Dynamics of Soil N and P Nutrient Heterogeneity in Mixed Forest of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia in Coastal Saline–Alkali Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Experimental Design and Sample Collection
2.3. Analysis Methods of Soil Nutrients, Enzyme Activity, and Microorganisms
3. Results
3.1. Changes in Total N and P Nutrient Contents
3.2. Changes in the Contents of Hydrolyzed Nitrogen and Available Phosphorus
3.3. Ecological Stoichiometry of N/P in Forest Land
3.4. Changes in Urease and Phosphatase Activities
3.5. Changes in Soil Bacteria, Fungi and Actinomyces
3.6. Analysis of RDA Redundancy
4. Discussion
4.1. The Mixed of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia Significantly Increased Soil N and P Nutrient Contents
4.2. Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia Mixed to Realize the Dynamic Complementation of Soil N and P Nutrients Between Soil Layers
4.3. Ecological Stoichiometry Variation Characteristics of Soil N/P in Coastal Saline–Alkali Land
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, B.H.; Wu, L.Y. Studies on Soil Enzyme Activity and Soil Nutrient Content of Mixed Stands with Robinia pseudoacacia and Fraxinus velutina in Coastal Saline Soil. J. Soil Water Conserv. 2008, 22, 128–133. [Google Scholar] [CrossRef]
- Lin, S.J.; Zhang, Z.H.; Zhang, D.W.; Fu, S.C.; Yang, C.Y.; Xie, P.; Zhao, S.S.; Liu, J.B.; Zhang, X.H.; Tain, F.C. Research Progress on the Trees Species Choice in Saline–Alkali Land and Drought Resistant Forestation Technology. Chin. Agric. Sci. Bull. 2012, 28, 1–5. [Google Scholar]
- Sun, J.X.; Kang, Y.H.; Wan, S.Q.; Hu, W.; Zhang, T.B. Soil Salinity Management with Drip Irrigation and Its Effects on Soil Hydraulic Properties in North China Coastal Saline Soils. Agric. Water Manag. 2012, 115, 10–19. [Google Scholar] [CrossRef]
- Du, Z.Y.; Liu, F.C.; Ma, B.Y.; Ma, H.L.; Xing, S.J. Evaluation of Ecosystem Service Value for Long–Term Plantations in Saline–Alkali Soils of the Yellow River Delta. Chin. Agric. Sci. Bull. 2013, 29, 17–23. [Google Scholar]
- Cao, B.H.; Li, F.M.; Qin, Y.J.; Zhang, Y.J.; Liu, Y.Y.; Zhao, T. Growth Characteristics and Volume Growth Mathematical Simulation of Mixed Robinia pseudoacacia Forests in Coastal Saline–Alkali Soil. J. Shandong Agric. Univ. 2012, 43, 201–205. [Google Scholar]
- Mao, P.L.; Tang, Q.; Cao, B.H.; Liu, J.M.; Shao, H.B.; Cao, Z.Y.; Hao, M.Z.; Zhu, Z.B. Eco–Physiological Adaptability in Mixtures of Robinia pseudoacacia and Fraxinus velutina and Coastal Eco–Engineering. Ecol. Eng. 2017, 106, 109–115. [Google Scholar] [CrossRef]
