Differences in Public Perceptions of Recovery in Different Urban Forests Based on Birdsong
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Survey of Kunming
2.3. Experimental Materials
2.4. Experimental Subjects
2.5. Indicator Selection
2.5.1. Selection of Physiological Indicators
2.5.2. Selection of Psychological Indicators
2.5.3. Indicators of Public Perceptual Preferences for Birdsong Timbre
2.6. Experimental Design
2.7. Data Processing and Analysis
3. Results
3.1. Effects of Different Urban Forest Environments on Public Physiological Health Indicators
3.2. Effects of Different Urban Forest Environments on Public Psychological Health Indicators
3.2.1. Effects of Different Urban Forest Environments on Basic Psychology
3.2.2. Effects of Different Urban Forest Environments on Attention Recovery
3.3. The Effect of Public Perception of Birdsong on the Recovery Benefits of Urban Forests
3.3.1. Evaluation of Birdsong Timbre Based on Public Perception
3.3.2. Relationship Between Birdsong Preferences and Urban Forest Resilience
3.3.3. Effects of Birdsong Preferences on Urban Forest Recovery
4. Discussion
4.1. The Influence of Urban Forest Visual Perception on Public Physiology and Psychology
4.2. The Influence of Urban Forest Audiovisual Perception on Public Physiology and Psychology
4.3. Birdsong Perception and Its Effect on Urban Forest Recovery
4.4. Limitations and Future Research Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.v.d.; Sang, Å.O. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar]
- Berg, M.v.d.; Wendel-Vos, W.; Poppel, M.v.; Kemper, H.; Mechelen, W.v.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Peter, A.; Panagiotis, M.; Richard, C.; Jenny, R. The urban brain: Analysing outdoor physical activity with mobile EEG. Br. J. Sports Med. 2015, 49, 272–276. [Google Scholar]
- Bratman, G.N.; Hamilton, J.P.; Hahn, K.S.; Daily, G.C.; Gross, J.J. Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl. Acad. Sci. USA 2015, 112, 8567–8572. [Google Scholar] [CrossRef]
- Grigsby-Toussaint, D.S.; Turi, K.N.; Krupa, M.; Williams, N.J.; Pandi-Perumal, S.R.; Jean-Louis, G. Sleep insufficiency and the natural environment: Results from the US Behavioral Risk Factor Surveillance System survey. Prev. Med. 2015, 78, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Orban, E.; Sutcliffe, R.; Dragano, N.; Jöckel, K.-H.; Moebus, S. Residential surrounding greenness, self-rated health and interrelations with aspects of neighborhood environment and social relations. J. Urban Health 2017, 94, 158–169. [Google Scholar] [CrossRef]
- Li, Q.; Otsuka, T.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Li, Y.; Hirata, K.; Shimizu, T.; et al. Acute effects of walking in forest environments on cardiovascular and metabolic parameters. Eur. J. Appl. Physiol. 2011, 111, 2845–2853. [Google Scholar] [CrossRef]
- Tsunetsugu, Y.; Lee, J.; Park, B.-J.; Tyrväinen, L.; Kagawa, T.; Miyazaki, Y.J.L.; Planning, U. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 2013, 113, 90–93. [Google Scholar] [CrossRef]
- Beil, K.; Hanes, D. The influence of urban natural and built environments on physiological and psychological measures of stress—A pilot study. Int. J. Environ. Res. Public Health 2013, 10, 1250–1267. [Google Scholar] [CrossRef]
- Lee, J.; Tsunetsugu, Y.; Takayama, N.; Park, B.-J.; Li, Q.; Song, C.; Komatsu, M.; Ikei, H.; Tyrväinen, L.; Kagawa, T.; et al. Influence of forest therapy on cardiovascular relaxation in young adults. Evid. Based Complement. Altern. Med. 2014, 2014, 834360. [Google Scholar] [CrossRef]
- Benfield, J.A.; Bell, P.A.; Troup, L.J.; Soderstrom, N.C. Aesthetic and affective effects of vocal and traffic noise on natural landscape assessment. J. Environ. Psychol. 2010, 30, 103–111. [Google Scholar] [CrossRef]
- Diana, B.; Lisette, B.-A.; Teri, K.; Andrew, P. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar]
