Sampling Protocol for Measuring Mean Diameter at Breast Height of Forked Urban Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Collected Data
2.2. Random Sampling Measurement
2.3. Targeted Sampling Measurement
2.4. Statistical Analysis
3. Results
3.1. Distributions of Estimated Mean Forked Tree DBH
3.2. Accuracy of Estimating Mean Forked Tree DBH
4. Discussion
4.1. Distributions and Accuracy of Estimated Mean Forked Tree DBH
4.2. Inventory Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pincetl, S. From the Sanitary City to the Sustainable City: Challenges to Institutionalising Biogenic (Nature’s Services) Infrastructure. Local Environ. 2010, 15, 43–58. [Google Scholar] [CrossRef]
- Babí Almenar, J.; Petucco, C.; Sonnemann, G.; Geneletti, D.; Elliot, T.; Rugani, B. Modelling the Net Environmental and Economic Impacts of Urban Nature-Based Solutions by Combining Ecosystem Services, System Dynamics and Life Cycle Thinking: An Application to Urban Forests. Ecosyst. Serv. 2023, 60, 101506. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Lee, S.; Moon, H.; Choi, Y.; Yoon, D.K. Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea. Sustainability 2018, 10, 519. [Google Scholar] [CrossRef]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling Biogeochemical Cycles in Urban Environments: Ecosystem Services, Green Solutions, and Misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. AMBIO 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Feshchenko, R.; Kovbasa, Y.; Matashuk, R.; Bilous, S.; Naumovska, O.; Bilous, A. Current Increment of Ecosystem Services in Permanent Sample Plots within the Forest Stands of the Feofania Park-Monument. Ukr. J. For. Wood Sci. 2023, 14, 88–102. [Google Scholar] [CrossRef]
- Bilous, A.; Matsala, M.; Radchenko, V.; Matiashuk, R.; Boiko, S.; Bilous, S. Coarse Woody Debris in Mature Oak Stands of Ukraine: Carbon Stock and Decomposition Features. For. Ideas 2019, 25, 196–219. [Google Scholar]
- Fruth, E.; Kvistad, M.; Marshall, J.; Pfeifer, L.; Rau, L.; Sagebiel, J.; Soto, D.; Tarpey, J.; Weir, J.; Winiarski, B. Economic Valuation of Street-Level Urban Greening: A Case Study from an Evolving Mixed-Use Area in Berlin. Land Use Policy 2019, 89, 104237. [Google Scholar] [CrossRef]
- Mundher, R.; Abu Bakar, S.; Al-Helli, M.; Gao, H.; Al-Sharaa, A.; Mohd Yusof, M.J.; Maulan, S.; Aziz, A. Visual Aesthetic Quality Assessment of Urban Forests: A Conceptual Framework. Urban Sci. 2022, 6, 79. [Google Scholar] [CrossRef]
- Gatalska, N.; Oleksiichenko, N. Methodological Approaches to Assess the Aesthetics of Park Environment. For. Ideas 2018, 24, 141–162. [Google Scholar]
- Escobedo, F.J.; Wagner, J.E.; Nowak, D.J.; De La Maza, C.L.; Rodriguez, M.; Crane, D.E. Analyzing the Cost Effectiveness of Santiago, Chile’s Policy of Using Urban Forests to Improve Air Quality. J. Environ. Manag. 2008, 86, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Silvera Seamans, G. Mainstreaming the Environmental Benefits of Street Trees. Urban For. Urban Green. 2013, 12, 2–11. [Google Scholar] [CrossRef]
- Matsala, M.; Bilous, A.; Feshchenko, R.; Matiashuk, R.; Bilous, S.; Kovbasa, Y. Spatial and Compositional Structure of European Oak Urban Forests in Kyiv City, Ukraine. J. For. Sci. 2021, 67, 143–153. [Google Scholar] [CrossRef]