- Cao, B.H.; Wu, L.Y.; Song, A.Y.; Yu, X.N.; Hao, M.Z.; Hu, M.M. The Soil Water and Soil Salt Distribution in Coastal Saline–Alkali Area: A Comparison of Pure and Mixed Plantations. Acta Ecol. Sin. 2008, 28, 939–945. [Google Scholar]
- Cao, S.G. Ecological Function of Mixed Conifer–Broadleaved Forest. Prot. For. Sci. Technol. 2015, 6, 12–13, 23. [Google Scholar] [CrossRef]
- Fang, Y.; Jiang, N.N.; Liang, Y. Effects of Afforestation on Secondary Salinization Sites in the Yellow River Delta. J. For. Eng. 2009, 23, 15–19. [Google Scholar]
- Wang, S.M.; Pang, Y.X.; Song, A.Y.; Cao, B.H.; Zhu, Z.B.; Li, Y.Y. Soil Physiochemical Properties and Diversity of Herbaceous Plants Dynamic on the Different Ages Mixed Forests of Populus × Euramercana ‘Neva’and Robinia pseucdoacacia in Coastal Saline–Alkali Area. Acta Ecol. Sin. 2018, 38, 6539–6548. [Google Scholar] [CrossRef]
- Cui, W.S.; Zhang, S.Y. A Study on the Mixed Poplar Forest. J. Shenyang Agric. Univ. 1993, 4, 347–349. [Google Scholar]
- Fan, J.G. Biochemical Compositions in Rhizospheric Soil of Robinia pseudoacacia and Sophora japonica and Their Influence on Nutrition of Associated Poplar. Chin. J. Appl. Ecol. 1994, 5, 349–354. [Google Scholar] [CrossRef]
- Liu, C.L.C.; Kuchma, O.; Krutovsky, V.K. Mixed–Species Versus Monocultures in Plantation Forestry: Development, Benefits, Ecosystem Services and Perspectives for the Future. Glob. Ecol. Conserv. 2018, 15, e00419. [Google Scholar] [CrossRef]
- Jia, L.M. The Review of Mixtures of Nitrogen–Fixing and Non–Nitrogen–Fixing Tree Species. World For. Res. 1998, 11, 20–26. [Google Scholar] [CrossRef]
- Yu, Z.J.; Wang, K.B.; Li, J.W.; Zhouping, S.G.; Lei, D. Mixed Plantations have More Soil Carbon Sequestration Benefits than Pure Plantations in China. For. Ecol. Manag. 2023, 529, 120654. [Google Scholar] [CrossRef]
- Du, Z.Y.; Ma, H.L.; Ma, B.Y.; Liu, F.C.; Xing, S.J. Effects of Mixed Forests in Coastal Saline Soil. J. Northwest For. Univ. 2015, 30, 144–149. [Google Scholar] [CrossRef]
- Guo, J.H.; Feng, H.L.; McNie, P.; Liu, Q.; Xu, X.; Pan, C.; Yan, K.; Feng, L.; Goitom, E.A.; Yu, Y.C. Species Mixing Improves Soil Properties and Enzymatic Activities in Chinesefir Plantations: A Meta–Analysis. Catena 2023, 220, 106723. [Google Scholar] [CrossRef]
- Qin, Y.J.; Niu, Q.L.; Jia, B.; Mao, P.L.; Cao, B.H.; Qin, Y.G. Dynamic Characteristics of Soil Properties in a Robinia pseudoacacia Precipitation on Coastal Saline Soil. J. Northwest For. Univ. 2017, 32, 13–17. [Google Scholar] [CrossRef]