- Xi, W.; Yanlong, Z.; Renlin, Z.; Lixin, N. Study on the Effects of Four Campus Green Landscapes on College Students’ Physiological and Psychological Indicators. Chin. Landsc. Archit. 2020, 36, 92–97. [Google Scholar]
- Yaling, G.; He, H.; Jing, Y.; Zhihui, L.; Yushan, Z. Influence of Landscape Naturalness Degree in Campus Green Spaces on Human Physiological and Psychological Indicators. J. Chin. Urban For. 2022, 20, 103–109. [Google Scholar]
- Liu, B.; Lian, Z.; Brown, R.D. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability 2019, 11, 5387. [Google Scholar] [CrossRef]
- Lai, K.Y.; Sarkar, C.; Sun, Z.; Scott, I. Are greenspace attributes associated with perceived restorativeness? A comparative study of urban cemeteries and parks in Edinburgh, Scotland. Urban For. Urban Green. 2020, 53, 126720. [Google Scholar] [CrossRef]
- Huang, C.; Chang, C.; Chang, W. A Study of Human’s Relax Affection in Different Natural Landscape Photos—Evidences from Neuroscience. Data Res. 2019, 3, 13. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M. Electroencephalogram application for the analysis of stress relief in the seasonal landscape. Int. J. Environ. Res. Public Health 2021, 18, 8522. [Google Scholar] [CrossRef] [PubMed]
- Mackay, G.J.; Neill, J.T. The effect of “green exercise” on state anxiety and the role of exercise duration, intensity, and greenness: A quasi-experimental study. Psychol. Sport Exerc. 2010, 11, 238–245. [Google Scholar] [CrossRef]
- Ryan, R.M.; Weinstein, N.; Bernstein, J.; Brown, K.W.; Mistretta, L.; Gagné, M. Vitalizing effects of being outdoors and in nature. J. Environ. Psychol. 2010, 30, 159–168. [Google Scholar] [CrossRef]
- Berman, M.G.; Jonides, J.; Kaplan, S. The cognitive benefits of interacting with nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef]
- Wang, X.; Rodiek, S.; Wu, C.; Chen, Y.; Li, Y. Stress recovery and restorative effects of viewing different urban park scenes in Shanghai, China. Urban For. Urban Green. 2016, 15, 112–122. [Google Scholar] [CrossRef]
- Jiang, M.; Hassan, A.; Chen, Q.; Liu, Y. Effects of different landscape visual stimuli on psychophysiological responses in Chinese students. Indoor Built Environ. 2020, 29, 1006–1016. [Google Scholar] [CrossRef]
- Yabing, H.; Weicong, F.; Yuxi, W.; Minhua, W. A Study on the Relationship between Individual Landscape Preference, Perceived Restorativeness Scale and Health Benefits Assessment of Urban Forest Pathway—A Case Study of Fudao. Chin. Landsc. Archit. 2020, 36, 73–78. [Google Scholar] [CrossRef]
- Zheng, T.; Yan, Y.; Lu, H.; Pan, Q.; Zhu, J.; Wang, C.; Zhang, W.; Rong, Y.; Zhan, Y. Visitors’ perception based on five physical senses on ecosystem services of urban parks from the perspective of landsenses ecology. Int. J. Sustain. Dev. World Ecol. 2020, 27, 214–223. [Google Scholar] [CrossRef]
- Joye, Y.; Van den Berg, A. Is love for green in our genes? A critical analysis of evolutionary assumptions in restorative environments research. Urban For. Urban Green. 2011, 10, 261–268. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Purcell, T.; Taylor, R. Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. J. Environ. Psychol. 2004, 24, 247–255. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.-Y.; Sullivan, W.C. A dose of nature: Tree cover, stress reduction, and gender differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Velarde, M.D.; Fry, G.; Tveit, M. Health effects of viewing landscapes–Landscape types in environmental psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- Ma, H.; Shu, S. An experimental study: The restorative effect of soundscape elements in a simulated open-plan office. Acta Acust. United Acust. 2018, 104, 106–115. [Google Scholar] [CrossRef]
- Payne, S.R. Are perceived soundscapes within urban parks restorative? In Proceedings of the Acoustics 08, Paris, France, 29 June–4 July 2008; pp. 5519–5524. [Google Scholar]
