Unraveling the Relative Contributions of Deterministic and Stochastic Processes in Shaping Species Community Assembly in a Floodplain and Shallow Hillslope System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Forest Types
2.2. Field Sampling and Data Collection
2.3. Topographic Variables
2.4. Data Analysis
3. Results
3.1. Tree Community Composition
3.2. Important Local Environmental Variables and Spatial Components
3.3. Relative Role of Environmental and Spatial Factors
3.4. Processes Underlying Assembly
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraft, N.J.B.; Valencia, R.; Ackerly, D.D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 2008, 322, 580–582. [Google Scholar] [CrossRef]
- Chase, J.M.; Myers, J.A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B 2011, 366, 2351–2363. [Google Scholar] [CrossRef]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA, 2001; p. 322. [Google Scholar]
- Hubbell, S.P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 2005, 19, 166–172. [Google Scholar] [CrossRef]
- Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 2010, 85, 183–206. [Google Scholar] [CrossRef]
- Condit, R.; Pitman, N.; Leigh, E.G., Jr.; Chave, J.; Terborgh, J.; Foster, R.B.; Núñez, P.; Aguilar, S.; Valencia, R.; Villa, G.; et al. Beta-Diversity in Tropical Forest Trees. Science 2002, 295, 666–669. [Google Scholar] [CrossRef]
- Keddy, P.A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 1992, 3, 157–164. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Adler, P.B.; Godoy, O.; James, E.C.; Fuller, S.; Levine, J.M. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015, 29, 592–599. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Tucker, C.M. Should environmental filtering be abandoned? Trends Ecol. Evol. 2017, 32, 429–437. [Google Scholar] [CrossRef]
- Pitman, N.C.A.; Terborgh, J.W.; Silman, M.R.; Nuñez, V.P.; Neill, D.A.; Cerón, C.E.; Palacios, W.A.; Aulestia, M. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 2001, 82, 2101–2117. [Google Scholar] [CrossRef]
- Chase, J.M.; Leibold, M.A. Ecological Niches: Linking Classical and Contemporary Approaches; University of Chicago Press: Chicago, IL, USA, 2003; p. 221. [Google Scholar]
- Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 2004, 19, 605–611. [Google Scholar] [CrossRef]
- Jabot, F.; Etienne, R.S.; Chave, J. Reconciling neutral community models and environmental filtering: Theory and an empirical test. Oikos 2008, 117, 1308–1320. [Google Scholar] [CrossRef]
- González-Caro, S.; Umaña, M.N.; Álvarez, E.; Stevenson, P.R.; Swenson, N.G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 2014, 7, 145–153. [Google Scholar] [CrossRef]
- Pitman, N.C.A.; Guevara Andino, J.E.; Aulestia, M.; Cerón, C.E.; Neill, D.A.; Palacios, W.; Rivas-Torres, G.; Silman, M.R.; Terborgh, J.W. Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography 2014, 37, 902–915. [Google Scholar] [CrossRef]
- Baldeck, C.A.; Tupuyachi, R.; Sinca, F.; Jaramillo, N.; Asner, G.P. Environmental drivers of tree community turnover in western Amazonian forest. Ecography 2016, 39, 1089–1099. [Google Scholar] [CrossRef]
- Aldana, A.M.; Carlucci, M.B.; Fine, P.V.A.; Stevenson, P.R. Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests. Oecologia 2017, 183, 327–335. [Google Scholar] [CrossRef]
- Stevenson, P.R.; Aldana, A.M.; Cárdenas, S.; Negret, P.J. Flooding and soil composition determine beta diversity of lowland forests in Northern South America. Biotropica 2018, 50, 568–577. [Google Scholar] [CrossRef]