- Zhai, M.P.; Jiang, S.N.; Jia, L.M. Study on Fine–Root Nutrient Dynamics in the Mixed Plantation of Poplar and Black Locust. Sci. Silvae Sin. 2004, 40, 46–51. [Google Scholar]
- Xie, X.F.; Pu, L.J.; Wang, Q.Q.; Zhu, M.; Xu, Y.; Zhang, M. Response of Soil Physicochemical Properties and Enzyme Activities to Long–Term Reclamation of Coastal Saline Soil, Eastern China. Sci. Total Environ. 2017, 607–608, 1419–1427. [Google Scholar] [CrossRef]
- Bai, Y.X.; Wei, H.; Ming, A.A.; Shu, W.W.; Shen, W.J. Tree Species Mixing Begets Admixture of Soil Microbial Communities: Variations along Bulk Soil, Rhizosphere Soil and Root Tissue. Geoderma 2023, 438, 116638. [Google Scholar] [CrossRef]
- Kemal, G.; Thomas, V.; Noland, T.; Mccaughey, H.; Morrison, I.; Treitz, P. Mapping Continuous Forest Type Variation by Means of Correlating Remotely Sensed Metrics to Canopy N:P Ratio in a Boreal Mixedwood Forest. Appl. Veg. Sci. 2015, 18, 143–157. [Google Scholar] [CrossRef]
- Bastin, J.F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Treerestoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.P. The Survey of Mixed Forests and the Interaction of Tree Species. World For. Res. 1993, 6, 39–45. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Wang, Q.-H.; Xing, S.-J.; Liu, F.-C.; Ma, B.-Y.; Ma, H.-L.; Liu, D.-X. Fine Root Distribution, Characteristics and Rhizosphere Soil Properties in a Mixed Stand of Robinia pseudoacacia and Fraxinus velutina in a Saline Soil. Silva Fenn. 2013, 47, 970. [Google Scholar] [CrossRef]
- Rebola–Lichtenberg, J.; Schall, P.; Annighöfer, P.; Ammer, C.; Leinemann, L.; Polle, A.; Euring, D. Mortality of Different Populus Genotypes in Recently Established Mixed Short Rotation Coppice with Robinia pseudoacacia L. Forests 2019, 10, 410. [Google Scholar] [CrossRef]
- Gillespie, L.M.; Hättenschwiler, S.; Milcu, A.; Wambsganss, J.; Shihan, A.; Fromin, N. Tree Species Mixing Affects Soil Microbial Functioning Indirectly via Root and Litter Traits and Soil Parameters in European Forests. Funct. Ecol. 2021, 35, 2190–2204. [Google Scholar] [CrossRef]
- Pereira, A.P.A.; Santana, M.C.; Zagatto, M.R.G.; Brandani, C.B.; Wang, J.-T.; Verma, J.P.; Singh, B.K.; Cardoso, E.J.B.N. Nitrogen–Fixing Trees in Mixed Forest Systems Regulate the Ecology of Fungal Community and Phosphorus Cycling. Sci. Total Environ. 2021, 758, 143711. [Google Scholar] [CrossRef]
- Kooch, Y.; Bayranvand, M. Composition of Tree Species Can Mediate Spatial Variability of C and N Cycles in Mixed Beech Forests. For. Ecol. Manag. 2017, 401, 55–64. [Google Scholar] [CrossRef]