- Cerwén, G.; Pedersen, E.; Pálsdóttir, A.-M. The role of soundscape in nature-based rehabilitation: A patient perspective. Int. J. Environ. Res. Public Health 2016, 13, 1229. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.; Kang, J. Effects of soundscape on the environmental restoration in urban natural environments. Noise Health 2017, 19, 65–72. [Google Scholar] [PubMed]
- Wang, P.; He, Y.; Yang, W.; Li, N.; Chen, J. Effects of soundscapes on human physiology and psychology in Qianjiangyuan National Park System Pilot Area in China. Forests 2022, 13, 1461. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Woszczyk, W.; Bech, S.; Hansen, V. Interaction between audio-visual factors in a home theater system: Definition of subjective attributes. In Proceedings of the Audio Engineering Society Convention 99, New York, NY, USA, 6–9 October 1995. [Google Scholar]
- Southworth, M.F. The Sonic Environment of Cities; Massachusetts Institute of Technology: Cambridge, MA, USA, 1967. [Google Scholar]
- Marín-Gómez, O.H.; MacGregor-Fors, I. How early do birds start chirping? Dawn chorus onset and peak times in a Neotropical city. Ardeola 2019, 66, 327–341. [Google Scholar] [CrossRef]
- Conniff, A.; Craig, T. A methodological approach to understanding the wellbeing and restorative benefits associated with greenspace. Urban For. Urban Green. 2016, 19, 103–109. [Google Scholar] [CrossRef]
- Carles, J.L.; Barrio, I.L.; De Lucio, J.V. Sound influence on landscape values. Landsc. Urban Plan. 1999, 43, 191–200. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J. A good sound in the right place: Exploring the effects of auditory-visual combinations on aesthetic preference. Urban For. Urban Green. 2019, 43, 126356. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Vanhecke, K.; Filipan, K.; Sun, K.; De Pessemier, T.; De Coensel, B.; Joseph, W.; Botteldooren, D. Interactive soundscape augmentation by natural sounds in a noise polluted urban park. Landsc. Urban Plan. 2020, 194, 103705. [Google Scholar] [CrossRef]
- Farina, A. Soundscape Ecology: Principles, Patterns, Methods and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Young, H.J.; Yong, J.J. Designing sound and visual components for enhancement of urban soundscapes. J. Acoust. Soc. Am. 2013, 134, 2026–2036. [Google Scholar]
- Fu, E.; Ren, Y.; Li, X.; Zhang, L. Research on the Healing Potential of Rural Community Streets From the Perspective of Audiovisual Integration: A Case Study of Four Rural Communities in China. Front. Public Health 2022, 10, 861072. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z. Dynamic Characteristics of Forest Soundscape in Three Kinds of Urban Forest in Shenzhen Yuanshan Scenic Spot. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2017. [Google Scholar]
- Laiolo, P. Homogenisation of birdsong along a natural–urban gradient in Argentina. Ethol. Ecol. Evol. 2011, 23, 274–287. [Google Scholar] [CrossRef]
- Xia, T. Influence of Soundscape on Mental Stress Relief of Urban Green Space and Its Application. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Zhu, T.; Liu, J.; Guo, X.; Ren, W. Spatial variability characteristics and influential factors of soundscape perception in urban forest parks. Tech. Acoust. 2022, 41, 742–750. [Google Scholar]
- Irvine, K.N.; Devine-Wright, P.; Payne, S.R.; Fuller, R.A.; Painter, B.; Gaston, K.J. Green space, soundscape and urban sustainability: An interdisciplinary, empirical study. Local Environ. 2009, 14, 155–172. [Google Scholar] [CrossRef]
- Hedblom, M.; Heyman, E.; Antonsson, H.; Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 2014, 13, 469–474. [Google Scholar] [CrossRef]
- Medvedev, O.; Shepherd, D.; Hautus, M.J. The restorative potential of soundscapes: A physiological investigation. Appl. Acoust. 2015, 96, 20–26. [Google Scholar] [CrossRef]
