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Abstract: Understanding the process underlying species coexistence is crucial in ecology. This
challenge is relevant in tree communities inhabiting contrasting abiotic conditions, such as lowland
floodplain and shallow hillslope karstic systems. We examined the influence of topographic variables
and spatial factors on the structure of tree communities in the karstic system in Calakmul, Mexico.
We measured 7050 trees (diameter at breast height ≥ 3 cm) in 152 circular plots and generated seven
topographic variables from a digital elevation model. We employed redundancy analysis and variance
partitioning to test the effects of environmental and spatial factors on tree communities. In addition,
we used the null Raup–Crick model to uncover the relative importance of the deterministic and
stochastic processes driving community assembly. Our study revealed significant floristic distinction
between seasonally flooded and upland forests. The topographic wetness index (TWI) contribution
to explaining the floristic differentiation in the studied tree assemblages was greater than that of the
other topography-related variables. The explanatory power of the environmental and spatial factors
varied slightly between datasets. The null model indicated a predominant influence of deterministic
over stochastic processes. Our findings reaffirm the role of seasonal flooding as an abiotic filter.
Additionally, the TWI can serve to identify flood-prone conditions within shallow depressions. The
preservation of adjacent seasonally flooded and upland forests is relevant for the maintenance of tree
diversity in the karst of the Yucatan Peninsula, since flooding drives the distribution of species.

Keywords: dispersal; environmental heterogeneity; karst; lowland forest; Raup–Crick

1. Introduction

A central goal in ecology is to understand the processes that underlie species com-
munity assembly [1]. Stochastic (such as dispersal limitation) and deterministic (such as
habitat filtering) processes are responsible for maintaining species coexistence and diversity
in tropical forests [2]. The neutral theory [3] is a hypothesis positing that, at a regional
scale, dispersal limitation is a key process shaping plant communities [4,5]; namely, the
dispersion between adjacent sites generates spatial autocorrelation [3]. Although species
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distribution should not be related to the environment [4], it has been suggested that, if
dispersal limitation is a determinant of species community assembly, similarity in floristic
composition should decrease with an increase in geographic distance between pairs of
plots [3,6].

In contrast, deterministic processes, such as habitat filtering [7,8], influence species
sorting between habitats [9]. This perspective predicts that community similarity declines
with increasing environmental heterogeneity. Therefore, the coexistence is possible because
trees show habitat-specific adaptations and habitats contain species that differ in their
niche requirements [2,10]. Coexistence is a consequence of differences in resource use
among interacting species [11]. Niche partitioning among species or high environmental
heterogeneity can enable species with similar niches to be restricted to somewhat different
environments, allowing for their coexistence [12].

In the context of lowland floodable areas and upland forests, however, the extent to
which these processes contribute to species community assembly remains inconclusively
determined [13–19]. Waterlogging stress creates a pattern of disturbance between inundated
and non-inundated areas [20]. In lowland areas, edaphic- and topographic-related variables
drive seasonal flooding, generating anoxic stressful environments where species require
special adaptations to survive the resulting conditions [21,22]. This habitat specialization
leads to floristic differentiation between flooded and non-flooded forests [20,23–26] and
contributes to maintaining a high regional diversity of plant species [27].

In Amazonian flooding forests, environmental factors such as substrate properties,
topographic-related variables, hydroperiods, and their temporal dynamics have been
suggested to drive the variation in floristic composition [28,29]. Edaphic characteristics [30]
and elevation, convexity, and slope steepness also play a crucial role in defining the
distribution of trees in non-flooded environments [31]. Related topographic variables
like the topographic wetness index (TWI) [32] are key determinants of the distribution of
plants in flooding environments [33]. Under local restrictive conditions [34] and disturbed
conditions, environmental filters are expected to operate [35]. Therefore, seasonal flooding
can act as an environmental filter [22,36]. In this case, seasonally flooded forests are
naturally disturbed environments [19] that can be used as study models to discern the
relative importance of the processes involved in the structuring of communities [9].

