Molecular Mechanisms of Poplar Adaptation to Water–Fertilizer Coupling: Insights from Transcriptomic and Metabolomic Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Treatment
2.2. Transcriptome Sequencing and Differentially Expressed Genes (DEGs) Analysis
2.3. Metabolome Sequencing and DAMs Analysis
2.4. Validation of Real-Time Quantitative PCR (RT-qPCR)
2.5. Data Analysis
3. Results
3.1. Transcriptome Analysis
3.2. Validation of RNA–Seq by RT–qPCR
3.3. Metabolome Analysis
3.4. Critical Pathway Analysis of Transcription Metabolism
3.4.1. Plant Hormone Signal Transduction Pathway
3.4.2. Starch and Sucrose Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, K.; Dang, H.; Zhou, L.D.; Hu, J.; Jin, X.; Han, Y.Z.; Wang, S.J. Genome-wide identification and expression analysis of the HSF gene family in poplar. Forests 2023, 14, 510. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.W.; Pan, J.B.; Sun, Q.P.; Ji, Y.H.; Lu, M.; Han, J.; Zhang, J.; Yu, Y.K. Molecular cloning and expression analysis of ZmNAC transcription factor gene. Agric. Sci. Technol. 2016, 17, 285–288. [Google Scholar]
- Wang, Y.F.; He, Y.L.; Yang, H.Q.; Zhu, W.; Jia, L.M.; Xi, B.Y. Research progress in effect of irrigation and fertilization on tree growth and land fertility in Populus plantation. World For. Res. 2023, 36, 63–69. [Google Scholar]
- Fang, S.Z. Silviculture of poplar plantation in China: A review. Chin. J. Appl. Ecol. 2008, 19, 2308–2316. [Google Scholar]
- Luo, Z.J.; Chen, W.W.; Lu, J.W.; Yu, C.B.; Chen, F. Fertilizer application method for poplar plantation in Jianghan plain. J. Northeast For. Univ. 2005, 33, 101–102. [Google Scholar]
- Yang, Y.; Li, Y.J.; Tang, J.; Tang, Y.X.; Li, C.Z. Biomass and calorific value differences among high-density poplar clones with initial planting. J. Northeast For. Univ. 2019, 47, 30–34+46. [Google Scholar]
- Chen, S.K.; Yin, W.L.; Liu, X.D.; Xia, X.L.; Sun, S.W. Short effects of pruning on growth of poplar (Populus × euramericana cv. ‘74/76’). Sci. Silvae Sin. 2008, 44, 133–138. [Google Scholar]
- Huang, G.W.; Ma, L.J.; Chen, H.L.; Fan, X.P.; Long, K.L.; Zhang, X.Y. Comparative analysis of the growth and photosynthetic characteristics of the poplar seedlings in different water gradient and fertilizer amount. Ecol. Sci. 2023, 42, 137–145. [Google Scholar]
- Feng, J.G.; Zhu, B. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems. Chin. J. Plant Ecol. 2020, 44, 583–597. [Google Scholar] [CrossRef]
- Wang, Y.; Xi, B.Y.; Bloomberg, M.; Moltchanova, E.; Li, G.D.; Jia, L.M. Response of diameter growth, biomass allocation and N uptake to N fertigation in a triploid Populus tomentosa plantation in the North China Plain: Ontogenetic shift does not exclude plasticity. Eur. J. Forest Res. 2015, 134, 889–898. [Google Scholar] [CrossRef]
- Yang, H.Q.; Wang, Y.F.; Jia, L.M. Response of pulp plantation growth of Populus tomentosa S86 in short rotation period to coupling of irrigation and fertilization in furrow irrigation. J. Beijing For. Univ. 2023, 45, 68–78. [Google Scholar]
- Ghezehei, S.B.; Ewald, A.L.; Hazel, D.W.; Zalesny, R.S.; Nichols, E.G. Productivity and profitability of poplars on fertile and marginal sandy soils under different density and fertilization treatments. Forests 2021, 12, 869. [Google Scholar] [CrossRef]
- Li, H.X. Effect of organic fertilizer on tree growth and protective enzyme activity of Populus alba var. pyramidalis. Shaanxi For. Sci. Tech. 2019, 47, 27–31. [Google Scholar]