- Du, Z.; Liu, F.C.; Ma, B.Y.; Dong, H.F.; Ma, H.L. Root Distribution and Fine Root Growth in Mixed Plantation of Robinia pseudoacacia and Fraxinus velutina in Coastal Saline–Alkali Area. Sci. Silvae Sin. 2014, 47, 10–15. [Google Scholar]
- Hu, Y.J.; Zhai, M.P.; Wu, J.W.; Jia, L.M. Dynamics of Enzyme Activity in the Soil of Pure and Mixed Stands of Poplar and Black Locust. J. Beijing For. Univ. 2001, 23, 23–26. [Google Scholar] [CrossRef]
- Shen, G.F.; Zhai, M.P.; Jia, L.M. The Soil Amelioration Effect of Poplar–Black Locust Mixed Plantation on Sand Soil and the Interaction of Mutual Supplement of Nutrient Between Tree Species. Sci. Silvae Sin. 1998, 34, 12–20. [Google Scholar]
- Bi, B.Y.; Yin, Q.L.; Hao, Z.Q. Root Phosphatase Activity is a Competitive Trait Affiliated with the Conservation Gradient in Root Economic Space. For. Ecosyst. 2023, 10, 279–286. [Google Scholar] [CrossRef]
- Yang, H.J.; Gao, J.F.; Pan, C.; Qing, S.Q.; Yun, W.; Jiang, L.; Wang, Z.B.; Wang, D.H. Species Composition and Influencing Factors of Understory Woody Species in Robinia pseudoacacia Plantations on the Loess Plateau. J. For. Res. 2023, 34, 1693–1706. [Google Scholar] [CrossRef]
- Lü, J.L.; Yan, M.J.; Song, B.L.; Guan, J.H.; Shi, W.Y.; Du, S. Ecological Stoichiometry Characteristics of Soil Carbon, Nitrogen, and Phosphorus in an Oak Forest and a Black Locust Plantation in the Loess Hilly Region. Acta Ecol. Sin. 2017, 37, 3385–3393. [Google Scholar] [CrossRef]
- Chen, X.L.; Taylor, A.R.; Reich, P.B.; Hisano, M.; Chen, H.Y.H.; Chang, S.X. Tree Diversily Increases Decadal Forest Soil Carbon and Nitrogen Accrual. Nature 2023, 618, 94–101. [Google Scholar] [CrossRef]
- Peng, M.; Jia, H.B.; Wang, Q.Y. The Effect of Land Use on Bacterial Communities in Saline–Alkali Soil. Curr. Microbiol. 2017, 74, 325–333. [Google Scholar] [CrossRef]
- Bai, S.H.; Ma, F.Y.; Li, S.S.; Yao, X.F. Relational Analysis of Soil Enzyme Activities, Nutrients and Microbes in Robinia pseudoacacia Plantations in the Yellow River Dalta with Different Degradation Degrees. Chin. J. Eco–Agric. 2012, 20, 1478–1483. [Google Scholar] [CrossRef]
- Du, Z.Y.; Ma, B.Y.; Liu, F.C.; Dong, H.F.; Ma, H.L. Rhizosphere Soil Characteristics of Artificial Mixed Stands with Robinia pseudoacacia and Fraxinus velutina in Coastal Saline Soil. Soil Fertil. Sci. China 2013, 6, 1–5. [Google Scholar] [CrossRef]