- Elbakidze, M.; Dawson, L.; Van Ermel, L.K.; Mikusiński, G.; Hedblom, M.; Korohoda, N.; Kruhlov, I.; Smaliychuk, A.; Kurdadze, T.; Ugrekhelidze, K.; et al. Understanding People’s Interactions with Urban Greenspace: Case Studies in Eastern Europe. Urban For. Urban Green. 2023, 89, 128117. [Google Scholar] [CrossRef]
- Young, R.F. Planting the Living City: Best Practices in Planning Green Infrastructure—Results From Major U.S. Cities. J. Am. Plann. Assoc. 2011, 77, 368–381. [Google Scholar] [CrossRef]
- Marissa Matsler, A. Making ‘Green’ Fit in a ‘Grey’ Accounting System: The Institutional Knowledge System Challenges of Valuing Urban Nature as Infrastructural Assets. Environ. Sci. Policy 2019, 99, 160–168. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Locke, D.H.; Konijnendijk, C.; Labib, S.M.; Rigolon, A.; Yeager, R.; Bardhan, M.; Berland, A.; Dadvand, P.; Helbich, M.; et al. Measuring the 3-30-300 Rule to Help Cities Meet Nature Access Thresholds. Sci. Total Environ. 2024, 907, 167739. [Google Scholar] [CrossRef]
- Jaenson, R.; Bassuk, N.; Schwager, S.; Headley, D. A Statistical Method for the Accurate and Rapid Sampling of Urban Street Tree Populations. J. Arboric. 1992, 18, 171–183. [Google Scholar] [CrossRef]
- Maco, S.; McPherson, E.G. A Practical Approach to Assessing Structure, Function, and Value of Street Tree Populations in Small Communities. Arboric. Urban For. 2003, 29, 84–97. [Google Scholar] [CrossRef]
- Bidolakh, D.; Lakyda, P.; Myroniuk, V.; Hayda, Y.; Pidkhovna, S. Assessment and Representation of Urban Trees Ecosystem Services: A Case Study in Pryzamkovyi Park. Folia For. Pol. 2023, 65, 104–116. [Google Scholar] [CrossRef]
- Mäkinen, A.; Holopainen, M.; Kangas, A.; Rasinmäki, J. Propagating the Errors of Initial Forest Variables through Stand- and Tree-Level Growth Simulators. Eur. J. For. Res. 2010, 129, 887–897. [Google Scholar] [CrossRef]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E. (Eds.) National Forest Inventories: Pathways for Common Reporting; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-90-481-3232-4. [Google Scholar]
- Panagiotidis, D.; Abdollahnejad, A. Reliable Estimates of Merchantable Timber Volume from Terrestrial Laser Scanning. Remote Sens. 2021, 13, 3610. [Google Scholar] [CrossRef]
- Myroniuk, V.; Bilous, A.; Lakyda, P.; Lesnik, O.; Burianchuk, M.; Svynchuk, V.; Bychenko, V.; Tyshchenko, O.; Zadorozhniuk, R.; Soshenskyi, O.; et al. Taper Equations for Eight Major Forest Tree Species in Flat Land Ukraine. For. Int. J. For. Res. 2023, 96, 498–508. [Google Scholar] [CrossRef]
- Aulia, R.; Kaswanto; Arifin, H.; Mosyaftiani, A.; Syasita, N.; Wahyu, A.; Wiyoga, H. Assessing the Benefits and Management of Urban Forest in Supporting Low Carbon City in Jakarta, Indonesia. Biodiversitas 2023, 24, 6151–6159. [Google Scholar] [CrossRef]
- Morgenroth, J.; Nowak, D.; Koeser, A. DBH Distributions in America’s Urban Forests—An Overview of Structural Diversity. Forests 2020, 11, 135. [Google Scholar] [CrossRef]
- Working group “European Consulting Standards in Treework—ECoST”. 2023. European Tree Assessment Standard (First Draft). Available online: https://files.site.forpsi.com/a6/49/a649b734-7d2d-423e-a5a1-3b2e9f8c0604.pdf (accessed on 17 January 2024).