The southern portion of the Yucatan Peninsula (YP) is a karstic landscape, a mosaic
formed by plains and hills whose origin is limestone or carbonate rock [37], useful as a
model for investigating the relative importance of ecological processes maintaining species
diversity. This is due to the presence of seasonally flooded depressions interspersed with
low elevation hills [38,39]. The elevation gradients in the Yucatan Peninsula between
stands of the seasonally flooded forest and the upland forest are typically 10–20 m [40,41],
and usually within a distance of less than 500 m. Despite the short geographic distances
involved, these forests can be clearly differentiated based on their topographical, geomor-
phological, and edaphic factors [42–44]. Seasonally flooded lowland flats can experience
environmental stress that lasts for 1–6 months during the rainy season [45,46]. Furthermore,
the distribution of seasonally flooded stands and upland forest fragments is interspersed,
which could potentially limit seed dispersal across habitats where these two forest types
occur (i.e., depressions and upland areas).

In the context of a seasonally flooded karstic system, this study aims to examine the
underlying processes that structure two contiguous tree communities inhabiting contrast-
ing abiotic conditions in floodplains and shallow karstic hillslopes. We hypothesize firstly
that the environmental conditions contributing to seasonal flooding in karstic depressions
reflect the operation of an environmental filter, which can lead to conspicuous differences
in floristic composition between the two forest types. Secondly, we similarly expect that
topographic-related variables to have a greater contribution than spatial factors in explain-
ing the distribution of tree species, and finally, through the application of a null model, we
aim to reveal the relative contribution of environmental filtering and dispersal limitation
on the structure of the tree community.
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2. Materials and Methods
2.1. Study Area and Forest Types

The study was carried out in the southern region of the Yucatan Peninsula (YP), Mexico,
which lies between the coordinates of 18◦31′–19◦03′ N and 89◦48′–90◦10′ W. Specifically,
the study area is located within the municipality of Calakmul in the state of Campeche.
The landscape is predominantly karstic and spans approximately 2340 km2 (39 × 60 km),
which includes parts of the Balam-kin and Balam-kú natural protected areas (Figure 1).
The climate in the study area is warm sub-humid with a monsoonal rainfall pattern [46,47].
The environmental variation for the last 65 years, recorded at the meteorological stations
near the sampling sites, indicates that the average annual temperature ranges between
26.3 and 26.7 ◦C and the total annual precipitation ranges from 908.6 to 1396 mm (https:
//smn.conagua.gob.mx/es/climatologia, accessed on 7 September 2023).
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type HCH, which provided a precision of 0.1 degree [58]. DBH was measured using a 
Haglöf® diametric tape. 
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Figure 1. Study area and location of sampling vegetation plots (black dots) in the municipality
of Calakmul, state of Campeche, Mexico. (a) State of Campeche; (b) Balam-kin protected area;
(c) Balam-kú protected area.

The upland forest in the study area is located in low hills with rocky, well-drained
leptosols and is primarily dominated by Guaiacum sanctum L. (guayacan) [45,48]. The
central part of the state of Campeche in Mexico is home to the largest remaining popu-
lations of G. sanctum [49,50]. In the YP, the presence of G. sanctum, along with Thouinia
paucidentata Radlk. and Manilkara zapota (L.) P. Royen, is associated with old-growth forests
in good conservation conditions [51]. The seasonally flooded forest in the YP develops in
depressions called “bajos” [40,44,52]. These lowland flats are characterized by gleysols that
remain flooded for long periods due to their high clay content [38,53]. However, detailed
data on the physical and chemical soil variables from lowland sites are scarce, which results

https://smn.conagua.gob.mx/es/climatologia
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in difficult comparisons with nearby upland sites (Table S1) [38,53,54]. The seasonally
flooded forest is a unique formation endemic to the YP [55,56]. The dominant tree species
in the forest is Haematoxylum campechianum L., locally known as “palo de tinte”, which
forms mono-dominant stands referred to as “tintales” [57].

2.2. Field Sampling and Data Collection

A comprehensive tree inventory was conducted in the study area using 152 circular
plots, of which 60 were in flooded forest stands and 92 in upland forest. All trees with a
diameter at breast height (DBH) of 10 cm or more were counted and measured within a
500 m2 plot (diameter of 25.23 m), while individuals with a DBH ranging between 3.0 and
9.9 cm were counted and measured within circular subplots of 100 m2 (diameter of 11.28 m)
inside the larger plots. Tree height was measured with a Haglöf® digital clinometer type
HCH, which provided a precision of 0.1 degree [58]. DBH was measured using a Haglöf®

diametric tape.

