The Relationship between the Carbon Fixation Capacity of Vegetation and Cultivated Land Expansion and Its Driving Factors in an Oasis in the Arid Region of Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Data
2.2.2. Data Preprocessing
2.3. Research Method
2.3.1. Estimation of the Amount of Fixed Carbon
2.3.2. Spatial Agglomeration of Cultivated Land
2.3.3. Spatial Expansion Intensity and Spatial Growth of Cultivated Land
2.3.4. Pearson Correlation Analysis
2.3.5. Linear System Models
2.3.6. Geodetector
3. Results
3.1. The Impact of Cultivated Land Expansion in the Weiku Oasis on the Carbon Fixation Capacity of Vegetation
3.2. Temporal Sequential Cooperativity Relation of Cultivated Land Reclamation and the Carbon Fixation Capacity of Vegetation in the Oasis
3.3. Analysis of the Influences of Driving Factors Based on the Geodetector
3.3.1. Single-Factor Detection
3.3.2. Detection of Driver Interactions
4. Discussion
5. Summary and Conclusions
- (1)
- During the process of agricultural development, the proportion of cultivated land plays a major role in the impact on the carbon fixation capacity of vegetation. The proportion of cultivated land and spatial agglomeration is negatively correlated with the carbon fixation capacity of vegetation, changing it from insignificant to significant, and the significance shows an upward trend. Moreover, the impact of the proportion of cultivated land and spatial agglomeration on the carbon fixation capacity of vegetation is more significant than that of the spatial expansion intensity and spatial growth.
- (2)
- The carbon fixation capacity of vegetation declined sharply at the beginning of cropland expansion, but there was no significant time lag in the effect on the carbon fixation capacity of vegetation. And, as the system is restored and more of the cultivated land base management is improved, the carbon fixation capacity of vegetation in the cultivated land increases somewhat.
- (3)
- According to our single-factor detection, the most influential factor in the study year is potential evapotranspiration. The impacts of annual precipitation and average air temperature on the carbon fixation capacity of vegetation are gradually replaced by the NDVI and land-use types. Among the nine driving factors in interactive detection, the results of two-factor interaction detection are two-factor enhancement and non-linear enhancement. The explanatory power of topographic factors is low when they act alone, but they have strong promotive effects when interacting with other factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, J.T.; Callander, B.A.; Varney, S.K. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Mansanet-Bataller, M.; Pardo, Á. What you should know about carbon markets. Energies 2008, 1, 120–153. [Google Scholar] [CrossRef]
- Kern, R.A.; Schlesinger, W.H. Carbon stores in vegetation. Nature 1992, 357, 447–448. [Google Scholar] [CrossRef]
- Lu, M.; Zou, Y.; Xun, Q.; Yu, Z.; Jiang, M.; Sheng, L.; Lu, X.; Wang, D. Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Glob. Chang. Biol. 2021, 27, 3837–3845. [Google Scholar] [CrossRef]
- Stocker, B.D.; Zscheischler, J.; Keenan, T.F.; Colin Prentice, I.; Seneviratne, S.; Peñuelas, J. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 2019, 12, 264–270. [Google Scholar] [CrossRef]