- Ribeiro, K.F.; Martins, V.F.; Wiegand, T.; Santos, F.A. Habitat filtering drives the local distribution of congeneric species in a Brazilian white-sand flooded tropical forest. Ecol. Evol. 2021, 11, 1797–1813. [Google Scholar] [CrossRef]
- Arias, M.E.; Wittmann, F.; Parolin, P.; Murray-Hudson, M.; Cochrane, T.A. Interactions between flooding and upland disturbance drives species diversity in large river floodplains. Hydrobiologia 2018, 814, 5–17. [Google Scholar] [CrossRef]
- Parolin, P.; De Simone, O.; Haase, K.; Waldhoff, D.; Rottenberger, S.; Kuhn, U.; Kesselmeier, J.; Kleiss, B.; Schmidt, W.; Pledade, M.T.F.; et al. Central Amazonian floodplain forests: Tree adaptations in a pulsing system. Bot. Rev. 2004, 70, 357–380. [Google Scholar] [CrossRef]
- Baraloto, C.; Morneau, F.; Bonal, D.; Blanc, L.; Ferry, B. Seasonal water stress tolerance and habitat associations within four Neotropical tree genera. Ecology 2007, 88, 478–489. [Google Scholar] [CrossRef]
- González-Abella, J.S.; Aldana, A.M.; Correa, D.F.; Casas, L.F.; Stevenson, P.R. Forest Structure, Diversity and Dynamics in Terra Firme and Igapó Gallery Forests in the Colombian Orinoco Basin. Forests 2021, 12, 1568. [Google Scholar] [CrossRef]
- Bredin, Y.K.; Hawes, J.E.; Peres, C.A.; Haugaasen, T. Structure and Composition of Terra Firme and Seasonally Flooded Várzea Forests in the Western Brazilian Amazon. Forests 2020, 11, 1361. [Google Scholar] [CrossRef]
- Umaña, M.N.; Norden, N.; Cano, Á.; Stevenson, P.R. Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: Ecological and phylogenetic perspectives. PLoS ONE 2012, 7, e45199. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, F.; Junk, W.J.; Piedade, M.T.F. The várzea forests in Amazonia: Flooding and the highly dynamic geomorphology interact with natural forest succession. For. Ecol. Manag. 2004, 196, 199–212. [Google Scholar] [CrossRef]
- Mori, G.B.; Schietti, J.; Poorter, L.; Piedade, M.T.F. Trait divergence and habitat specialization in tropical floodplain forests trees. PLoS ONE 2019, 14, e0212232. [Google Scholar] [CrossRef] [PubMed]
- Fortunel, C.; Paine, C.E.T.; Fine, P.V.A.; Kraft, N.J.B.; Baraloto, C. Environmental factors predict community functional composition in Amazonian forests. J. Ecol. 2014, 102, 145–155. [Google Scholar] [CrossRef]
- Assis, R.L.; Wittmann, F.; Piedade, M.T.F.; Haugaasen, T. Effects of hydroperiod and substrate properties on tree alpha diversity and composition in Amazonian floodplain forests. Plant Ecol. 2015, 216, 41–54. [Google Scholar] [CrossRef]
- Mori, G.B.; Poorter, L.; Schietti, J.; Piedade, M.T.F. Edaphic characteristics drive functional traits distribution in Amazonian floodplain forests. Plant Ecol. 2021, 222, 349–360. [Google Scholar] [CrossRef]
- Zuleta, D.; Russo, S.E.; Barona, A.; Barreto-Silva, J.S.; Cardenas, D.; Castaño, N.; Davies, S.J.; Detto, M.; Sua, S.; Turner, B.L.; et al. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant Soil. 2020, 450, 133–149. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Kanagaraj, R.; Wiegand, T.; Comita, L.S.; Huth, A. Tropical tree species assemblages in topographical habitats change in time and with life stage. J. Ecol. 2011, 99, 1441–1452. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef]
- Chase, J.M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. USA 2007, 104, 17430–17434. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.T.; Damasceno-Junior, G.A.; Pott, A.; Paranhos Filho, A.C.; Suarez, Y.R.; Parolin, P. Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For. Ecol. Manag. 2014, 331, 256–263. [Google Scholar] [CrossRef]