2.3. Topographic Variables

We calculated seven topography-related variables for each of our study plots (Table S2),
including aspect, elevation, roughness, slope, topographic position index (TPI), topographic
roughness index (TRI), and topographic wetness index (TWI) from a digital elevation
model (DEM) with a resolution of 15 m obtained from INEGI (accessed on 7 September
2023). The DEM is available for download free (https://www.inegi.org.mx/app/geo2
/elevacionesmex, accessed on 22 August 2023), with no registration required. Aspect
was determined as the direction of the steepest slope within each quadrat. Elevation
(a.s.l.) was extracted from DEM. Roughness was calculated as the maximum difference in
elevation between a focal cell and its eight adjacent cells [59]. The topographic position
index (TPI) quantifies the difference between the elevation value of a given cell and the
average elevation of neighboring cells within a defined radius [60]. This information is
useful for identifying low-lying areas and depressions that are more likely to be wet [61]. A
positive TPI value indicates a higher elevation (ridge) than the surrounding area, while a
negative value indicates a lower elevation (valley), which is typically indicative of wetland
areas [62].

The terrain ruggedness index (TRI) calculates the mean of the absolute differences
in elevation between a focal cell and its eight surrounding cells, quantifying the total
elevation change across a 3 × 3 cell area. Flat areas with little variation have a TRI of
zero, while mountainous regions with step ridges have positive values [63]. The topo-
graphic wetness index (TWI) [32] is a commonly used proxy for soil moisture content,
indicating the potential soil water storage condition of a pixel. The TWI combines the local
upslope contributing area and slope to quantify the topographic control on hydrological
processes [64]. The index is derived from three key components: total catchment area, flow
width, and slope gradient [65]. The TWI predicts water accumulation by describing the
shape of the land at any given point in the landscape as the ratio of the uphill area from
which water would flow into that point to the local slope at that point [66]. As such, the
TWI describes the spatial distribution saturation zones, making it a common surrogate
for soil water content [67]. High TWI values are typical of converging, flat terrains and
indicate a high potential for saturation, while low values are typical of steep and diverging
areas and indicate a low potential for soil saturation. We calculated slope, roughness, and
aspect using the corresponding tools in QGIS 3.26.3. To derive the TWI and other derivative
variables such as the topographic position index (TPI) and terrain ruggedness index (TRI),
we used the morphometry and hydrology modules. All the modules used are open source
and are available for free in the System for Automated Geoscientific Analyses (SAGA GIS,
v. 2.3.2 https://saga-gis.sourceforge.io/en/index.html, accessed on 22 August 2023).

https://www.inegi.org.mx/app/geo2/elevacionesmex
https://www.inegi.org.mx/app/geo2/elevacionesmex
https://saga-gis.sourceforge.io/en/index.html
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2.4. Data Analysis

A non-metric multidimensional scaling (NMDS), based on the Bray–Curtis index as
a dissimilarity distance using abundance data, was performed to distinguish differences
between the stands of seasonally flooded forest and upland forest. This ordination method
was realized using the vegan package [68]. Species that contributed the most to com-
munity dissimilarity among stands were identified using SIMPER (similarity percentage)
analysis [69]. To examine whether the floristic composition significantly differed among
the forests (upland vs. seasonally flooded), we employed one-way analysis of similarity
(ANOSIM) with 999 permutations [69]; both analyses were performed in R using the vegan
package [68] in R software (version 3.6.2, R Core Team, http://www.R-project.org, accessed
on 3 September 2023).

To determine the contribution of environmental variables and spatial factors to species
composition, we conducted a redundancy analysis (RDA) [70]. We utilized Hellinger-
transformed abundance data (relative abundances) as the response matrix [71]. For the
spatial explanatory matrix, we calculated the spatial distance among all plots using latitude–
longitude data and transformed it to rectangular principal coordinates of neighborhood
matrices (PCNM) using the pcnm function of the vegan [72,73] in R software (version 3.6.2,
R Core Team, http://www.R-project.org, accessed on 3 September 2023). The explanatory
matrix included spatial distance and seven environmental variables: aspect, elevation,
roughness, slope, topographic position index (TPI), topographic roughness index (TRI),
and topographic wetness index (TWI).