- John MacKinnon, K.P. A Field Guide to the Birds of China; Hunan Education Publishing House: Changsha, China, 2000. [Google Scholar]
- Guangmei, Z. A Checklist on the Classification and Distribution of the Birds of China, 3rd ed; Science Press: Beijing, China, 2017. [Google Scholar]
- Ma, H.; Zhe, Z. Analysis of bird diversity in different types of urban parks and green spaces in Kunming. Contemp. Hortic. 2023, 46, 161–164. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Antrop, M.; Eetvelde, V.V. Comparing saliency maps and eye-tracking focus maps: The potential use in visual impact assessment based on landscape photographs. Landsc. Urban Plan. 2016, 148, 17–26. [Google Scholar] [CrossRef]
- Yu, B.; Bai, J.; Wen, L.; Chai, Y. Psychophysiological Impacts of Traffic Sounds in Urban Green Spaces. Forests 2022, 13, 960. [Google Scholar] [CrossRef]
- Shi, H.; Luo, H.; Wei, Y.; Shin, W.-S. The Influence of Different Forest Landscapes on Physiological and Psychological Recovery. Forests 2024, 15, 498. [Google Scholar] [CrossRef]
- Williamson, I.; Wildbur, D.; Bell, K.; Tanner, J.; Matthews, H. Benefits to university students through volunteering in a health context: A new model. Br. J. Educ. Stud. 2018, 66, 383–402. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J. Sensitivity analysis of changes in human physiological indicators observed in soundscapes. Landsc. Urban Plan. 2019, 190, 103593. [Google Scholar] [CrossRef]
- Zhe, Z. Public Response to Characteristics of Forest Color and Its Influence: A Case Study of Forest in Autumn of Jiuzhai Valley, Sichuan Province. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2017. [Google Scholar]
- Rennit, P.; Maikov, K. Perceived restoration scale method turned into (used as the) evaluation tool for parks and open green spaces, using Tartu city parks as an example. City Territ. Archit. 2015, 2, 6. [Google Scholar] [CrossRef]
- Huang, S.; Qi, J.; Li, W.; Dong, J.; van den Bosch, C.K. The Contribution to Stress Recovery and Attention Restoration Potential of Exposure to Urban Green Spaces in Low-Density Residential Areas. Int. J. Environ. Res. Public Health 2021, 18, 8713. [Google Scholar] [CrossRef]
- Zhang, J.; Diao, X.; Zhang, Z.; Wang, J.; Lu, Z.; Wang, Y.; Mu, Y.; Lin, W. Comparison of Three Indoor Viewing Models and On-Site Experiences to Assess Visual Landscape Perception in Urban Forests. Forests 2024, 15, 1566. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Lau, S.-K. Comprehensive audio-visual environmental effects on residential soundscapes and satisfaction: Partial least square structural equation modeling approach. Landsc. Urban Plan. 2022, 220, 104351. [Google Scholar] [CrossRef]
- Nie, W.; Huang, X.; Li, H.; Zhao, J. Effect of Birdsong Soundscape on Perceptual Preference in Urban Green Spaces Under Audiovisual Interaction. J. Chin. Urban For. 2024, 22, 64–71. [Google Scholar]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure− activity relationship study of di-and tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Calogiuri, G.; Evensen, K.; Weydahl, A.; Andersson, K.; Patil, G.; Ihlebæk, C.; Raanaas, R.K. Green exercise as a workplace intervention to reduce job stress. Results from a pilot study. WORK-A J. Prev. Assess. Rehabil. 2015, 53, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Picavet, H.S.J.; Milder, I.; Kruize, H.; De Vries, S.; Hermans, T.; Wendel-Vos, W. Greener living environment healthier people?: Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 2016, 89, 7–14. [Google Scholar] [CrossRef]
- Xiaoyue, Z. Research on the Influence of Types and Features of Blue-Green Space on Pressure Recovery. Master’s Thesis, 2019. [Google Scholar]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Nordh, H.; Hagerhall, C.M.; Holmqvist, K. Tracking restorative components: Patterns in eye movements as a consequence of a restorative rating task. Landsc. Res. 2013, 38, 101–116. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Zhao, B. Audio-visual interactive evaluation of the forest landscape based on eye-tracking experiments. Urban Urban For. Urban Green. 2019, 46, 126476. [Google Scholar] [CrossRef]