- Estrada-Medina, H.; Jimenez-Osornio, J.J.; Álvarez-Rivera, R.; Barrientos-Medina, R.C. El karst de Yucatán: Su origen, morfología y biología. Acta Univ. 2019, 29, e2292. [Google Scholar] [CrossRef]
- Duch-Gary, J. Los Bajos Inundables (ak’alches) de la Península de Yucatán: Las Expectativas de una Evaluación Ambiental Referida a su aprovechamiento; Universidad Autónoma Chapingo, División de Ciencias Forestales, Centro Regional de la Península de Yucatán: Texcoco, Mexico, 1989; p. 50. [Google Scholar]
- Beach, T.; Luzzadder-Beach, S.; Cook, D. Climatic changes and collapses in Maya history. Past Glob. Changes Mag. 2016, 24, 66–67. [Google Scholar] [CrossRef]
- Lundell, C. Preliminary sketch of the phytogeography of the Yucatan Peninsula. Carn. Inst. Wash. Publ. 1934, 436, 257–321. [Google Scholar]
- Miranda, F. Estudios acerca de la vegetación. In Los Recursos Naturales del Sureste y su Aprovechamiento; Tomo, II, Beltrán, E., Eds.; Instituto Mexicano de Recursos Naturales no Renovables: Ciudad de México, Mexico, 1958; pp. 215–271. [Google Scholar]
- Beach, T.; Luzzadder-Beach, S.; Dunning, N.; Cook, D. Human and natural impacts on fluvial and karst depressions of the Maya Lowlands. Geomorphology 2008, 101, 308–331. [Google Scholar] [CrossRef]
- Dunning, N.P.; Griffin, R.E.; Sever, T.L.; Saturno, W.A.; Jones, J.G. The nature and origins of linear features in the Bajo de Azúcar, Guatemala: Implications for ancient Maya adaptation to a changing environment. Geoarchaeol. Int. J. 2016, 32, 107–129. [Google Scholar] [CrossRef]
- Martínez, E.; Galindo-Leal, C. La vegetación de Calakmul, Campeche, México. Boletín Soc. Botánica México 2002, 71, 7–32. [Google Scholar] [CrossRef]
- Palacio-Aponte, G.A.; Noriega-Trejo, R.; Zamora-Crescendo, P. Caracterización físico-geográfica del paisaje conocido como "bajos inundables". El caso del área natural protegida Balamkín, Campeche. Investig. Geográficas 2002, 49, 57–73. [Google Scholar] [CrossRef]
- Orellana, R.; Espadas, C.; Conde, C.; Gay, C. Atlas Escenarios de cambio climático en la Península de Yucatán; CICY-UNAM-CONACY-SEDUMA-Gobierno del Estado de Yucatán-SIDETEY-ONU-PNUD: Mérida, Mexico, 2009; p. 111. [Google Scholar]
- Márdero, S.; Schmook, B.; Christman, Z.E.; Nickl, E.; Schneider, L.; Rogan, J.; Lawrence, D. Precipitation Variability and Adaptation Strategies in the Southern Yucatán Peninsula, Mexico: Integrating Local Knowledge with Quantitative Analysis. In International Perspectives on Climate Change: Latin America and Beyond; Leal Filho, W., Alves, F., Caeiro, S., Azeiteiro, U.M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 189–201. [Google Scholar]
- Wendelken, P.N.; Martín, R.F. Avian consumption of Guaiacum sanctum fruit in the arid interior of Guatemala. Biotropica 1987, 19, 116–121. [Google Scholar] [CrossRef]
- López-Toledo, L.; González-Salazar, C.; Burslem, D.F.R.P.; Martínez-Ramos, M. Conservation assessment of Guaiacum sanctum and Guaiacum coulteri: Historic distribution and future trends in Mexico. Biotropica 2011, 43, 246–255. [Google Scholar] [CrossRef]
- López-Toledo, L.; Ibarra-Manríquez, G.; Burslem, D.F.R.P.; Martínez-Salas, E.; Pineda-García, F.; Martínez-Ramos, M. Protecting a single endangered species and meeting multiple conservation goals: An approach with Guaiacum sanctum in Yucatan Peninsula, Mexico. Divers. Distrib. 2012, 18, 575–587. [Google Scholar] [CrossRef]