We conducted variance partition analysis [74] to determine the effects of dispersal
limitation, represented by pure spatial component, and abiotic filtering, represented by the
sum of purely abiotic component and spatially structured abiotic component. We employed
a forward model selection with the ordiR2step function (200 permutations) and variance
inflation factor (VIF < 10) with the vif function to select only significant spatial and envi-
ronmental explanatory variables for the final model [75]. This procedure was carried out to
choose a parsimonious RDA model with the highest adjusted R2. The varpart function was
employed to determine the extent of the pure environmental (explained by abiotic factors
only), pure spatial (explained by spatial factors), spatial component of environmental
influence, and undetermined variables (residual). To test the statistical significance of each
fraction, we used the anova.cca function available in the vegan package [68] in R software
(version 3.6.2, R Core Team, http://www.R-project.org, accessed on 3 September 2023).

To disentangle the importance of deterministic processes from stochastic processes
underlying assembly, we utilized a null model [76]. This model includes a modification
of the Raup–Crick dissimilarity index [77], which is not influenced by differences in local
species richness. The index uses a randomization procedure to compare the observed
number of species occurring in both sites with the distribution of co-occurrences from
1000 random replicates. This approach makes it possible to infer the mechanisms that may
determine community structure by comparing observed beta diversity against theoretical
beta diversity in stochastically structured assemblages [76].

Values closer to +1 indicate that two communities are more dissimilar, sharing fewer
species than expected by chance, which suggests the preponderance of biotic filter (competi-
tion) or spatial aggregation of the species due to dispersal limitation, i.e., very low dispersal
among sites. Metric values close to -1 indicate that two communities are more similar
than expected by chance, while values close to 0 indicate that dissimilarity between two
communities does not differ from null expectation, suggesting that community assembly is
highly stochastic, and dispersal is high among communities [76].

The value of this metric provides some indication of the possible underlying mecha-
nisms of community assembly, particularly the degree to which deterministic processes
create communities that deviate from those based on stochastic (null) expectations. We
obtained the null estimates with 9999 randomizations using the raupcrick function available
in the vegan package [68] in R software (version 3.6.2, R Core Team, http://www.R-project.
org, accessed on 3 September 2023).

http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
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3. Results
3.1. Tree Community Composition

In total, we recorded 7050 individual trees and identified 139 tree species in the two
forest types (Table 1). The NMDS ordination indicates that all flooded forest assemblages
analyzed (DBH ≤ 10 cm, DBH ≥ 10 cm, and all individuals) tended to be more similar in
their species composition (Figure 2). When we examined similarity in each assemblage
separately, we found markedly that both forest types maintain different tree species assem-
blages (ANOSIM R = 0.464 and 0.534 for all individuals and DBH ≥ 10 cm, respectively).
The SIMPER analysis of the all-individuals dataset showed that there was an 83.25% dissim-
ilarity between the forest types (Table 2). The differentiation of the all-individuals dataset
assemblage was determined by a group of five species: G. sanctum (7.08%), Lonchocarpus
yucatanensis (6.91%), M. zapota (6.82%), Coccoloba cozumelensis (6.10%), and H. campechianum
(5.87%), which together contributed 32.78% to the differentiation.

Table 1. Description of seasonally flooded forest and upland forest in the Calakmul region, Campeche,
Mexico. Density estimates are based on tree stems with DBH ≤ 10 cm and DBH ≥ 10 cm.

Seasonally Flooded Forest Upland Forest

Number of plots 60 92
Number total of stems measured 2823 4227
Number of stems (DBH ≤ 10 cm) 1112 1091

Density (tree stems·ha−1) 1853.33 1185.87
Number of individuals (DBH ≥ 10 cm) 1711 3136

Density (tree stems·ha−1) 570.33 681.74
Sobs 69 107

Schao2 94 138
Sobs/Schao2 (%) 72.3 77.5
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Figure 2. Non-metric multidimensional scaling (NMDS) using the Bray–Curtis dissimilarity metric
to distinguish floristic composition differences between seasonally flooded forest (blue circles) and
upland forest (red circles) trees within the municipality of Calakmul in the state of Campeche,
Mexico. Ellipses encompassed 95% confidence interval. (a) All-individuals dataset (7050 tree stems),
(b) DBH ≥10cm (4847 tree stems) and (c) DBH ≤10cm (2203 tree stems). Scientific name abbreviations:
Guaiacum sanctum (Gs); Lonchocarpus yucatanensis (Ly); Manilkara zapota (Mz); Coccoloba cozumelensis
(Cc); Haematoxylum campechianum (Hc); Thouinia paucidentata (Tp); Psidium sartorianum (Ps); Fabaceae 1
(F1); Fabaceae 2 (F2).
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Table 2. Results of SIMPER (similarity percentage, dissimilarity), ANOSIM (analysis of similarities)
and NMDS (non-metric multidimensional scaling) to compare floristic composition of trees recorded
in a seasonally flooded forest and upland forest within the municipality of Calakmul in the state of
Campeche, Mexico.

