Expanded; TK Velby, Prospekt Publishing House: Moscow, Russia, 2006; 528p. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Andreev, V.V.; Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Elansky, N.F.; Zhamsueva, G.S.; Zayakhanov, A.S.; Ivlev, G.A.; Kozlov, A.V.; Kotel’Nikov, S.N.; et al. Surface ozone concentration over the Russian territory in the first half of 2020. Opt. Atmos. Okeana 2020, 33, 671–681. [Google Scholar] [CrossRef]
- GOST R 59024-2020; Water: General Requirements for Sampling. National Standard of the Russian Federation: Moscow, Russia, 2020.
- Aničić, M.; Tasić, M.; Frontasyeva, M.; Tomašević, M.; Rajšić, S.; Mijić, Z.; Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ. Pollut. 2009, 157, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Duce, R.A.; Hoffman, E.J. Chemical Fractionation at the Air/Sea Interface. Annu. Rev. Earth Planet. Sci. 1976, 4, 187–228. [Google Scholar] [CrossRef]
- Chester, R.; Nimmo, M.; Murphy, K.J.T.; Nicholas, E. Atmospheric trace metals transported to the western Mediterranean: Data from a station on Cap Ferrat. In Proceedings of the Second EROS 2000 Workshop, Blanes, Spain, 6–9 February 1990; Water Pollution Research Reports. Volume 20, pp. 597–612. [Google Scholar]
- Katanaeva, V.G.; Selyanin, A.V. Assessment of the content of heavy metals and their entry into the salt lakes of the forest-steppe zone of the right bank of the Ishim region. Bull. Tyumen State Univ. 2011, 5, 39–48. [Google Scholar]
- Vinogradov, A.P. Average contents of chemical elements in the main types of igneous rocks of the earth’s crust. Geochem 1962, 7, 555–571. [Google Scholar]
- Stachurski, A.; Zimka, J. Atmospheric input of elements to forest ecosystems: A method of estimation using artificial foliage placed above rain collectors. Environ. Pollut. 2000, 110, 345–356. [Google Scholar] [CrossRef]
- Rea, A.W.; Lindberg, S.E.; Keeler, G.J. Assessment of Dry Deposition and Foliar Leaching of Mercury and Selected Trace Elements Based on Washed Foliar and Surrogate Surfaces. Environ. Sci. Technol. 2000, 34, 2418–2425. [Google Scholar] [CrossRef]
- Al-Momani, I. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: Acidity and possible sources. Atmos. Environ. 2003, 37, 4507–4515. [Google Scholar] [CrossRef]
- Lapchenko, V.A.; Zvyagintsev, A.M. Minor Atmospheric Gases in Karadag Nature Reserve in Crimea. Atmos. Ocean. Opt. 2015, 28, 308–311. [Google Scholar] [CrossRef]
- Jain, C.D.; Madhavan, B.; Ratnam, M.V. Source apportionment of rainwater chemical composition to investigate the transport of lower atmospheric pollutants to the UTLS region. Environ. Pollut. 2019, 248, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Kaya, G.; Tuncel, G. Trace element and major ion composition of wet and dry depositon in Ankara, Turkey. Atmos. Environ. 1997, 31, 3985–3998. [Google Scholar] [CrossRef]
- Nikanorov, A.M. Hydrochemistry; Gidrometeoizdat: St. Petersburg, Russia, 2001; 444p. [Google Scholar]
- Moreda-Piñeiro, J.; Alonso-Rodríguez, E.; Moscoso-Pérez, C.; Blanco-Heras, G.; Turnes-Carou, I.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmos. Environ. 2014, 88, 30–38. [Google Scholar] [CrossRef]
- Khwaja, H.A.; Husain, L. Chemical characterization of acid precipitation in Albany, New York. Atmos. Environ. Part A Gen. Top. 1990, 24, 1869–1882. [Google Scholar] [CrossRef]
- Prado-Fiedler, R. On the relationship between precipitation amount and wet deposition of nitrate and ammonium. Atmos. Environ. Part A Gen. Top. 1990, 24, 3061–3065. [Google Scholar] [CrossRef]
- Sakugawa, H.; Kaplan, I.R.; Shepard, L.S. Measurements of H2O2, aldehydes and organic acids in Los Angeles rainwater: Their sources and deposition rates. Atmos. Environ. Part B Urban Atmos. 1993, 27, 203–219. [Google Scholar] [CrossRef]
- Draaijers, G.P.J.; Van Ek, R.; Bleuten, W. Atmospheric deposition in complex forest landscapes. Bound. Layer Meteorol. 1994, 69, 343–366. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M. Atmospheric deposition of trace elements at urban and forest sites in central Poland—Insight into seasonal variability and sources. Atmos. Res. 2017, 198, 123–131. [Google Scholar] [CrossRef]
- GN 2.1.5.1315-03; Maximum Permissible Concentrations (MAC) of Chemicals in the Water of Water Bodies of Drinking and Domestic Water Use. Available online: https://gostrf.com/normadata/1/4294815/4294815336.pdf (accessed on 1 August 2023).