- McHale, M.R.; Burke, I.C.; Lefsky, M.A.; Peper, P.J.; McPherson, E.G. Urban Forest Biomass Estimates: Is It Important to Use Allometric Relationships Developed Specifically for Urban Trees? Urban Ecosyst. 2009, 12, 95–113. [Google Scholar] [CrossRef]
- Vaz Monteiro, M.; Doick, K.J.; Handley, P. Allometric Relationships for Urban Trees in Great Britain. Urban For. Urban Green. 2016, 19, 223–236. [Google Scholar] [CrossRef]
- Scarmana, G.; McDougall, K. Assessing the relationship between tree dimensions in an urban environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1/W1-2023, 437–442. [Google Scholar] [CrossRef]
- Burghardt, K.T.; Avolio, M.L.; Locke, D.H.; Grove, J.M.; Sonti, N.F.; Swan, C.M. Current Street Tree Communities Reflect Race-based Housing Policy and Modern Attempts to Remedy Environmental Injustice. Ecology 2023, 104, e3881. [Google Scholar] [CrossRef]
- Luoma, V.; Saarinen, N.; Wulder, M.; White, J.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. Forests 2017, 8, 38. [Google Scholar] [CrossRef]
- Zadorozhniuk, R.M.; Bilous, A.M. Aboveground live biomass of ancient common oak trees. For. Landsc. Gard. 2019, 15. Available online: http://journals.nubip.edu.ua/index.php/Lis/article/view/13103 (accessed on 18 January 2024).
- Magarik, Y.A.S.; Roman, L.A.; Henning, J.G. How Should We Measure the DBH of Multi-Stemmed Urban Trees? Urban For. Urban Green. 2020, 47, 126481. [Google Scholar] [CrossRef]
- Roman, L.A.; Scharenbroch, B.C.; Östberg, J.P.A.; Mueller, L.S.; Henning, J.G.; Koeser, A.K.; Sanders, J.R.; Betz, D.R.; Jordan, R.C. Data Quality in Citizen Science Urban Tree Inventories. Urban For. Urban Green. 2017, 22, 124–135. [Google Scholar] [CrossRef]
- Klein, R.W.; McLean, D.C.; Koeser, A.K.; Hauer, R.J.; Miesbauer, J.W.; Salisbury, A.B. Visual Estimation Accuracy of Tree Part Diameter and Fall Distance. J. For. 2022, 120, 483–490. [Google Scholar] [CrossRef]
- Haara, A. Comparing Simulation Methods for Modelling the Errors of Stand Inventory Data. Silva Fenn. 2003, 37, 477–491. [Google Scholar] [CrossRef]
- Stewart, J.L.; Salazar, R. A Review of Measurement Options for Multipurpose Trees. Agrofor. Syst. 1992, 19, 173–183. [Google Scholar] [CrossRef]
- Holmström, H.; Kallur, H.; Ståhl, G. Cost-plus-Loss Analyses of Forest Inventory Strategies Based on kNN-Assigned Reference Sample Plot Data. Silva Fenn. 2003, 37, 381–398. [Google Scholar] [CrossRef]
- Motz, K.; Sterba, H.; Pommerening, A. Sampling Measures of Tree Diversity. For. Ecol. Manag. 2010, 260, 1985–1996. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.; Liang, P.; Wu, Y.; An, H.; Sun, H.; Wu, P.; Wu, X.; Li, Q.; Guo, X.; et al. A New Tree-Ring Sampling Method to Estimate Forest Productivity and Its Temporal Variation Accurately in Natural Forests. For. Ecol. Manag. 2019, 433, 217–227. [Google Scholar] [CrossRef]
- Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra: In Honour of Peter Paule on His 60th Birthday; Pillwein, V.; Schneider, C. (Eds.) Texts & Monographs in Symbolic Computation; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-44558-4. [Google Scholar]
- Schröer, G.; Trenkler, D. Exact and Randomization Distributions of Kolmogorov-Smirnov Tests Two or Three Samples. Comput. Stat. Data Anal. 1995, 20, 185–202. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Tree Manuals, Guides & Workbooks. Available online: https://www.itreetools.org/support/resources-overview/i-tree-manuals-workbooks (accessed on 6 February 2024).