Dataset SIMPER
(% Dissimilarity)

ANOSIM
Global R

NMDS Stress Level
(R2 adj. Non-Linear

Fit/R2 adj. Linear Fit)

All individuals 83.25% 0.464 (p = 0.001) 0.20 (0.95/0.81)
DBH ≥ 10 cm 86.84% 0.534 (p = 0.001) 0.20 (0.95/0.82)
DBH ≤ 10 cm 84.99% 0.240 (p = 0.001) 0.20 (0.95/0.83)

3.2. Important Local Environmental Variables and Spatial Components

The redundancy analysis (RDA) indicated that the TWI was significantly related to
floristic differentiation in all the types of datasets studied. Additionally, variables such as
aspect, TPI and roughness showed significant relationships with both the all-individuals
dataset and the DBH ≥ 10 cm individuals dataset. In contrast, variables such as elevation,
slope, and TRI were not found to significantly structure communities. Based on the selection
approach, the spatial factor analysis revealed that PCNM3, PCNM4, PCNM5, and PCNM6
were significantly related in all three assemblies analyzed. PCNM2 was significant in both
the all-individuals dataset and the DBH ≤ 10 cm individuals dataset. The first PCNM
vector (PCNM1) did not significantly structure any communities (Table 3).

Table 3. Results of the forward selection method in the redundancy analysis (RDA) for trees recorded
in a seasonally flooded forest and upland forest within the municipality of Calakmul in the state
of Campeche, Mexico. TPI: topographic position index; TRI: topographic roughness index; TWI:
topographic wetness index; PCNM: principal coordinates of neighboring matrices. (-): variables that
were not selected by the selection method.

Dataset All Individuals Stems > 10 cm Stems < 10 cm

F p-Value R2 adj. F p-Value R2 adj. F p-Value R2 adj.

Aspect 3.19 0.008 0.17 3.11 0.008 0.15 - - -
Elevation - - - - - - - - -

Slope - - - - - - - - -
Roughness 2.13 0.048 0.20 2.37 0.034 0.18 - - -

TPI 2.41 0.018 0.18 2.31 0.03 0.17 - - -
TRI - - - - - - - - -
TWI 15.27 0.002 0.09 15.69 0.002 0.09 5.94 0.002 0.08

PCNM1 - - - - - - - - -
PCNM2 2.38 0.024 0.17 - - - 4.11 0.02 0.10
PCNM3 3.07 0.008 0.15 3.32 0.004 0.17 - - -
PCNM4 8.15 0.002 0.13 8.13 0.002 0.13 9.29 0.002 0.05
PCNM5 3.41 0.002 0.14 3.68 0.008 0.14 2.14 0.05 0.11
PCNM6 2.44 0.02 0.19 2.32 0.02 0.19 - - -

3.3. Relative Role of Environmental and Spatial Factors

The variance partitioning analysis revealed that jointly the environmental variables,
spatial components, and their shared effects accounted for 19.93% of the community
variation in the all-individuals dataset, 19.70% in the DBH > 10 cm individuals dataset, and
12.63% in the DBH < 10 cm individuals dataset. The relative importance of environmental
and spatial factors varied slightly among the datasets. The shared fractions accounted for
the smallest amount of variation (2.63%–4.91%) and the residual or unexplained variance
accounted for over 80.07% (Table 4).
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Table 4. Variation partitioning, pure environmental component, shared component and pure spatial
component. The entire component is based on R2 adjusted values indicated as proportions of the
overall variation. The residual refers to unexplained variance.