- Kiekens, L. Zinc. In Heavy Metals in Soils; Alloway, B.J., Ed.; Blackie: Glasgow, Scotland; London, UK; Wiley: New York, NY, USA, 1990; pp. 261–279. [Google Scholar]
- Halstead, M.J.; Cunninghame, R.G.; Hunter, K.A. Wet deposition of trace metals to a remote site in Fiordland, New Zealand. Atmos. Environ. 2000, 34, 665–676. [Google Scholar] [CrossRef]
- Berg, T.; Røyset, O.; Steinnes, E. Trace elements in atmospheric precipitation at Norweigan background stations (1989–1990) measured by ICP-MS. Atmos. Environ. 1994, 28, 3519–3536. [Google Scholar] [CrossRef]
Elements | Open Area | Under the Forest Canopy | ||
---|---|---|---|---|
Maximum–Minimum Value, µg/L | Average Value | Maximum–Minimum Value, µg/L | Average Value | |
Na | 34,348.56–483.97 | 4414.32 | 16,746.47–244.74 | 4115.50 |
Mg | 14,482.59–129.49 | 1401.68 | 4149.72–153.91 | 930.09 |
Al | 38.45–0.00 | 10.59 | 52.73–0.24 | 20.73 |
K | 10,246.75–180.62 | 2457.01 | 13,128.05–702.88 | 5405.70 |
Ca | 28,872.74–699.74 | 10,316.33 | 17,439.83–728.05 | 8044.44 |
V | 1.27–0.17 | 0.45 | 2.09–0.23 | 0.66 |
Cr | 4.39–0.36 | 1.27 | 6.36–0.41 | 1.49 |
Mn | 59.37–0.73 | 16.25 | 220.87–0.20 | 49.09 |
Fe | 358.65–25.93 | 144.08 | 212.42–47.18 | 138.70 |
Co | 27.79–0.41 | 4.87 | 12.15–0.17 | 2.23 |
Ni | 32.33–0.17 | 9.96 | 14.14–0.54 | 4.97 |
Cu | 31.88–0.19 | 8.79 | 33.93–0.55 | 11.09 |
Zn | 629.44–6.72 | 127.90 | 254.00–3.23 | 55.76 |
Cd | 3.32–0.00 | 0.71 | 3.06–0.01 | 0.74 |
Pb | 7.46–0.00 | 1.16 | 5.96–0.02 | 1.34 |
Sr | 268.60–1.56 | 30.58 | 109.94–1.93 | 25.78 |
Ba | 19.15–1.16 | 6.37 | 40.36–1.87 | 8.38 |
Na | Mg | Al | K | Ca | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Sr | Cd | Ba | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | 1.00 | 0.98 | −0.08 | −0.01 | 0.37 | 0.84 | 0.84 | −0.10 | 0.41 | −0.06 | 0.24 | 0.07 | 0.02 | 0.96 | −0.12 | 0.24 | 0.00 |
Mg | 1.00 | −0.22 | 0.06 | 0.44 | 0.83 | 0.84 | −0.16 | 0.40 | −0.15 | 0.11 | −0.07 | −0.09 | 0.93 | −0.25 | 0.10 | −0.10 | |
Al | 1.00 | −0.07 | −0.45 | −0.04 | −0.17 | 0.74 | 0.11 | 0.68 | 0.76 | 0.94 | 0.80 | 0.10 | 0.83 | 0.85 | 0.32 | ||
K | 1.00 | 0.74 | 0.11 | 0.18 | 0.07 | 0.75 | −0.28 | −0.19 | −0.21 | −0.33 | −0.09 | −0.14 | −0.14 | −0.02 | |||
Ca | 1.00 | 0.38 | 0.56 | −0.41 | 0.81 | −0.49 | −0.34 | −0.49 | −0.55 | 0.17 | −0.55 | −0.29 | −0.12 | ||||
V | 1.00 | 0.88 | −0.03 | 0.42 | −0.04 | 0.18 | −0.01 | 0.00 | 0.80 | −0.13 | 0.20 | −0.16 | |||||
Cr | 1.00 | −0.17 | 0.55 | −0.15 | 0.10 | −0.10 | −0.10 | 0.74 | −0.33 | 0.11 | −0.12 | ||||||
Mn | 1.00 | 0.04 | 0.59 | 0.65 | 0.69 | 0.60 | 0.08 | 0.65 | 0.71 | 0.12 | |||||||
Fe | 1.00 | −0.05 | 0.17 | 0.07 | −0.04 | 0.31 | −0.13 | 0.25 | 0.13 | ||||||||
Co | 1.00 | 0.77 | 0.71 | 0.91 | 0.10 | 0.30 | 0.75 | 0.36 | |||||||||
Ni | 1.00 | 0.88 | 0.85 | 0.37 | 0.52 | 0.90 | 0.50 | ||||||||||
Cu | 1.00 | 0.86 | 0.25 | 0.76 | 0.91 | 0.40 | |||||||||||
Zn | 1.00 | 0.19 | 0.49 | 0.81 | 0.42 | ||||||||||||
Sr | 1.00 | 0.04 | 0.39 | −0.03 | |||||||||||||
Cd | 1.00 | 0.59 | 0.30 | ||||||||||||||
Ba | 1.00 | 0.27 | |||||||||||||||
Pb | 1.00 |
Elements | R | Elements | R |