- Mitran, T.; Mani, P.K.; Bandyopadhyay, P.K.; Basak, N. Effects of Organic Amendments on Soil Physical Attributes and Aggregate–Associated Phosphorus under Long–Term Rice–Wheat Cropping. Pedosphere 2018, 28, 823–832. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.T.; Zhang, H.; Huang, B.B.; Liu, C.H.; Jiang, Z.K.; Ma, X.Q. Soil C: N: P stoichiometry and its Relationship with the Soil Physicochemical Properties of Different Aged Chinese Fir (Cunninghamia lanceolata) Plantations. Acta Ecol. Sin. 2019, 39, 2520–2531. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.J.; Wei, Z.H.; Fan, M.C.; Shangguan, Z.P. Revealing Nutrient Limitation Status of Microorganisms in the Soil of Robinia pseudoacacia Plantation Through Soil Stoichiometry and Enzyme Metrology. Chin. J. Appl. Ecol. 2024, 35, 1799–1806. [Google Scholar] [CrossRef]
- Jia, L.M.; Fang, L.M.; Hu, Y.J. Decomposition of Leaf Litter in Pure and Mixed Stands of Poplar and Black Locust. J. Integr. Agric. 1998, 9, 16–21. [Google Scholar]
- Su, Z.; Zhu, X.; Wang, Y.; Mao, S.; Shangguan, Z. Litter C and N Losses at different decomposition Stages of Robinia pseudoacacia: The weaker Effects of Soil Enzyme Activities Compared with Those of Litter Quality and the Soil Environment. Front. Environ. Sci. 2022, 10, 956309. [Google Scholar] [CrossRef]
- Chen, Y.P.; Xia, J.B.; Zhao, X.M.; Zhuge, Y.P. Effect of Different Plantation Types on Soil Ecological Stoichiometry in Yellow Delta. Chin. J. Soil Sci. 2017, 48, 392–398. [Google Scholar] [CrossRef]
- Wu, W.; He, X.D.; Zhou, Q.X. Review on N∶P Stoichiometry in Eco–System. J. Desert Res. 2010, 30, 296–302. [Google Scholar]
- Bai, J.S.; Zhang, S.Q.; Huang, S.M.; Xu, X.P.; Zhao, S.C.; Qiu, S.J.; He, P.; Zhou, W. Effects of the Combined Application of Organic and Chemical Nitrogen Fertilizer on Soil Aggregate Carbon and Nitrogen: A 30–Year Study. J. Integr. Agric. 2023, 22, 3517–3534. [Google Scholar] [CrossRef]
Trees | Ages/a | Plant Spacing/m × m | Canopy Density | Height/m | DBH/cm | Crown Breadth/m | pH | Salt Content/% |
---|---|---|---|---|---|---|---|---|
R | 3 | 1 × 2 | free growing | 3.49 | 3.04 | 1.87 | 7.87 | 0.27 |
P | 3.64 | 3.25 | 0.94 | |||||
P | 3 | 1 × 2 | free growing | 3.19 | 2.73 | 0.71 | 7.89 | 0.31 |
R | 3 | 1 × 2 | free growing | 3.12 | 2.40 | 0.88 | 7.95 | 0.30 |
R | 7 | 2 × 3 | 0.75 | 9.27 | 10.57 | 4.28 | 8.06 | 0.23 |
P | 10.33 | 10.61 | 2.86 | |||||
P | 7 | 2 × 3 | 0.55 | 8.35 | 11.75 | 1.80 | 8.14 | 0.24 |
R | 7 | 2 × 3 | 0.82 | 7.13 | 12.58 | 2.32 | 8.13 | 0.24 |
R | 18 | 2 × 4 | 0.8 | 9.70 | 10.70 | 3.99 | 7.70 | 0.19 |
P | 10.99 | 22.60 | 3.11 | |||||
P | 18 | 2 × 4 | 0.5 | 13.14 | 11.32 | 2.57 | 7.67 | 0.21 |
R | 18 | 2 × 4 | 0.85 | 11.29 | 13.19 | 3.62 | 7.79 | 0.20 |
Soil Depth | Forest Stand | Forest Age | Total Nitrogen/(mg·kg−1) | Hydrolysis Nitrogen/(mg·kg−1) | Total Phosphorus/(mg·kg−1) | Available Phosphorus/(mg·kg−1) |
---|---|---|---|---|---|---|