- Dai, E.; Huang, Y.; Wu, Z.; Zhou, D. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem. J. Geogr. Sci. 2016, 26, 297–312. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.; Rasmussen, K.; Hiernaux, P.; Herrmann, S.; Tucker, C.J.; Tong, X.; Tian, F.; Mertz, O.; Kergoat, L.; Mbow, C.; et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 2018, 11, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Brovkin, V.; Boysen, L.; Arora, V.K.; Boisier, J.P.; Cadule, P.; Chini, L.; Claussen, M.; Friedlingstein, P.; Gayler, V.; van den Hurk, B.J.J.M.; et al. Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Clim. 2013, 26, 6859–6881. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Ling, T.C.; Juan, J.C.; Lee, D.J.; Chang, J.S.; Show, P.L. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresour. Technol. 2016, 215, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.T.; Brown, D.G.; Currie, W.S. Modelling carbon storage in highly fragmented and human-dominated landscapes: Linking land-cover patterns and ecosystem models. Ecol. Model. 2009, 220, 1325–1338. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Tian, H.; Wu, X.; Gao, Z.; Feng, Y.; Piao, S.; Lv, N.; Pan, N.; Fu, B. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Glob. Chang. Biol. 2021, 27, 5848–5864. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Zhu, X.; Ma, W.; Han, Y.; Huang, H.; Huang, X. Impact assessment of urbanization on vegetation net primary productivity: A case study of the core development area in central plains urban agglomeration, China. Environ. Res. 2023, 229, 115995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xie, Z.; Gao, J. Assessment on the carbon fixation of urban forests and their efficacy on offsetting energy carbon emissions in Shanghai. Acta Ecol. Sin. 2021, 41, 8906–8920. (In Chinese) [Google Scholar]
- Zhuang, Q.; Shao, Z.; Huang, X.; Zhang, Y.; Wu, W.; Feng, X.; Lv, X.; Ding, Q.; Cai, B.; Altan, O. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains, Xinjiang, China. Catena 2021, 206, 105561. [Google Scholar] [CrossRef]
- Luo, X.; Jia, B.; Lai, X. Contributions of climate change, land use change and CO2 to changes in the gross primary productivity of the Tibetan Plateau. Atmos. Ocean. Sci. Lett. 2020, 13, 8–15. [Google Scholar] [CrossRef]
- Feng, H.; Kang, P.; Deng, Z.; Zhao, W.; Hua, M.; Zhu, X.; Wang, Z. The impact of climate change and human activities to vegetation carbon sequestration variation in Sichuan and Chongqing. Environ. Res. 2023, 238, 117138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cao, G.; Cao, S.; Zhang, X.; Zhang, J.; Han, G. Dynamic assessment of the value of vegetation carbon fixation and oxygen release services in Qinghai Lake basin. Acta Ecol. Sin. 2017, 37, 79–84. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.; Yang, R. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example. Sci. Total Environ. 2018, 635, 26–34. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; He, J. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Chang. 2006, 74, 253–267. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Xu, J.; Wu, Z. Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China. Sci. Rep. 2021, 11, 1376. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Gao, X.; Li, B.; Yuan, Y.; Li, Y.; Liu, W.; Xu, J. Diverse chronic responses of vegetation aboveground net primary productivity to climatic changes on Three-River Headwaters region. Ecol. Indic. 2022, 139, 108925. [Google Scholar] [CrossRef]