---|---|---|---|
Na | −0.44 | Co | 0.34 |
Mg | −0.41 | Ni | −0.20 |
Al | 0.36 | Cu | −0.01 |
K | −0.05 | Zn | 0.49 |
Ca | −0.30 | Sr | −0.40 |
V | −0.16 | Cd | 0.31 |
Cr | −0.25 | Ba | −0.18 |
Mn | 0.37 | Pb | −0.11 |
Fe | −0.26 |
Elements | R | Elements | R |
---|---|---|---|
Na | 0.88 | Co | −0.14 |
Mg | 0.81 | Ni | 0.62 |
Al | −0.16 | Cu | 0.52 |
K | −0.13 | Zn | 0.37 |
Ca | 0.66 | Sr | 0.97 |
V | 0.84 | Cd | −0.25 |
Cr | 0.73 | Ba | 0.89 |
Mn | 0.35 | Pb | −0.12 |
Fe | 0.26 |
Present Work | Bakhchisarai (Crimea) [29] | Kaliningrad Region [31] | Spain [49] | Poland [54] | Republic of Komi [3] | China [2] | Canada [30] | Kivach [6] | MPC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | Open Area | Under the Forest Canopy | Open Area | Under the Forest Canopy | Open Area | Under the Forest Canopy | Open Area | Under the Forest Canopy | ||||||
Na | 4414.32 | 4115.50 | 1,780,000 | 188,200 | 200,000 | 290,000 | 13,000 | 25,600 | 370,000 | 820,000 | 200,000 | |||
Mg | 1401.68 | 930.09 | 880,000 | 53,700 | 70,000 | 700,000 | 37,000 | 65,800 | 170,000 | 810,000 | 50,000 | |||
Al | 10.59 | 20.73 | 172.4 | 8762 | 49.4 | 7.48 | 8.65 | 17.5 | 500 | |||||
K | 2457.01 | 5405.70 | 2,370,000 | 15,100 | 540,000 | 7,380,000 | 17,400 | 100,400 | 850,000 | 6,960,000 | ||||
Ca | 10,316.33 | 8044.44 | 6,340,000 | 121,700 | 310,000 | 2,460,000 | 150,000 | 382,000 | 600,000 | 1,430,000 | ||||
V | 0.45 | 0.66 | 0.787 | 17.3 | 0.83 | 0.75 | 100 | |||||||
Cr | 1.27 | 1.49 | 5.19 | 32.6 | 0.28 | 1.64 | 0.01 | * | 1.52 | 500 | ||||
Mn | 16.25 | 49.09 | 13.38 | 232 | 6.4 | 2.66 | 9.65 | 9.46 | 100 | |||||
Fe | 144.08 | 138.70 | 366.2 | 11.4 | 11.4 | 90.5 | 300 | |||||||
Co | 4.87 | 2.23 | 0.177 | 4.9 | 5.0 | 0.01 | * | 0.13 | 100 | |||||
Ni | 9.96 | 4.97 | 6.78 | 73.9 | 1.0 | 6.42 | 0.36 | 1.28 | 2.82 | 20 | ||||
Cu | 8.79 | 11.09 | 30.43 | 81.5 | 2.1 | 11.94 | 1.46 | 2.54 | 4.00 | 1000 | ||||
Zn | 127.90 | 55.76 | 78.22 | 438 | 55.7 | 37 | 22.02 | 32.47 | 28.1 | 1000 | ||||
Sr | 30.58 | 25.78 | 37.49 | 34 | 5.5 | 7.74 | 7000 | |||||||
Cd | 0.71 | 0.74 | 0.117 | 3.7 | 0.14 | 0.18 | 0.13 | 0.26 | 1 | |||||
Ba | 6.37 | 8.38 | 148.8 | 94 | 15.2 | 100 | ||||||||
Pb | 1.16 | 1.34 | 4.279 | 73.3 | 0.51 | 13.23 | * | 0.05 | 5.14 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, C.N.; Gorbunov, R.; Lapchenko, V.; Gorbunova, T.; Tabunshchik, V. Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater. Forests 2024, 15, 612. https://doi.org/10.3390/f15040612
Pham CN, Gorbunov R, Lapchenko V, Gorbunova T, Tabunshchik V. Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater. Forests. 2024; 15(4):612. https://doi.org/10.3390/f15040612
Chicago/Turabian StylePham, Cam Nhung, Roman Gorbunov, Vladimir Lapchenko, Tatiana Gorbunova, and Vladimir Tabunshchik. 2024. "Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater" Forests 15, no. 4: 612. https://doi.org/10.3390/f15040612
APA StylePham, C. N., Gorbunov, R., Lapchenko, V., Gorbunova, T., & Tabunshchik, V. (2024). Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater. Forests, 15(4), 612. https://doi.org/10.3390/f15040612