- Zhu, Y.; Weng, Y.; Fu, W.; Dong, J.; Wang, M. Effects of soundscape perception on health benefits of forest parks: A case study of Fuzhou National Forest Park. Sci. Silvae Sin. 2021, 03, 9–17. [Google Scholar]
- Zhao, W.; Li, H.; Zhu, X.; Ge, T. Effect of birdsong soundscape on perceived restorativeness in an urban park. Int. J. Environ. Res. Public Health 2020, 17, 5659. [Google Scholar] [CrossRef]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 2013, 36, 221–228. [Google Scholar] [CrossRef]
- Johnson, T.; Burgoyne, A.P.; Mix, K.S.; Young, C.J.; Levine, S.C. Spatial and mathematics skills: Similarities and differences related to age, SES, and gender. Cognition 2022, 218, 104918. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, X.; Li, S.; Zhang, Y.; Peng, R.; Ma, K. Progress and outlook for soundscape ecology. Biodivers. Sci. 2020, 28, 806. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Fan, J.X.; Lian, Y.; Gao, H.C.; Li, H.X.; He, M.X.; Cui, L.; Mo, X.Q. Characteristics of avian species diversity and influencing factors in mainland China. Acta Ecol. Sin. 2025, 2, 1–19. [Google Scholar] [CrossRef]
- Brandes, T.S. Automated sound recording and analysis techniques for bird surveys and conservation. Bird Conserv. Int. 2008, 18, S163–S173. [Google Scholar] [CrossRef]
Environment | Species | Order | Family | Bird Ecotypes | RB |
---|---|---|---|---|---|
Forest | Passer domesticus | Passeriformes | Fringillidae | Song bird | 27.33 |
Parus major | Passeriformes | Paridae | Song bird | 18.00 | |
Culicicapa ceylonensis | Passeriformes | Stenostiridae | Song bird | 13.00 | |
Aegithalos concinnus | Passeriformes | Aegithalidae | Song bird | 13.00 | |
Turdus dissimilis | Passeriformes | Turdidae | Song bird | 11.33 | |
Pycnonotus xanthorrhous | Passeriformes | Pycnonotidae | Song bird | 8.67 | |
Phylloscopus yunnanensis | Passeriformes | Phylloscopidae | Song bird | 7.33 | |
Passer cinnamomeus | Passeriformes | Fringillidae | Song bird | 5.33 | |
Motacilla alba | Passeriformes | Motacillidae | Song bird | 2.67 | |
Cisticola juncidis | Passeriformes | Fantail warbleridae | Song bird | 2.00 | |
Rhipidura albicollis | Passeriformes | Fan-tailed flycatcheridae | Song bird | 1.00 | |
Pteruthius aeralatus | Passeriformes | Timaliidae | Song bird | 1.00 | |
Anthus hodgsoni | Passeriformes | Motacillidae | Song bird | 1.00 | |
Pterorhinus sannio | Passeriformes | Leiothrichidae | Song bird | 0.67 | |
Luscinia svecica | Passeriformes | Muscicapidae | Song bird | 0.67 | |
Copsychus saularis | Passeriformes | Muscicapidae | Song bird | 0.67 | |
Aethopyga gouldiae | Passeriformes | Nectariniidae | Song bird | 0.33 | |
Parus monticolus | Passeriformes | Paridae | Song bird | 0.33 | |
Leiothrix argentauris | Passeriformes | Leiothrichidae | Song bird | 0.33 | |
Wetland | Pycnonotus xanthorrhous | Passeriformes | Pycnonotidae | Song bird | 43.00 |
Egretta garzetta | Ciconiiformes | Ardeidae | Wading bird | 29.00 | |
Copsychus saularis | Passeriformes | Muscicapidae | Song bird | 9.00 | |
Prinia inornata | Passeriformes | Fan-tailed flycatcheridae | Song bird | 7.00 | |
Gallinula_chloropus | Gruiformes | Rallidae | Wading bird | 6.67 | |
Upupa epops | Bucerotiformes | Upupidae | Climber bird | 6.00 | |
Ardea cinerea | Pelecaniformes | Ardeidae | Wading bird | 5.33 | |
Zosterops simplex | Passeriformes | Zosteropidae | Song bird | 5.33 | |
Amaurornis phoenicurus | Gruiformes | Rallidae | Wading bird | 2.00 | |
Turdus dissimilis | Passeriformes | Turdidae | Song bird | 2.00 | |
Turdus mandarinus | Passeriformes | Turdidae | Song bird | 2.00 | |