- Weterings, M.J.A.; Weterings-Schonck, S.M.; Vester, H.F.M.; Calmé, S. Senescence of Manilkara zapota trees and implications for large frugivorous birds in the Southern Yucatan Peninsula, Mexico. For. Ecol. Manag. 2008, 256, 1604–1611. [Google Scholar] [CrossRef]
- Miranda, F.; Hernández-Xolocotzi, E. Los tipos de la vegetación de México y su clasificación. Boletín Soc. Botánica México 1963, 28, 29–179. [Google Scholar] [CrossRef]
- Beach, T.; Luzzadder-Beach, S.; Cook, D.; Krause, S.; Doyle, C.; Eshleman, S.; Wells, G.; Dunning, N.; Brennan, M.L.; Brokaw, N.; et al. Stability and instability on Maya Lowlands tropical hillslope soils. Geomorphology 2018, 305, 185–208. [Google Scholar] [CrossRef]
- Mariaca-Méndez, R.; Hernández-Xolocotzi, E.; Castillo-Morales, A. Análisis estadístico de rendimientos, durante seis años de cultivo continuo experimental, de una milpa bajo roza-tumba-quema en Yucatán, México (1980–1986) II. Factores que influyen en los rendimientos de maíz. Agrociencia Ser. Fitociencia 1991, 2, 109–119. [Google Scholar]
- Olmsted, I.; Durán, R.; González-Iturbide, J.A. Diagnóstico del conocimiento y manejo de las selvas de la península de Yucatán. In Conocimiento y Manejo de las Selvas de la Península de Yucatán; González, H.D., Echazarreta, G.C., Parra, T.V., Eds.; Universidad Autónoma de Yucatán: Mérida, Mexico, 1994; pp. 139–178. [Google Scholar]
- Tun-Dzul, F.J.; Vester, H.; Durán, R.; Schmook, B. Estructura arbórea y variabilidad temporal del NDVI en los “bajos inundables” de la Península de Yucatán, México. Polibotánica 2008, 25, 69–90. [Google Scholar]
- Pennington, T.D.; Sarukhán, J. Árboles tropicales de México. Manual Para la Identificación de las Principales Especies, 3rd ed.; Universidad Nacional Autónoma de México y Fondo de Cultura Económica: Mexico City, Mexico, 2005; p. 523. [Google Scholar]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Beasom, S.L.; Wiggers, E.P.; Giardino, J.R. A technique for assessing land surface ruggedness. J. Wildl. Manag. 1983, 47, 1163–1166. [Google Scholar] [CrossRef]
- Gallant, J.C.; Wilson, J.P. Primary topographic attributes. In Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; Wiley: New York, NY, USA, 2000; pp. 51–85. [Google Scholar]
- Chimner, R.A.; Bourgeau-Chavez, L.; Grelik, S.; Hribljan, J.A.; Planas-Clarke, A.M.; Polk, M.H.; Lilleskov, E.A.; Fuentealba, B. Mapping mountain peatlands and wet meadows using multi-date, multi-sensor remote sensing in the Cordillera Blanca, Peru. Wetlands 2019, 39, 1057–1067. [Google Scholar] [CrossRef]
- Montgomery, J.; Brisco, B.; Chasmer, L.; Devito, K.; Cobbaert, D.; Hopkinson, C. SAR and LiDAR temporal data fusion approaches to boreal wetland ecosystem monitoring. Remote Sens. 2019, 11, 161. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Sörensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef]
- Gruber, S.; Peckham, S. Land-surface parameters and objects in hydrology. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 171–194. [Google Scholar] [CrossRef]
- Cohen, J.M.; Kacey, C.E.; Lindblade, K.A.; Vulule, J.M.; John, C.C.; Wilson, M.L. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar. J. 2010, 9, 328. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn Minchin, D.P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package. 2019. R Package Version 2.5-6. Available online: https://CRAN.R-project.org/package=vegan (accessed on 20 March 2023).