- Xi, B.Y.; Clothier, B.; Xi, B.Y.; Clothier, B.; Coleman, M.; Duan, J.; Hu, W.; Li, D.D.; Di, N.; Liu, Y.; et al. Irrigation management in poplar (Populus spp.) plantations: A review. For. Ecol. Manag. 2021, 494, 119330. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, X.C.; Jia, L.M.; Xi, B.Y. Effects of key forest management practices and climatic factors on the growth of Populus tomentosa plantations in the North China Plain. Forest Ecol. Manag. 2022, 521, 120444. [Google Scholar] [CrossRef]
- Zhu, J.L.; Bo, H.J.; Li, X.; Wen, C.Y.; Wang, J.; Nie, L.S.; Tian, J.; Song, L.J. Long term water-nitrogen coupling effect on stand volume of different clones of Populus tomentosa. Sci. Silvae Sin. 2019, 55, 27–35. [Google Scholar]
- Dong, W.Y.; Qin, J.; Li, J.Y.; Zhao, Y.; Nie, L.S.; Zhang, Z.Y. Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar (Populus tomentosa Carr.) seedlings. Soil Sci. Plant Nutr. 2011, 57, 303–312. [Google Scholar] [CrossRef]
- Li, P.T.; Du, M.Y.; Wang, Y.; Pei, S.X.; Xin, X.B. Response of growth and photosynthetic characteristics of Acer truncatum seedlings to water and fertilizer coupling. J. Nanjing For. Univ. Nat. Sci. Ed. 2024, 48, 113. [Google Scholar]
- Coleman, M. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil 2007, 299, 195–213. [Google Scholar] [CrossRef]
- Zeng, L.; Zhu, K.L.; Liu, L.G.; Liu, S.T.; Li, J. Transcriptome analysis of sugar, lipid and protein metabolism in maize ear leaves under different fertilization. Southwest China J. Agric. Sci. 2023, 36, 2126–2134. [Google Scholar]
- Zhang, Y.N.; Shi, H.Z.; Wang, J.; Zhou, Y.; Yang, H.J. Analysis of gene expression profile and metabolic pathway of tobacco root at high and low levels of nitrate nitrogen. Tobacco Sci. Technol. 2019, 52, 2703–2715. [Google Scholar]
- Ben, B.B.; Xu, W.H.; Zou, D.Y.; Mu, M.R.; Yang, R.J.; Liu, H.X. Study on metabonomics of wheat grain under different fertilization conditions. J. Triticeae Crops 2021, 41, 212–219. [Google Scholar]
- Song, T.; Yang, F.; Xu, W.F.; Zhang, J.H. Transcriptome analysis of rice stem under alternate wetting and drying irrigation. Plant Physiol. J. 2020, 56, 2655–2663. [Google Scholar]
- Yang, H. Breeding technology of Polulus cathayana × canadansis ‘Xinlin 1’. South China Agric. 2017, 11, 111–115. [Google Scholar]
- Chai, J.; Feng, R.J.; Shi, H.R.; Ren, M.Y.; Zhang, Y.D.; Wang, J.Y. Bioinformatic identification and expression analysis of banana microRNAs and their targets. PLoS ONE 2015, 10, e0123083. [Google Scholar] [CrossRef]
- Si, J.; Jia, L.; Wei, Y.K.; Xing, C.S.; Liu, S.Q.; Guo, Z.X. Carbon storage in fast-growing and high-yield poplar plantations under subsurface drip irrigation. J. Beijing For. Univ. 2012, 34, 14–18. [Google Scholar]
- Miyasier, K. Combined Effects of Irrigation and Fertilization on Growth and Physiological Characteristics of Caragana acanthophylla Seedlings. Master’s Thesis, Xinjiang Agricultural University, Wulumuqi, China, 2023. [Google Scholar]
- Jin, W. Effects of Water and Nitrogen Interaction on Growth and Carbon and Nitrogen Metabolites of Nitraria tangutorum. Master’s Thesis, Shanxi Agricultural University, Taiyuan, China, 2023. [Google Scholar]
- Wang, P.R.; Zhang, J.L.; Gao, X.B.; Tu, J.C. Water and fertilizer coupling on growth characteristics of Ailanthus altissima ‘Liaohong’ seedlings. J. Shandong Agric. Univ. Nat. Sci. Ed. 2024, 55, 153–161. [Google Scholar]
- Li, X.; Wang, H.S.; Wang, H.X.; Jiang, L.P.; Pang, Z.Y.; Peng, Y.H.; Zhao, X.Y. Effects of irrigation and fertilizer on growth and photosynthetic physiological of Populus cathayana × canadasis ‘Xinlin1’. Bull. Bot. Res. 2024. [Google Scholar]
- Eremina, M.; Rozhon, W.; Poppenberger, B. Hormonal control of cold stress responses in plants. Cell. Mol. Life Sci. 2016, 73, 797–810. [Google Scholar] [CrossRef]