Passer domesticus | Passeriformes | Fringillidae | Song bird | 1.67 | |
Hirundo rustica | Passeriformes | Hirundinidae | Song bird | 1.67 | |
Lanius schach | Passeriformes | Laniidae | Song bird | 1.67 | |
Acrocephalus orientalis | Passeriformes | Acrocephalidae | Song bird | 1.33 | |
Motacilla alba | Passeriformes | Motacillidae | Song bird | 1.00 | |
Aegithalos concinnus | Passeriformes | Aegithalidae | Song bird | 0.67 | |
Acrocephalus stentoreus | Passeriformes | Acrocephalidae | Song bird | 0.67 | |
Pterorhinus sannio | Passeriformes | Leiothrichidae | Song bird | 0.33 | |
Pycnonotus sinensis | Passeriformes | Pycnonotidae | Song bird | 0.33 | |
Ardeola bacchus | Passeriformes | Ardeidae | Wading bird | 0.33 | |
Cuculus canorus | Passeriformes | Cuculidae | Climber bird | 0.33 | |
Phylloscopus inornatus | Passeriformes | Phylloscopidae | Song bird | 0.33 | |
Cyanopica cyanus | Passeriformes | Corvidae | Song bird | 0.33 | |
Urban park | Pycnonotus xanthorrhous | Passeriformes | Pycnonotidae | Song bird | 77.00 |
Pycnonotus aurigaster | Passeriformes | Pycnonotidae | Song bird | 53.00 | |
Egretta garzetta | Ciconiiformes | Ardeidae | Wading bird | 23.00 | |
Copsychus saularis | Passeriformes | Muscicapidae | Song bird | 15.00 | |
Turdus mandarinus | Passeriformes | Turdidae | Song bird | 15.00 | |
Passer domesticus | Passeriformes | Fringillidae | Song bird | 8.67 | |
Spilopelia chinensis | Columbiformes | Columbidae | Terrestrial bird | 5.33 | |
Motacilla alba | Passeriformes | Motacillidae | Song bird | 3.33 | |
Lanius schach | Passeriformes | Laniidae | Song bird | 2.67 | |
Pterorhinus sannio | Passeriformes | Leiothrichidae | Song bird | 2.00 | |
Zoothera dixoni | Passeriformes | Turdidae | Song bird | 0.67 | |
Eophona migratoria | Passeriformes | Aegithalidae | Song bird | 0.67 | |
Sturnia malabarica | Passeriformes | Sturnidae | Song bird | 0.67 | |
Gracupica nigricollis | Passeriformes | Sturnidae | Song bird | 0.33 | |
Alcedo atthis | Coraciiformes | Alcedinidae | Song bird | 0.33 | |
Street green space | Zosterops simplex | Passeriformes | Zosteropidae | Song bird | 34.00 |
Pycnonotus aurigaster | Passeriformes | Pycnonotidae | Song bird | 11.00 | |
Pterorhinus sannio | Passeriformes | Leiothrichidae | Song bird | 7.00 | |
Pycnonotus xanthorrhous | Passeriformes | Pycnonotidae | Song bird | 6.00 | |
Copsychus saularis | Passeriformes | Turdidae | Song bird | 5.00 | |
Motacilla alba | Passeriformes | Motacillidae | Song bird | 2.67 | |
Aegithalos concinnus | Passeriformes | Aegithalidae | Song bird | 1.00 | |
Egretta garzetta | Ciconiiformes | Ardeidae | Song bird | 0.67 | |
Upupa epops | Bucerotiformes | Upupidae | Climber bird | 0.67 | |
Passer domesticus | Passeriformes | Fringillidae | Song bird | 0.33 | |
Spodiopsar sericeus | Passeriformes | Sturnidae | Song bird | 0.33 | |
Spilopelia chinensis | Columbiformes | Columbidae | Terrestrial bird | 0.33 | |
Residential green space | Pycnonotus xanthorrhous | Passeriformes | Pycnonotidae | Song bird | 13.00 |
Zosterops simplex | Passeriformes | Zosteropidae | Song bird | 8.67 | |
Passer domesticus | Passeriformes | Fringillidae | Song bird | 5.33 | |
Egretta garzetta | Ciconiiformes | Ardeidae | Wading bird | 5.00 | |
Turdus mandarinus | Passeriformes | Turdidae | Song bird | 5.00 | |
Pycnonotus aurigaster | Passeriformes | Pycnonotidae | Song bird | 2.00 | |
Motacilla alba | Passeriformes | Motacillidae | Song bird | 1.33 | |
Aegithalos concinnus | Passeriformes | Aegithalidae | Song bird | 1.33 | |
Pterorhinus sannio | Passeriformes | Leiothrichidae | Song bird | 1.00 | |
Ardeola bacchus | Pelecaniformes | Ardeidae | Wading bird | 0.67 | |
Hirundo rustica | Passeriformes | Hirundinidae | Song bird | 0.67 | |
Pica serica | Passeriformes | Corvidae | Song bird | 0.67 | |
Copsychus saularis | Passeriformes | Turdidae | Song bird | 0.33 | |