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 2002, 153, 51–68. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 2004, 85, 1826–1832. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef]
- Chase, J.M.; Kraft, N.J.B.; Smith, K.G.; Vellend, M.; Inouye, B.D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2011, 2, 1–11. [Google Scholar] [CrossRef]
- Raup, D.M.; Crick, R.E. Measurement of faunal similarity in paleontology. J. Paleontol. 1979, 53, 1213–1227. [Google Scholar]
- Fragoso-Servón, P.; Bautista, F.; Frausto, O.; Pereira, A. Caracterización de las depresiones kársticas (forma, tamaño y densidad) a escala 1:50,000 y sus tipos de inundación en el Estado de Quintana Roo, México. Rev. Mex. Cienc. Geológicas 2014, 31, 127–137. [Google Scholar]
- Wittmann, F.; Schöngart, J.; Montero, J.C.; Motzer, T.; Junk, W.J.; Piedade, M.T.F.; Queiroz, H.L.; Worbes, M. Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J. Biogeogr. 2006, 33, 1334–1347. [Google Scholar] [CrossRef]
- Besnard, A.G.; La Jeunesse, I.; Pays, O.; Secondi, J. Topographic wetness index predicts the occurrence of bird species in floodplains. Divers. Distrib. 2013, 19, 955–963. [Google Scholar] [CrossRef]
- Blanchard, G.; Munoz, F.; Ibanez, T.; Hequet, V.; Vandrot, H.; Girardi, J.; Birnbaum, P. Regional rainfall and local topography jointly drive tree community assembly in lowland tropical forests of New Caledonia. J. Veg. Sci. 2019, 30, 845–856. [Google Scholar] [CrossRef]
- Polanía, B.S.; Aldana, A.M.; Bottin, M.; Cruz, D.M.; Castro-Lima, F.; Stevenson, P.R.; Sanchez, A. Effect of Seasonal Rains and Floods on Seedling Recruitment and Compositional Similarity in Two Lowland Tropical Forests. Forests 2020, 11, 1297. [Google Scholar] [CrossRef]
- Bautista, F.; Palacio-Aponte, G.; Quintana, P.; Zinck, J.A. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 2011, 135, 308–321. [Google Scholar] [CrossRef]
- Guo, Y.; Xiang, W.; Wang, B.; Li, D.; Mallik, A.U.; Chen, H.Y.H.; Huang, F.; Ding, T.; Wen, S.; Lu, S.; et al. Partitioning beta diversity in a tropical karst seasonal rainforest in Southern China. Sci. Rep. 2018, 8, 17408. [Google Scholar] [CrossRef] [PubMed]
- Muller-Landau, H.C.; Wright, S.J.; Calderón, O.; Condit, R.; Hubbell, S.P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 2008, 96, 653–667. [Google Scholar] [CrossRef]
- Olmsted, I.; Durán, R. Aspectos ecológicos de la selva baja inundable de la reserva de Sian Ka’an, Quintana Roo, México. Biotica 1986, 11, 151–179. [Google Scholar]
- Estrada-Medina, H.; Cobos-Gasca, V.; Acosta-Rodríguez, J.L.; Peña-Fierro, S.; Castilla-Martínez, M.; Castillo-Carrillo, C.; Franco-Brito, S.; López-Castillo, D.; López-Díaz, M.; Luna-Flores, W.; et al. La sequía de la península de Yucatán. Tecnol. Cienc. Agua 2016, 7, 151–165. [Google Scholar]
Seasonally Flooded Forest | Upland Forest | |
---|---|---|
Number of plots | 60 | 92 |
Number total of stems measured | 2823 | 4227 |
Number of stems (DBH ≤ 10 cm) | 1112 | 1091 |
Density (tree stems·ha−1) | 1853.33 | 1185.87 |