Dataset Environmental Shared Spatial Residual

All individuals 6.89% 4.64% 8.40% 80.07%
DBH ≥ 10 cm 6.96% 4.91% 7.84% 80.30%
DBH ≤ 10 cm 3.01% 2.63% 6.98% 87.37%

3.4. Processes Underlying Assembly

The beta Raup–Crick values obtained from the null model (Figure 3) for the all-
individuals dataset ranged from 0.12 to 0.72 (x = 0.33), indicating that the communities
tend to be more dissimilar than expected by chance (beta RC x = 0.36 in DBH ≥ 10 cm
individuals dataset and beta RC x = 0.28 in DBH ≤ 10 cm individuals dataset).
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4. Discussion

This study aimed to assess the influence of topography-related factors and geographi-
cal distance on the organization of two tree communities located in the southeast of the
YP region. The study area comprises a floodplain and hillslope karstic system that spans
lowland depressions with seasonally flooded forests to well-drained shallow hills where
upland forests develop. Our results showed that the floristic distinction between the two
studied forest types suggests that, regardless of the type of assemblage data, the seasonally
flooded forest community may be shaped by environmental filtering.

We found a grouping pattern in both the seasonally flooded forest and the upland
forest plots, indicating a high similarity in their floristic composition within each forest
type. This, in turn, resulted in a marked dissimilarity and high turnover of species between
the two forest types. Gley-type soils, which are prevalent in the flooded depressions
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of the Calakmul region, have high clay content [38,53], favoring water retention and
seasonal flooding due to local precipitation accumulation and surface runoff from rainwater,
characteristic of the YP karstic landscape [39]. As such, the terrain depressions where
the seasonally flooded forest develops can be considered stressful habitats due to their
abiotic conditions, imposed by seasonal waterlogging [38,45,53,78]. In this sense, our
results show that the floristic distinction between the seasonally flooded and upland
forests in the Calakmul region is possibly due to seasonal flooding. Such a pattern of
floristic differentiation is similar to that reported for the flooded and terra firme forests of
Amazonia [15,79].

In order to investigate the influence of seasonal flooding on floristic differentiation
between forest types, we utilized abiotic factors related to topographic features, which
have been previously used as a proxy for hydrological processes. The topographic wetness
index (TWI) is a reliable flood proxy [80] and has contributed significantly to revealing the
processes influencing community assembly [81]. Our results showed that the TWI is a good
predictor of the floristic distinction between the studied assemblages, and that seasonal
flooding can generate a strong environmental filtering and lead to floristic differences in
the forests studied, which is consistent with the findings of previous studies [82].

The variable selection procedure showed that elevation, slope (inclination), and the
TRI did not influence tree distribution; this is possibly due to the low relief of the Calakmul
region and particularly in the portions of the YP close to the Gulf of Mexico, where the
relief is very shallow [39]. In our study, the highest elevation recorded was approximately
around 136 m a.s.l., where the upland forest stands develop. The highest areas (~400 m
a.s.l.) are located in the center of the YP [83]. These variables are more relevant in conditions
of steeper altitudinal gradients, such as those found in other karstic environments [84].

In Amazonian flooded forests, floristic differentiation has been attributed to the influ-
ence of environmental filtering [15–18,28]. In our study system, we suggest that seasonal
flooding significantly influences species sorting, particularly in lowland depressions, affect-
ing the recruitment of tree species dispersing between upland and flooded areas. This is
supported by the low floristic similarity observed between the tree assemblages in these
two habitats (Figure 2). As we have noted previously, the forests studied can be distin-
guished by their edaphic and geomorphological characteristics (Tables S1 and S2); as well
as for their structure and floristic composition. We found that the floristic distinction
is indicated by the contribution of the typical species of each environment, mainly by
G. sanctum (upland forest) and H. campechianum (seasonally flooded forest). M. zapota
is a species of ecological importance that is notable in the forests of Calakmul [51] and
occurs in both environments (seasonally flooded and upland forest). However, it may be
experiencing phenotypic plasticity, since in the floodplains it is able to establish itself but
with individuals that have reduced diameters (DBH ≤ 20 cm), in the opposite way to that
in which it occurs in the hills, where individuals show larger diameters (DBH ≥ 35 cm).

The absence of predictive environmental variables can enhance the contribution of the
spatial component. Therefore, it is possible that the contribution of the spatial component
was slightly higher than the environmental component. However, the amount of variation
explained by the spatial component cannot be considered as evidence of the predominance
of stochastic processes, even though the forests studied are separated by distances of less
than 500 m.