- Urban Forest Inventory and Analysis Program. Available online: https://www.fs.usda.gov/research/programs/urbanfia (accessed on 7 February 2024).
- Kitahara, F.; Mizoue, N.; Yoshida, S. Effects of Training for Inexperienced Surveyors on Data Quality of Tree Diameter and Height Measurements. Silva Fenn. 2010, 44, 657–667. [Google Scholar] [CrossRef]
- Cozad, S.K. STRATUM Case Study Evaluation in Minneapolis, Minnesota; University of California: Davis, CA, USA, 2006. [Google Scholar]
- Bloniarz, D.V.; Ryan, D.P. The Use of Volunteer Initiatives in Conducting Urban Forest Resource Inventories. J. Arboric. 1996, 22, 75–82. [Google Scholar]
- Bancks, N.; North, E.; Johnson, G. An Analysis of Agreement Between Volunteer- and Researcher-Collected Urban Tree Inventory Data. Arboric. Urban For. 2018, 44, 73–86. [Google Scholar] [CrossRef]
- Hallett, R.; Hallett, T. Citizen Science and Tree Health Assessment: How Useful Are the Data? Arboric. Urban For. 2018, 44, 236–247. [Google Scholar] [CrossRef]
- Hamilton, K.; Koeser, A.; Landry, S. Accuracy of Volunteer-Derived Data from a Single-Day Inventory Event Built Around a Crowdsourced Tree Mapping Application. Arboric. Urban For. 2018, 44, 248–254. [Google Scholar] [CrossRef]
Site No | Area (ha) | Number of Trees on the Site | Tree Density on the Site (n∙ha−1) | Number of Forked Trees on the Site | Forked Tree Density on the Site (n∙ha−1) | Proportion of Forked Trees on the Site |
---|---|---|---|---|---|---|
1 | 7.6 | 1003 | 132.0 | 12 | 1.6 | 1.2% |
2 | 6.3 | 448 | 71.1 | 1 | 0.2 | 0.2% |
3 | 5.9 | 850 | 144.1 | 6 | 1.0 | 0.7% |
4 | 0.9 | 53 | 58.9 | 1 | 1.1 | 1.9% |
5 | 3.0 | 201 | 67.0 | 55 | 18.3 | 27.4% |
6 | 2.2 | 224 | 101.8 | 1 | 0.5 | 0.4% |
total | 25.9 | 2779 | 107.3 | 76 | 2.9 | 2.7% |
Number of Tree Stems | Number of Individual Trees | Tree Species Occurrence | DBH of Tree Stem (cm) | Mean DBH of Forked Tree | |||
---|---|---|---|---|---|---|---|
Average | Min | Max | Min | Max | |||
4 | 27 | 7 | 15.3 | 3.5 | 37.6 | 4.5 | 35.3 |
5 | 23 | 7 | 13.1 | 2.5 | 33.3 | 3.1 | 29.7 |
6 | 14 | 4 | 11.3 | 4.3 | 24.4 | 6.1 | 19.0 |
7 | 7 | 3 | 12.5 | 2.0 | 36.7 | 2.7 | 31.9 |
8 | 5 | 5 | 14.4 | 4.6 | 43.8 | 5.8 | 26.4 |
Number of Stems in Forked Tree | Number of Trees in Dataset | The Number of Possible Combinations for Simulating DBH Measurements When Randomly Selecting a Tree Stem | ||
---|---|---|---|---|
One Tree Stem Selected | Two Tree Stems Selected | Three Tree Stems Selected | ||
4 | 27 | 4 | 6 | 4 |
5 | 23 | 5 | 10 | 10 |
6 | 14 | 6 | 15 | 20 |
7 | 7 | 7 | 21 | 35 |
8 | 5 | 8 | 28 | 56 |