- He, N.; Wen, D.; Zhu, J.; Tang, X.; Xu, L.; Zhang, L.; Hu, H.; Huang, M.; Yu, G. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob. Chang. Biol. 2017, 23, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, M. Forest carbon pool characteristics and advances in the researches of carbon storage and related factors. Acta Ecol. Sin. 2015, 35, 926–933. [Google Scholar]
- Cheng, W.; Gao, X.; Ma, T.; Xu, X.; Chen, Y.; Zhou, C. Spatial-temporal distribution of cropland in China based on geomorphologic regionalization during 1990–2015. Acta Geogr. Sin. 2018, 73, 1613–1629. [Google Scholar]
- Yao, Z.; Zhang, L.; Tang, S.; Li, X.; Hao, T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. J. Geog. Sci. 2017, 27, 771–785. [Google Scholar] [CrossRef]
- Ren, W.; Tian, H.; Tao, B.; Huang, Y.; Pan, S. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Chang. Biol. 2012, 18, 2945–2957. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, M.; Liu, M.; Xie, B.; Chang, Q. Vegetation carbon sequestration in the Loess Plateau under the synergistic effects of land cover change and elevations. Acta Ecol. Sin. 2022, 42, 3897–3908. (In Chinese) [Google Scholar]
- Wang, F.; Wang, Z.; Zhang, Y. Spatio-temporal variations in vegetation net primary productivity and their driving factors in Anhui Province from 2000 to 2015. Acta Ecol. Sin. 2018, 38, 2754–2767. (In Chinese) [Google Scholar]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, W.; Yang, K.; Zhao, L. China urbanization process induced vegetation degradation and improvement in recent 20 years. Cities 2021, 114, 103207. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Altan, O.; Wu, S.; Li, Y. Isolating the direct and indirect impacts of urbanization on vegetation carbon sequestration capacity in a large oasis city: Evidence from Urumqi, China. Geo-Spat. Inf. Sci. 2023, 26, 379–391. [Google Scholar] [CrossRef]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Cox, P.M.; Pearson, D.; Booth, B.B.; Friedlingstein, P.; Huntingford, C.; Jones, C.D.; Luke, C.M. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 2013, 494, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Li, Y.; Altan, O.; Xu, S. Impact of global urban expansion on the terrestrial vegetation carbon sequestration capacity. Sci. Total Environ. 2023, 879, 163074. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cheng, W.; Wang, N.; Liu, Q.; Ma, T.; Chen, Y.; Zhou, C. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990–2015. J. Geogr. Sci. 2019, 29, 180–196. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhou, D. Effects of land use and cover change on terrestrial carbon stocks in urbanized areas: A study from Changzhou, China. J. Clean. Prod. 2015, 103, 651–657. [Google Scholar] [CrossRef]
- He, B.; Ding, J.; Huang, W.; Ma, X. Spatiotemporal Variation and Future Predictions of Soil Salinization in the Werigan–Kuqa River Delta Oasis of China. Sustainability 2023, 15, 13996. [Google Scholar] [CrossRef]
- Du, J.; Yu, D. Impacts of climate change and human activities on net primary productivity of grassland in agro-pastoral transitional zone in northern China. J. Beijing Norm. Univ. 2018, 54, 365–372. [Google Scholar]
- Khoshravesh, M.; Sefidkouhi, M.A.G.; Valipour, M. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl. Surf. Sci. 2017, 7, 1911–1922. [Google Scholar] [CrossRef]
- Qin, J.X.; Hao, X.M.; Zhang, Y.; Hua, D. Effects of climate change and human activities on vegetation productivity in arid areas. Arid Land Geogr. 2020, 43, 117–125. [Google Scholar]