The unmeasured but potentially significant environmental variables may have con-
tributed to decreasing the amount of unexplained variation. Future studies should take into
consideration the physical and chemical variables of the soil to obtain a better explanation
of the variance and more accurate understanding of the assembly mechanisms in such
systems. However, the evidence obtained is insufficient to rule out the influence of spatial
factors, such as dispersal limitation (i.e., spatial distance), which is a prominent factor in
species turnover between seasonally flooded and upland forests. We did not include any
seed functional traits, which are a proxy for dispersal ability [85]; future studies including
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seed traits should improve our understanding about the role of dispersal limitation in this
karstic system, limited by short distances.

Moreover, the null model proposes that a significant number of plots exhibited greater
dissimilarities than could be expected by chance. The observed pattern of fewer shared
species than could be expected by chance implies that the turnover of species between the
two forest types is barely influenced by dispersal limitation. However, we cannot discount
its plausible effect on species differentiation. The mean null values obtained using the
Raup–Crick beta diversity approach are consistent with the predictions derived from the
operation of deterministic processes, indicating that habitat filtering plays a significant
role in the studied karstic systems. Conducting experiments on tolerance (drought or
flooding) across tree life stages with numerous local tree species would be necessary to
clarify whether an environmental filter, e.g., the joint absence of competition and seed
dispersal limitation, contributes to explaining the local species assemblage [8]. In addition,
complementary observations could be carried out to evaluate the habitat preference and
physiological response of seedlings in flooded and non-flooded habitats [22].

Our results highlight flooding as an abiotic condition that restricts the establishment
and development of species that may disperse from upland forests to lowland flooded flats,
leading to a striking difference in their floristic composition. Gaining an understanding
of the local-scale processes involved in tree species differentiation between the seasonally
flooded forest and upland forest provides greater insight into the conservation value of
these arboreal formations in southern YP [55,86]. Both forests maintain a high diversity
of epiphytes (bromeliads and orchids) and endangered endemic tree species such as C.
cozumelensis, C. reflexiflora, G. sanctum, and L. xuul [44,49–51]. However, the functioning
of seasonally flooded forest and upland forest is at risk due to the decline in rainfall in
southern YP, with predictions suggesting further decreases in the near future [46,47,87].
The decrease in precipitation in southern YP may lead to the homogenization of the floristic
composition. On the one hand, this may be due to the possible reduction in the distribution
area of species associated with flooding conditions (e.g., H. campechianum). On the other
hand, it may be due to the gradual increase in the relative abundance and distribution
area of the species that occur in upland forests that are better adapted to drier conditions.
Another possible trend of change involves an increase in the survivorship and establishment
in flooded forests of species typical of early successional stages, such as Bursera simaruba,
whose populations have recently been reported to increase [44], even though it is not a tree
species typical of seasonally flooded forests [41,86].

5. Conclusions

Waterlogging may act as an environmental filter favoring a differentiation of tree
species composition in lowland floodplain and shallow hillslope karstic systems. This is
reflected in the differentiation of tree species composition and the pattern of the Raup–Crick
null model, which shows a limited influence of stochastic processes. These differences
between the seasonally flooded forest and upland forest stands are remarkable considering
the short distances separating them. Dispersal limitation (spatial distance) was found to be
a minor driver in the assemblage of tree communities, although it did show a significant
contribution. The flooding condition of the depressions may be at risk due to reduced
rainfall in the YP region. Severe droughts can influence changes in floristic composition,
slow down the development of forest structure, and, consequently, reduce the ability to
mitigate the effects of climate change. We suggest conducting long-term in situ studies
with a wide range of species in seasonally flooded forest stands. Most studies have focused
on understanding changes in the dominance in functional traits with a perspective of the
action of a double environmental stress, drought, and flood. Additionally, experiments
related to seedling growth under anoxic conditions, aerenchyma formation in roots, and
seed germination under flooded conditions can be conducted to better understand the
floristic differences between flooded and non-flooded forests in karstic systems. Finally,
understanding community assembly can support the design of ecological restoration plans
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based on the selection of plants with traits related to environmental conditions, which can
increase success and contribute to mitigating the effects of climate change.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f15020250/s1; Table S1: Physical soil parameters (mean ± standard
error) in seasonally flooded forest and upland forest. Values based on n = 9 samples for each forest
type; Table S2: Description of topographic variables (mean ± standard error) of seasonally flooded
forest and upland forest in the Calakmul region of the southern Yucatan Peninsula.
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