overall | 76 | 30 | 80 | 125 |
Type of Data | RMSE (cm) | RMSE (%) | Number of Measurements | Mean Tree DBH (cm) | Standard Deviation (cm) | P95 (%) |
---|---|---|---|---|---|---|
Observed data | - | - | 76 | 13.7 | 6.2 | 4.2 |
Northern White Cedar | - | - | 52 | 13.1 | 3.1 | 3.7 |
other tree species | - | - | 24 | 15.1 | 10.2 | 8.9 |
RSM (one stem) | 3.9 | 28.7 | 396 | 13.5 | 7.4 | 2.0 |
Northern White Wedar | 3.2 | 24.7 | 263 | 12.9 | 4.3 | 2.0 |
other tree species | 5.0 | 33.7 | 133 | 14.7 | 11.1 | 3.9 |
RSM (two stems) | 2.3 | 17.3 | 889 | 13.3 | 6.8 | 1.3 |
Northern White Cedar | 2.0 | 15.7 | 563 | 12.6 | 3.5 | 1.2 |
other tree species | 2.8 | 19.1 | 326 | 14.4 | 10.2 | 2.4 |
RSM (tree stems) | 1.6 | 12.1 | 1143 | 13.1 | 6.8 | 1.2 |
Northern White Cedar | 1.4 | 11.4 | 671 | 12.3 | 3.0 | 1.1 |
other tree species | 1.8 | 12.8 | 472 | 14.2 | 9.8 | 2.0 |
TSM (the thickest and thinnest stems) | 1.5 | 11.2 | 76 | 14.0 | 6.5 | 4.1 |
Northern White Cedar | 0.8 | 6.2 | 52 | 13.1 | 2.8 | 3.6 |
other tree species | 2.5 | 16.2 | 24 | 16.0 | 10.6 | 8.6 |
TSM (the thickest, thinnest, and average stems) | 0.9 | 6.3 | 76 | 13.9 | 6.2 | 4.1 |
Northern White Cedar | 0.7 | 5.3 | 52 | 13.1 | 2.9 | 3.6 |
other tree species | 1.2 | 7.7 | 24 | 15.5 | 10.1 | 8.6 |
TSM (four thickest stems) | 1.4 | 10.0 | 76 | 14.6 | 6.5 | 0.6 |
Northern White Cedar | 1.3 | 9.6 | 52 | 13.9 | 3.1 | 0.5 |
other tree species | 1.6 | 10,7 | 24 | 16.1 | 10.7 | 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilous, A.; Zadorozhniuk, R.; Makarevych, A.; Svynchuk, V.; Lashko, A.; Bilous, M.; Myroniuk, V.; Matsala, M. Sampling Protocol for Measuring Mean Diameter at Breast Height of Forked Urban Trees. Forests 2024, 15, 458. https://doi.org/10.3390/f15030458
Bilous A, Zadorozhniuk R, Makarevych A, Svynchuk V, Lashko A, Bilous M, Myroniuk V, Matsala M. Sampling Protocol for Measuring Mean Diameter at Breast Height of Forked Urban Trees. Forests. 2024; 15(3):458. https://doi.org/10.3390/f15030458
Chicago/Turabian StyleBilous, Andrii, Roman Zadorozhniuk, Anatolii Makarevych, Viktor Svynchuk, Andrii Lashko, Maksym Bilous, Viktor Myroniuk, and Maksym Matsala. 2024. "Sampling Protocol for Measuring Mean Diameter at Breast Height of Forked Urban Trees" Forests 15, no. 3: 458. https://doi.org/10.3390/f15030458
APA StyleBilous, A., Zadorozhniuk, R., Makarevych, A., Svynchuk, V., Lashko, A., Bilous, M., Myroniuk, V., & Matsala, M. (2024). Sampling Protocol for Measuring Mean Diameter at Breast Height of Forked Urban Trees. Forests, 15(3), 458. https://doi.org/10.3390/f15030458