- Wu, Z. Study on Site Factors’ Auto-computation in Forest Resources Planning and Design Investigation. J. Cent. South Univ. 2007, 26, 51–53. [Google Scholar]
- Han, G.F.; Ye, L.; Sun, Z.W. Influence of aspect on land surface temperature in mountainous city: A case study in central area of Chongqing City. Sheng Tai Xue Bao 2014, 34, 4017–4024. [Google Scholar]
- Chen, M.; Chen, Y.; Guo, G.; Ai, B. Ecological property assessment in the rapidly urbanized region based on Rs: A case study of Dongguan. J. Nat. Resour. 2012, 27, 601–613. (In Chinese) [Google Scholar]
- Chen, J.; Fan, W.; Li, D.; Liu, X.; Song, M. Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration. Appl. Energy 2020, 267, 114914. [Google Scholar] [CrossRef]
- Ni, J. Net primary productivity in forests of China: Scaling-up of national inventory data and comparison with model predictions. For. Ecol. Manag. 2003, 176, 485–495. [Google Scholar] [CrossRef]
- Wen, Y.; Sun, Q.; Yan, Y.; Xiao, M.; Song, W.; Yang, J. Impacts of the terrestrial ecosystem changes on the carbon fixation and oxygen release services in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2020, 40, 8482–8493. (In Chinese) [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46 (Suppl. 1), 234–240. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Zhuang, D.; Wang, Y.; Zhou, W.; Zhang, S.; Li, R.; Jiang, N.; Wu, S. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. (In Chinese) [Google Scholar]
- Fisher, R.A.; Yates, F. Statistical Methods, Experimental Design, and Scientific Inference: A Re-Issue of Statistical Methods for Research Workers, the Design of Experiments and Statistical Methods and Scientific Inference; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Li, X.; Wang, D.; Lu, S. Study of Fingerprint Spectra of Tobacco Flavor with Pearsonion Correlation Coefficient and the UPLC. Fine Chem. 2008, 25, 475. (In Chinese) [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.; Zhao, J.; Zhou, P.; Li, K.; Cao, Z.; Zhang, H.; Han, Y.; Luo, Y.; Yuan, X. Study on the Spatial and Temporal Evolution of NDVI and Its Driving Mechanism Based on Geodetector and Hurst Indexes: A Case Study of the Tibet Autonomous Region. Sustainability 2023, 15, 5981. [Google Scholar] [CrossRef]
- Drexler, S.; Gensior, A.; Don, A. Carbon sequestration in hedgerow biomass and soil in the temperate climate zone. Reg. Environ. Chang. 2021, 21, 74. [Google Scholar] [CrossRef]
- Mansur, S.; Hai, Y.; Parhat, A. Agricultural Exploitation of the Delta Oasis of Weigan-Kuqa River during Recent 5 Decades and Analyses of its Ecological Problems. J. Desert Res. 2004, 24, 349–354. [Google Scholar]
- Gemitzi, A.; Albarakat, R.; Kratouna, F.; Lakshmi, V. Land cover and vegetation carbon stock changes in Greece: A 29-year assessment based on CORINE and Landsat land cover data. Sci. Total Environ. 2021, 786, 147408. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Wang, Z.; Liu, S.; Gou, Y.; Liu, Y. Numerical and experimental studies on cloaked arrays of truncated cylinders under different wave directions. Ocean Eng. 2019, 183, 305–317. [Google Scholar] [CrossRef]
- Liu, Z. Study on Measures of Cultivated Land Protection and Food Security under the Background of Carbon Peaking and Carbon Neutrality Goals. J. Anhui Agric. Sci. 2023, 51, 261–263. (In Chinese) [Google Scholar]
- Xiong, F.; Zhao, X.; Guo, Z.; Zhu, S. Research on the effects of rural land consolidation on agricultural carbon emissions: A quasi-natural experiment based on the high-standard farmland construction policy. Chin. J. Eco-Agric. 2023, 31, 2022–2032. (In Chinese) [Google Scholar]