Number of individuals (DBH ≥ 10 cm) | 1711 | 3136 |
Density (tree stems·ha−1) | 570.33 | 681.74 |
Sobs | 69 | 107 |
Schao2 | 94 | 138 |
Sobs/Schao2 (%) | 72.3 | 77.5 |
Dataset | SIMPER (% Dissimilarity) | ANOSIM Global R | NMDS Stress Level (R2 adj. Non-Linear Fit/R2 adj. Linear Fit) |
---|---|---|---|
All individuals | 83.25% | 0.464 (p = 0.001) | 0.20 (0.95/0.81) |
DBH ≥ 10 cm | 86.84% | 0.534 (p = 0.001) | 0.20 (0.95/0.82) |
DBH ≤ 10 cm | 84.99% | 0.240 (p = 0.001) | 0.20 (0.95/0.83) |
Dataset | All Individuals | Stems > 10 cm | Stems < 10 cm | ||||||
---|---|---|---|---|---|---|---|---|---|
F | p-Value | R2 adj. | F | p-Value | R2 adj. | F | p-Value | R2 adj. | |
Aspect | 3.19 | 0.008 | 0.17 | 3.11 | 0.008 | 0.15 | - | - | - |
Elevation | - | - | - | - | - | - | - | - | - |
Slope | - | - | - | - | - | - | - | - | - |
Roughness | 2.13 | 0.048 | 0.20 | 2.37 | 0.034 | 0.18 | - | - | - |
TPI | 2.41 | 0.018 | 0.18 | 2.31 | 0.03 | 0.17 | - | - | - |
TRI | - | - | - | - | - | - | - | - | - |
TWI | 15.27 | 0.002 | 0.09 | 15.69 | 0.002 | 0.09 | 5.94 | 0.002 | 0.08 |
PCNM1 | - | - | - | - | - | - | - | - | - |
PCNM2 | 2.38 | 0.024 | 0.17 | - | - | - | 4.11 | 0.02 | 0.10 |
PCNM3 | 3.07 | 0.008 | 0.15 | 3.32 | 0.004 | 0.17 | - | - | - |
PCNM4 | 8.15 | 0.002 | 0.13 | 8.13 | 0.002 | 0.13 | 9.29 | 0.002 | 0.05 |
PCNM5 | 3.41 | 0.002 | 0.14 | 3.68 | 0.008 | 0.14 | 2.14 | 0.05 | 0.11 |
PCNM6 | 2.44 | 0.02 | 0.19 | 2.32 | 0.02 | 0.19 | - | - | - |
Dataset | Environmental | Shared | Spatial | Residual |
---|---|---|---|---|
All individuals | 6.89% | 4.64% | 8.40% | 80.07% |
DBH ≥ 10 cm | 6.96% | 4.91% | 7.84% | 80.30% |
DBH ≤ 10 cm | 3.01% | 2.63% | 6.98% | 87.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Arroyo, G.E.; Canché-Solís, R.E.; Morón-Ríos, A.; González-Espinosa, M.; Méndez-Toribio, M. Unraveling the Relative Contributions of Deterministic and Stochastic Processes in Shaping Species Community Assembly in a Floodplain and Shallow Hillslope System. Forests 2024, 15, 250. https://doi.org/10.3390/f15020250
Mendoza-Arroyo GE, Canché-Solís RE, Morón-Ríos A, González-Espinosa M, Méndez-Toribio M. Unraveling the Relative Contributions of Deterministic and Stochastic Processes in Shaping Species Community Assembly in a Floodplain and Shallow Hillslope System. Forests. 2024; 15(2):250. https://doi.org/10.3390/f15020250
Chicago/Turabian StyleMendoza-Arroyo, Gustavo Enrique, René Efraín Canché-Solís, Alejandro Morón-Ríos, Mario González-Espinosa, and Moisés Méndez-Toribio. 2024. "Unraveling the Relative Contributions of Deterministic and Stochastic Processes in Shaping Species Community Assembly in a Floodplain and Shallow Hillslope System" Forests 15, no. 2: 250. https://doi.org/10.3390/f15020250
APA StyleMendoza-Arroyo, G. E., Canché-Solís, R. E., Morón-Ríos, A., González-Espinosa, M., & Méndez-Toribio, M. (2024). Unraveling the Relative Contributions of Deterministic and Stochastic Processes in Shaping Species Community Assembly in a Floodplain and Shallow Hillslope System. Forests, 15(2), 250. https://doi.org/10.3390/f15020250