Acrocephalus stentoreus | Passeriformes | Acrocephalidae | Song bird | 0.33 | |
Spilopelia chinensis | Columbiformes | Columbidae | Terrestrial bird | 0.33 |
Questionnaire Type | Indicators | Question | |
---|---|---|---|
1st-Level | 2nd-Level | ||
Basic Psychological State Scale | Calmness | Calm condition | Do you feel calm? |
Tension | Pressure condition | Do you feel pressure? | |
Tension condition | Do you feel tense? | ||
Irritability | Anxiety condition | Do you feel anxious? | |
Restless condition | Do you feel restless? | ||
PRS | Being away (Be A) | A1 | Being here gives me an escape from reality. |
A2 | This place gives me a break from the daily routine. | ||
A3 | This place takes my mind off things. | ||
A4 | This place helps me relax. | ||
A5 | This place helps me cut down on unnecessary distractions. | ||
Fascination (Fas) | B1 | The environment here is very attractive. | |
B2 | There is a lot of interesting things to hold my attention here. | ||
B3 | I am going to want to know about this place. | ||
B4 | There are so many things to explore and discover here. | ||
B5 | I would like to spend more time taking in my surroundings. | ||
B6 | The environment here is fascinating. | ||
Coherence (Coh) | C1 | Everything here is in its place and very harmonious. | |
C2 | There is plenty of space to explore in many directions. | ||
C3 | There is a lot to concentrate here. | ||
C4 | The arrangements here are well organized. | ||
Compatibility (Comp) | D1 | This is very suitable for me. | |
D2 | I can do what I like to do here. | ||
D3 | I feel like I belong here. | ||
D4 | I can find a way to enjoy myself here. | ||
D5 | I think I am integrated with the environment here. |
Indicators | Question |
---|---|
Likability (Lik) | Do you like this birdsong? |
Pleasantness (Ple) | Do you think this birdsong sounds pleasant? |
Richness (Ric) | Do you think this birdsong sounds rich? |
Comfort (Comf) | Do you think this birdsong sounds comfortable? |
Environment Types (Mean ± SD) | F | p | |||||||
---|---|---|---|---|---|---|---|---|---|
Blank | Forest | Wetland | Urban Park | Street | Residential | ||||
Visual | ΔHR | 0.073 ± 0.147 | −0.013 ± 0.037 | 0.010 ± 0.067 | −0.008 ± 0.053 | 0.012 ± 0.025 | −0.004 ± 0.023 | 3.794 | 0.004 ** |
ΔSC | −0.058 ± 0.154 | 0.068 ± 0.132 | 0.054 ± 0.128 | 0.079 ± 0.129 | 0.019 ± 0.364 | 0.030 ± 0.142 | 3.863 | 0.002 ** | |
Audiovisual | ΔHR | 0.073 ± 0.147 | −0.017 ± 0.033 | 0.018 ± 0.057 | −0.012 ± 0.021 | 0.007 ± 0.050 | −0.009 ± 0.037 | 4.137 | 0.002 ** |
ΔSC | −0.058 ± 0.154 | 0.079 ± 0.142 | 0.049 ± 0.102 | 0.100 ± 0.115 | 0.023 ± 0.127 | 0.042 ± 0.108 | 5.675 | 0.000 *** |
Environment Type Group (Mean ± SD) | F | p | |||||||
---|---|---|---|---|---|---|---|---|---|
Blank | Forest | Wetland | Urban Park | Street | Residential | ||||
Visual | ΔP | 0.925 ± 2.151 | −3.640 ± 2.629 | −2.679 ± 3.432 | −3.177 ± 2.981 | −2.061 ± 2.039 | −2.254 ± 2.892 | 14.023 | 0.000 *** |
Audiovisual | ΔP | 0.925 ± 2.151 | −3.698 ± 2.952 | −2.527 ± 3.957 | −3.350 ± 2.522 | −2.235 ± 3.009 | −2.563 ± 2.997 | 14.591 | 0.000 *** |
Environment Types (Mean ± SD) | F | p | ||||||
---|---|---|---|---|---|---|---|---|
Forest | Wetland | Urban Park | Street | Residential | ||||
visual | Be A | 0.593 ± 0.593 | 0.487 ± 0.716 | 0.533 ± 0.648 | 0.407 ± 0.505 | 0.447 ± 0.706 | 0.393 | 0.814 |
Fas | 0.594 ± 0.592 | 0.517 ± 0.677 | 0.606 ± 0.633 | 0.478 ± 0.448 | 0.383 ± 0.591 | 0.708 | 0.587 | |
Coh | 0.417 ± 0.800 | 0.217 ± 0.793 | 0.333 ± 0.772 | 0.125 ± 0.586 | −0.158 ± 0.727 | 2.716 | 0.032 * | |
Comp | 0.467 ± 0.846 | 0.387 ± 1.066 | 0.413 ± 0.950 | 0.300 ± 0.684 | 0.327 ± 0.835 | 0.171 | 0.953 | |
audio- visual | Be A | 0.627 ± 0.514 | 0.473 ± 0.605 | 0.567 ± 0.523 | 0.433 ± 0.512 | 0.467 ± 0.754 | 0.559 | 0.693 |
Fas | 0.600 ± 0.481 | 0.461 ± 0.696 | 0.611 ± 0.427 | 0.489 ± 0.571 | 0.439 ± 0.395 | 0.911 | 0.462 | |