- Lv, N.; Bai, J.; Chang, C.; Li, J.; Luo, G.; Wu, S.; Ding, J. Spatial-temporal changes in evapotranspiration based on planting patterns of major crops in the Xinjiang oasis during 1960–2010. Geogr. Res. 2017, 36, 1443–1454. [Google Scholar]
- Muyasser, R.; Wang, X. Spatial Variation Characteristics of Soil Water and Salt in Cultivated Layer in the Delta Oasis of the Weigan-Kuga Rivers. J. Northwest For. Coll. 2021, 36, 39–46. (In Chinese) [Google Scholar]
- Zhu, A.; Yao, J.; Lv, T. Effectiveness, dilemma and optimization path of farmland shelterbelt management in Junggar Basin: A case study of Hutubi Count. Trib. Soc. Sci. Xinjiang 2022, 6, 73–78. (In Chinese) [Google Scholar]
- Unkovich, M.; Baldock, J.; Farquharson, R. Field measurements of bare soil evaporation and crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia—A review. Agric. Water Manag. 2018, 205, 72–80. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Zhang, Q.; Xia, Z.; Hao, H.; Xia, Q. Potential evapotranspiration determines changes in the carbon sequestration capacity of forest and grass ecosystems in Xinjiang, Northwest China. Glob. Ecol. Conserv. 2023, 48, e02737. [Google Scholar] [CrossRef]
- Yuan, R.; Huang, X.; Hao, L. Spatio–Temporal Variation of Vapor Pressure Deficit and Impact Factors in China in the Past 40 Years. Clim. Environ. Res. 2021, 26, 413–424. [Google Scholar]
- Liu, Y.; Yuan, X.; Li, J.; Qian, K.; Yan, W.; Yang, X.; Ma, X. Trade-offs and synergistic relationships of ecosystem services under land use change in Xinjiang from 1990 to 2020: A Bayesian network analysis. Sci. Total Environ. 2023, 858, 160015. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004, 89, 434–443. [Google Scholar] [CrossRef]
- Pan, J.; Wen, Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of northwest China. Acta Ecol. Sin. 2015, 35, 7718–7728. [Google Scholar]
- Piao, S.; He, R.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Xin, X.; Li, A.; Jin, H. The simulation models of the forest carbon cycle on a large scale: A review. Acta Ecol. Sin. 2018, 38, 41–54. (In Chinese) [Google Scholar]
Level | X1 | X2 (°) | X3 (°) | X4 (mm) | X5 (°C) | X6 | X7 (mm) | X8 (Person km2) | X9 | Y |
---|---|---|---|---|---|---|---|---|---|---|
1 | 926–969 | 0–5 | Flat (−1) | ≤62 | ≤104 | ≤0.1 | ≤953 | 0–29.0 | Arable land | 0–35.82 |
2 | 970–1050 | 6–15 | North (0–22.5, 337.5–360) | 63–74 | 105–112 | 0.1–0.3 | 953–1006 | 29.1–226.0 | Forest | 35.82–100.69 |
3 | 1050–1177 | 16–25 | Northeast (22.5–67.5) | 75–87 | 113–118 | 0.3–0.5 | 1006–1052 | 226.1–572.0 | Grassland | 100.69–182.99 |
4 | 1178–1327 | 26–35 | East (67.5–112.5) | 88–99 | 119–120 | 0.5–0.7 | 1053–1093 | 572.1–1246.0 | Water land | 182.99–272.06 |
5 | 1328–1530 | 36–45 | Southeast (112.5–157.5) | 99–112 | 121–123 | ≥0.7 | 1094–1134 | 1246.1–3305.0 | Building land | 272.06–338.87 |
6 | 1531–2023 | ≥46 | South (157.5–202.5) | ≥113 | ≥124 | ≥1135 | ≥3305.1 | Unused land | ||
7 | Southwest (202.5–247.5) | |||||||||
8 | West (247.5–292.5) | |||||||||
9 | Northwest (292.5–337.5) |
Gi Z Score | Gi p Value | Confidence Coefficient | Gi Bin |
---|---|---|---|
Z < −1.65 or Z > +1.65 | p < 0.10 | 90% | −1–1 |
Z < −1.96 or Z > +1.96 | p < 0.05 | 95% | −2–2 |
Z < −2.58 or Z > +2.58 | p < 0.01 | 99% | −3–3 |
Judgment Basis | Interaction |
---|---|