0–20 cm | P | 3a | 0.39 ± 0.02 Bc | 22.27 ± 0.95 Cb | 0.52 ± 0.00 Bc | 14.13 ± 1.18 Bb |
7a | 1.24 ± 0.08 Bb | 29.37 ± 3.00 Ca | 0.96 ± 0.03 Ba | 16.07 ± 0.65 Bb | ||
18a | 1.37 ± 0.06 Ba | 31.73 ± 0.25 Ca | 0.59 ± 0.00 Cb | 19.23 ± 2.26 ABa | ||
R | 3a | 0.43 ± 0.02 Bc | 24.47 ± 1.03 Bb | 0.53 ± 0.00 Bc | 10.35 ± 0.03 Cb | |
7a | 1.34 ± 0.09 ABa | 34.80 ± 0.85 Ba | 0.94 ± 0.02 Ba | 13.56 ± 1.51 Cab | ||
18a | 1.10 ± 0.03 Cb | 35.63 ± 0.68 Ba | 0.65 ± 0.00 Bb | 16.77 ± 5.09 Ba | ||
P × R | 3a | 0.74 ± 0.05 Ab | 36.58 ± 1.04 Ab | 0.64 ± 0.02 Ac | 16.81 ± 0.22 Ab | |
7a | 1.45 ± 0.01 Aa | 61.13 ± 1.06 Aa | 1.28 ± 0.02 Aa | 22.97 ± 1.24 Aa | ||
18a | 1.55 ± 0.08 Aa | 61.85 ± 0.22 Aa | 0.73 ± 0.01 Ab | 25.07 ± 2.29 Aa | ||
20–40 cm | P | 3a | 0.35 ± 0.01 Bb | 19.53 ± 0.85 Bb | 0.44 ± 0.03 Cc | 11.21 ± 0.05 Bc |
7a | 0.96 ± 0.12 Ba | 26.73 ± 2.84 Ca | 0.86 ± 0.01 Aa | 14.19 ± 0.80 Bb | ||
18a | 0.91 ± 0.05 Ba | 28.77 ± 0.84 Ca | 0.54 ± 0.00 Bb | 15.69 ± 0.80 Ba | ||
R | 3a | 0.36 ± 0.02 Bc | 21.27 ± 0.35 Bb | 0.50 ± 0.00 Bb | 9.74 ± 0.04 Cb | |
7a | 0.85 ± 0.04 Ba | 31.77 ± 1.36 Ba | 0.66 ± 0.03 Ba | 10.67 ± 1.11 Cb | ||
18a | 0.47 ± 0.04 Cb | 32.27 ± 0.55 Ba | 0.53 ± 0.01 Bb | 12.90 ± 0.56 Ca | ||
P × R | 3a | 0.46 ± 0.01 Ab | 30.57 ± 1.98 Ab | 0.56 ± 0.01 Ac | 16.10 ± 0.09 Ab | |
7a | 1.21 ± 0.06 Aa | 52.05 ± 0.82 Aa | 0.82 ± 0.03 Aa | 17.70 ± 1.82 Aab | ||
18a | 1.30 ± 0.06 Aa | 52.90 ± 0.72 Aa | 0.63 ± 0.01 Ab | 18.58 ± 0.84 Aa | ||
40–60 cm | P | 3a | 0.31 ± 0.01 Bc | 9.94 ± 0.59 Ab | 0.53 ± 0.00 Cb | 4.17 ± 0.10 Bb |
7a | 0.80 ± 0.03 Aa | 13.23 ± 0.33 Aa | 0.93 ± 0.00 Ba | 4.47 ± 0.19 Cb | ||
18a | 0.75 ± 0.02 Bb | 14.53 ± 1.35 Ba | 0.52 ± 0.01 Bb | 5.91 ± 0.27 Ba | ||
R | 3a | 0.30 ± 0.02 Bb | 10.60 ± 1.31 Ab | 0.56 ± 0.01 Bb | 4.73 ± 0.57 Bb | |
7a | 0.69 ± 0.15 Aa | 10.75 ± 1.42 Bb | 0.84 ± 0.02 Ca | 5.18 ± 0.07 Bb | ||
18a | 0.37 ± 0.08 Cb | 14.86 ± 0.59 Ba | 0.50 ± 0.01 Cc | 6.28 ± 0.09 Ba | ||
P × R | 3a | 0.36 ± 0.03 Ac | 10.41 ± 0.04 Ac | 0.68 ± 0.01 Ab | 8.17 ± 0.17 Aa | |
7a | 0.73 ± 0.24 Ab | 14.29 ± 0.57 Ab | 1.05 ± 0.07 Aa | 8.07 ± 0.43 Aa | ||
18a | 1.11 ± 0.04 Aa | 17.43 ± 0.48 Aa | 0.61 ± 0.00 Ab | 8.44 ± 0.21 Aa |
Soil Depth | Forest Stand | Forest Age | Bacterium/(104) | Actinomycete/(102) | Fungus/(102) |
---|---|---|---|---|---|
0–20 cm | P | 3a | 40.03 ± 3.27 Ac | 94.88 ± 3.81 Bc | 9.93 ± 0.15 Cc |
7a | 52.82 ± 3.72 Bb | 106.78 ± 6.40 Cb | 12.49 ± 0.73 Bb | ||
18a | 64.90 ± 1.65 ABa | 166.73 ± 1.75 Ca | 16.23 ± 1.11 Ba | ||
R | 3a | 28.34 ± 0.09 Bc | 96.58 ± 3.55 Bc | 12.34 ± 0.42 Bc | |
7a | 47.86 ± 3.39 Bb | 120.69 ± 1.33 Bb | 17.09 ± 0.82 Ab | ||