Coh | 0.433 ± 0.698 | 0.200 ± 0.735 | 0.383 ± 0.771 | 0.200 ± 0.877 | 0.192 ± 0.622 | 0.740 | 0.566 | |
Comp | 0.493 ± 0.555 | 0.360 ± 0.868 | 0.453 ± 0.615 | 0.347 ± 0.808 | 0.340 ± 0.732 | 0.279 | 0.891 |
c Total Effect | a | b | a × b Mediated Effect Value (95% Boot CI) | c’ Direct Effect | |
---|---|---|---|---|---|
Visual ΔHR → BP → audiovisual ΔHR | −0.028 | −1.447 * | −0.026 ** | 0.037 (0.003–0.093) | −0.065 |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient (SE) | t | p | Coefficient (SE) | t | p | Coefficient (SE) | t | p | |
const | 0.051 (0.010) | 4.905 | 0.000 *** | 0.036 (0.013) | 2.757 | 0.007 ** | 0.045 (0.013) | 3.356 | 0.001 ** |
ΔSC | 0.145 (0.074) | 1.976 | 0.050 | 0.149 (0.073) | 2.049 | 0.042 * | −0.001 (0.095) | −0.015 | 0.988 |
BP | 0.050 (0.025) | 2.014 | 0.046 * | 0.024 (0.027) | 0.902 | 0.369 | |||
ΔSC × BP | 0.475 (0.199) | 2.387 | 0.018 ** | ||||||
F | F = 3.905, p = 0.050 | F = 4.022, p = 0.020 * | F = 4.667, p = 0.004 ** | ||||||
ΔF | ΔF = 3.905, p = 0.050 | ΔF = 4.058, p = 0.019 * | ΔF = 9.85, p = 0.002 ** |
Indicators | Lik | Ple | Ric | Comf | ||
---|---|---|---|---|---|---|
Forest | Beta | ΔHR D-value | −0.004 | −0.019 | −0.025 | −0.024 |
ΔSC D-value | 0.011 | 0.044 | 0.052 | 0.059 | ||
ΔC D-value | 0.033 | 0.700 | 0.534 | 0.625 | ||
ΔT D-value | −0.100 | −0.871 | −0.958 | −1.515 | ||
ΔI D-value | −0.033 | −0.867 | −1.298 | −0.943 | ||
ΔP D-value | −0.097 | −1.238 | −1.393 | −1.560 | ||
VIP | 0.974 | 1.042 | 1.144 | 0.810 | ||
Wetland | Beta | ΔHR D-value | −0.035 | −0.033 | −0.019 | −0.035 |
ΔSC D-value | 0.068 | 0.051 | 0.042 | 0.079 | ||
ΔC D-value | 0.325 | 0.516 | 0.408 | 0.709 | ||
ΔT D-value | −1.242 | −0.976 | −1.004 | −0.817 | ||
ΔI D-value | −0.962 | −0.704 | −1.305 | −1.268 | ||
ΔP D-value | −1.427 | −1.175 | −1.115 | −1.159 | ||
VIP | 1.060 | 0.976 | 0.863 | 1.086 | ||
Urban park | Beta | ΔHR D-value | −0.03 | −0.018 | −0.014 | −0.031 |
ΔSC D-value | 0.069 | 0.043 | 0.049 | 0.057 | ||
ΔC D-value | 0.461 | 0.289 | 0.279 | 0.975 | ||
ΔT D-value | −1.379 | −1.189 | −1.097 | −1.512 | ||
ΔI D-value | −1.745 | −0.628 | −0.751 | −1.630 | ||
ΔP D-value | −2.049 | −1.305 | −0.814 | −1.826 | ||
VIP | 1.181 | 0.985 | 0.658 | 1.097 | ||
Street green space | Beta | ΔHR D-value | −0.031 | −0.023 | −0.023 | −0.030 |
ΔSC D-value | 0.119 | 0.086 | 0.083 | 0.088 | ||
ΔC D-value | 0.742 | 0.745 | 0.375 | 0.495 | ||
ΔT D-value | −1.525 | −0.834 | −1.119 | −0.968 | ||
ΔI D-value | −0.971 | −1.047 | −1.267 | −1.296 | ||
ΔP D-value | −1.781 | −1.270 | −1.378 | −1.644 | ||
VIP | 1.107 | 0.772 | 0.863 | 1.197 | ||
Residential green space | Beta | ΔHR D-value | −0.024 | −0.02 | −0.017 | −0.019 |
ΔSC D-value | 0.097 | 0.075 | 0.069 | 0.102 | ||
ΔC D-value | 0.602 | 0.419 | 0.749 | 0.678 | ||
ΔT D-value | −1.820 | −0.970 | −1.491 | −1.742 | ||
ΔI D-value | −2.036 | −1.901 | −0.738 | −1.390 | ||
ΔP D-value | −2.424 | −1.953 | −1.678 | −2.260 | ||
VIP | 1.099 | 0.764 | 0.804 | 1.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, K.; Zhang, J.; Zhang, Z.; Shi, X.; Du, W.; Yang, L.; Wei, M. Differences in Public Perceptions of Recovery in Different Urban Forests Based on Birdsong. Forests 2024, 15, 2217. https://doi.org/10.3390/f15122217
Yi K, Zhang J, Zhang Z, Shi X, Du W, Yang L, Wei M. Differences in Public Perceptions of Recovery in Different Urban Forests Based on Birdsong. Forests. 2024; 15(12):2217. https://doi.org/10.3390/f15122217
Chicago/Turabian StyleYi, Kaiyuan, Jinyu Zhang, Zhe Zhang, Xiaoyan Shi, Wenhao Du, Linghua Yang, and Meng Wei. 2024. "Differences in Public Perceptions of Recovery in Different Urban Forests Based on Birdsong" Forests 15, no. 12: 2217. https://doi.org/10.3390/f15122217
APA StyleYi, K., Zhang, J., Zhang, Z., Shi, X., Du, W., Yang, L., & Wei, M. (2024). Differences in Public Perceptions of Recovery in Different Urban Forests Based on Birdsong. Forests, 15(12), 2217. https://doi.org/10.3390/f15122217