q(X1∩X2) < min(q(X1), q(X2)) | Non-linear weakening |
min(q(X1), q(X2) < q(X1∩X2) < max(q(X1), q(X2)) | Single-factor nonlinear attenuation |
q(X1∩X2) > max(q(X1), q(X2)) | Two-factor enhancement |
q(X1∩X2) = q(X1) + q(X2) | Mutual independence |
q(X1∩X2) > q(X1) + q(X2) | Non-linear enhancement |
Stability Factor | DEM | X1 |
Slope | X2 | |
Aspect | X3 | |
Change factor | Average annual precipitation | X4 |
Average annual air temperature | X5 | |
NDVI | X6 | |
Potential evapotranspiration | X7 | |
Population density | X8 | |
Land-use type | X9 |
1990 | 2000 | 2010 | 2020 | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | |
---|---|---|---|---|---|---|---|---|
Proportion of cultivated land | −0.062 | −0.358 ** | −0.408 ** | −0.635 ** | \ | \ | \ | \ |
Spatial agglomeration | −0.053 | −0.457 ** | −0.474 ** | −0.513 ** | \ | \ | \ | \ |
Spatial expansion intensity | \ | \ | \ | \ | −0.059 | 0.054 | 0.348 ** | 0.211 ** |
Spatial growth | \ | \ | \ | \ | −0.062 ** | 0.013 ** | 0.050 ** | 0.020 ** |
1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grassland–Cultivated land | 170.47 | 87.94 | 81.24 | 80.77 | 95.23 | 99.15 | 98.06 | 96.02 | 101.56 | 114.22 | 104.91 | 104.89 |
Water area–Cultivated land | 50.09 | 30.98 | 28.30 | 29.72 | 30.12 | 33.60 | 32.35 | 31.61 | 35.54 | 34.91 | 35.77 | 35.25 |
Unutilized land–Cultivated land | 167.40 | 63.91 | 61.22 | 62.20 | 74.23 | 77.13 | 76.63 | 72.99 | 72.96 | 82.06 | 77.10 | 78.07 |
Factors | 1990 | 2000 | 2010 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
q | p | qsort | q | p | qsort | q | p | qsort | q | p | qsort | |
X1 | 0.045 | 0 | 5 | 0.045 | 0 | 7 | 0.023 | 0 | 7 | 0.007 | 0 | 7 |
X2 | 0.0008 | 0 | 9 | 0.001 | 0 | 9 | 0.001 | 0 | 9 | 0.001 | 0 | 9 |
X3 | 0.0017 | 0.006 | 8 | 0.003 | 0 | 8 | 0.004 | 0 | 8 | 0.002 | 0 | 8 |
X4 | 0.134 | 0 | 3 | 0.273 | 0 | 3 | 0.209 | 0 | 5 | 0.276 | 0 | 4 |
X5 | 0.154 | 0 | 2 | 0.144 | 0 | 5 | 0.217 | 0 | 4 | 0.116 | 0 | 6 |
X6 | 0.044 | 0 | 6 | 0.2 | 0 | 4 | 0.618 | 0 | 1 | 0.483 | 0 | 2 |
X7 | 0.265 | 0 | 1 | 0.514 | 0 | 1 | 0.494 | 0 | 2 | 0.492 | 0 | 1 |
X8 | 0.007 | 0 | 7 | 0.092 | 0 | 6 | 0.147 | 0 | 6 | 0.267 | 0 | 5 |
X9 | 0.093 | 0 | 4 | 0.373 | 0 | 2 | 0.426 | 0 | 3 | 0.418 | 0 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Jiang, H.; Xu, J.; Zhou, P.; Li, X.; Xie, M.; Hao, D. The Relationship between the Carbon Fixation Capacity of Vegetation and Cultivated Land Expansion and Its Driving Factors in an Oasis in the Arid Region of Xinjiang, China. Forests 2024, 15, 262. https://doi.org/10.3390/f15020262
Sun M, Jiang H, Xu J, Zhou P, Li X, Xie M, Hao D. The Relationship between the Carbon Fixation Capacity of Vegetation and Cultivated Land Expansion and Its Driving Factors in an Oasis in the Arid Region of Xinjiang, China. Forests. 2024; 15(2):262. https://doi.org/10.3390/f15020262
Chicago/Turabian StyleSun, Mengting, Hongnan Jiang, Jianhui Xu, Peng Zhou, Xu Li, Mengyu Xie, and Doudou Hao. 2024. "The Relationship between the Carbon Fixation Capacity of Vegetation and Cultivated Land Expansion and Its Driving Factors in an Oasis in the Arid Region of Xinjiang, China" Forests 15, no. 2: 262. https://doi.org/10.3390/f15020262
APA StyleSun, M., Jiang, H., Xu, J., Zhou, P., Li, X., Xie, M., & Hao, D. (2024). The Relationship between the Carbon Fixation Capacity of Vegetation and Cultivated Land Expansion and Its Driving Factors in an Oasis in the Arid Region of Xinjiang, China. Forests, 15(2), 262. https://doi.org/10.3390/f15020262