18a | 58.04 ± 1.42 Ba | 193.35 ± 2.87 Ba | 19.53 ± 0.60 Aa | ||
P × R | 3a | 43.86 ± 0.75 Ab | 175.66 ± 3.11 Ac | 15.92 ± 0.17 Ac | |
7a | 65.23 ± 5.66 Aa | 219.78 ± 4.33 Ab | 18.00 ± 0.27 Ab | ||
18a | 70.32 ± 7.26 Aa | 312.97 ± 4.60 Aa | 19.03 ± 0.36 Aa | ||
20–40 cm | P | 3a | 37.82 ± 2.73 Ac | 86.33 ± 1.54 Cc | 9.09 ± 0.25 Cb |
7a | 43.38 ± 1.72 Bb | 91.54 ± 1.71 Cb | 9.47 ± 0.32 Bb | ||
18a | 54.41 ± 2.21 Ba | 155.28 ± 0.99 Ca | 10.81 ± 0.15 Ba | ||
R | 3a | 26.07 ± 0.65 Bc | 104.25 ± 2.00 Bc | 11.17 ± 0.10 Bb | |
7a | 38.31 ± 0.74 Cb | 136.99 ± 10.09 Bb | 14.32 ± 0.27 Aa | ||
18a | 46.78 ± 1.32 Ca | 178.60 ± 3.21 Ba | 15.37 ± 1.05 Aa | ||
P × R | 3a | 38.68 ± 1.31 Ac | 153.06 ± 5.13 Ac | 12.82 ± 0.12 Ab | |
7a | 52.38 ± 0.15 Ab | 213.71 ± 6.44 Ab | 14.44 ± 0.36 Aa | ||
18a | 59.80 ± 2.20 Aa | 289.55 ± 3.89 Aa | 14.46 ± 0.55 Aa | ||
40–60 cm | P | 3a | 17.90 ± 0.83 Cb | 79.88 ± 0.05 Bb | 8.46 ± 0.23 Ba |
7a | 38.18 ± 0.77 Aa | 76.11 ± 1.77 Cb | 8.40 ± 0.46 Ba | ||
18a | 37.48 ± 4.43 Ba | 138.60 ± 6.98 Ca | 8.32 ± 0.86 Ba | ||
R | 3a | 22.31 ± 0.15 Bb | 81.81 ± 2.92 Bc | 8.95 ± 0.80 Bb | |
7a | 32.79 ± 1.11 Ba | 93.35 ± 6.36 Bb | 12.56 ± 1.28 Aa | ||
18a | 37.50 ± 4.21 Ba | 153.02 ± 3.29 Ba | 11.51 ± 1.02 Aa | ||
P × R | 3a | 32.32 ± 0.63 Ac | 130.50 ± 3.57 Ac | 10.39 ± 0.35 Aa | |
7a | 39.68 ± 1.85 Ab | 151.40 ± 3.01 Ab | 11.63 ± 0.84 Aa | ||
18a | 45.90 ± 0.77 Aa | 197.35 ± 5.78 Aa | 10.39 ± 1.74 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Lv, C.; Tang, B.; Wang, M.; Cao, B.; Wu, K. Dynamics of Soil N and P Nutrient Heterogeneity in Mixed Forest of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia in Coastal Saline–Alkali Land. Forests 2024, 15, 2226. https://doi.org/10.3390/f15122226
Wang S, Lv C, Tang B, Wang M, Cao B, Wu K. Dynamics of Soil N and P Nutrient Heterogeneity in Mixed Forest of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia in Coastal Saline–Alkali Land. Forests. 2024; 15(12):2226. https://doi.org/10.3390/f15122226
Chicago/Turabian StyleWang, Shumei, Changxiao Lv, Bingxiang Tang, Mengxiao Wang, Banghua Cao, and Ke Wu. 2024. "Dynamics of Soil N and P Nutrient Heterogeneity in Mixed Forest of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia in Coastal Saline–Alkali Land" Forests 15, no. 12: 2226. https://doi.org/10.3390/f15122226
APA StyleWang, S., Lv, C., Tang, B., Wang, M., Cao, B., & Wu, K. (2024). Dynamics of Soil N and P Nutrient Heterogeneity in Mixed Forest of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia in Coastal Saline–Alkali Land. Forests, 15(12), 2226. https://doi.org/10.3390/f15122226