- Finkelstein, R.R.; Gampala, S.S.; Rock, C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002, 14, S15–S45. [Google Scholar] [CrossRef]
- Finkelstein, R.; Reeves, W.; Ariizumi, T.; Steber, C. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 2008, 59, 387–415. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Hayat, K.; Lgbal, A.; Xie, L.N. Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 2020, 10, 1323. [Google Scholar] [CrossRef]
- Yu, X.; Niu, J.H.; Chen, E.Y.; Qin, L.; Yang, Y.B.; Li, F.F.; Liu, Z.Y.; Guan, Y.A. Effects of water and nitrogen treatment on endogenous hormone abscisic acid and photosynthetic characteristics of foxtail millet. Soil Fertil. Sci. China 2024, 190–198. [Google Scholar]
- Cui, S.Y.; Zhang, Z.F.; Fu, X.F.; Liu, J.Q.; Yang, H.S. Key genes in response to drought stress in plant hormone signal transduction pathway of oat. J. Triticeae Crops 2023, 43, 1384–1393. [Google Scholar]
- Baiyin, B.; Xiang, Y.; Shao, Y.; Hu, J.T.; Son, J.E.; Tagawa, K.; Yamada, S.; Yang, Q.C. Nutrient flow environment as a eustress that promotes root growth by regulating phytohormone synthesis and signal transduction in hydroponics. Plant Stress 2024, 12, 100428. [Google Scholar] [CrossRef]
- Yang, Q.Q. Effect Mechanism of Combined with Water and Fertilizer on Starch Formation and Yield of Maize Under Drip Irrigation. Master’s Thesis, Ningxia University, Yinchuan, China, 2021. [Google Scholar]
- Han, M.; Xu, M.Y.; Su, T.; Wang, S.Z.; Wu, L.D.; Feng, J.H.; Ding, C.J. Transcriptome analysis reveals critical genes and pathways in carbon metabolism and ribosome biogenesis in poplar fertilized with glutamine. Int. J. Mol. Sci. 2022, 23, 9998. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.W.; Luo, X.L.; Fan, Z.P.; Yang, Y.N.; Wan, W. Genome-wide identification and analysis of the sucrose synthase gene family in cassava (Manihot esculenta Crantz). Gene 2021, 769, 145191. [Google Scholar] [CrossRef]
- Yang, T.Y.; Li, H.R.; Li, L.W.; Wei, W.L.; Huang, Y.H.; Xiong, F.Q.; Wei, M.G. Genome-wide characterization and expression analysis of α-amylase and β-amylase genes underlying drought tolerance in cassava. BMC Genom. 2023, 24, 190. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef]
- Zhu, F.; Xu, Z.Q.; Duan, Y.J.; Li, Y.Y.; Song, Y.H. Transcriptomic analysis of maize silks in response to drought stress. Acta Agric. Boreali-Sin. 2024, 39, 37–47. [Google Scholar]
- Xi, W.; Song, D.L.; Sun, J.Y.; Shen, J.H.; Li, L.G. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus. Plant Mol. Biol. 2017, 93, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Lampugnani, E.R.; Flores, S.E.; Tan, Q.W.; Mutwil, M.; Bowman, J.L.; Persson, S. Cellulose synthesis-central components and their evolutionary relationships. Trends Plant Sci. 2019, 24, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Poovaiah, C.R.; Mazarei, M.; Decker, S.R.; Turner, G.B.; Sykes, R.W.; Davis, M.F.; Stewart, C.N., Jr. Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1). Biotechnol. J. 2015, 10, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.G.; Qu, Z.S.; Zhang, L.J.; Zhao, S.J.; Bi, Z.H.; Ji, X.H.; Wang, X.W.; Wei, H.R. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS ONE 2015, 10, e120669. [Google Scholar] [CrossRef]
- Guo, X.Q.; Chen, H.J.; Liu, Y.; Chen, W.; Ying, Y.Q.; Han, J.J.; Gui, R.Y.; Zhang, H.X. The acid invertase gene family is involved in internode elongation in Phyllostachys heterocycla cv. pubescens. Tree Physiol. 2020, 40, 1217–1231. [Google Scholar] [CrossRef]
- Tetlow, I.J.; Bertoft, E. A review of starch biosynthesis in relation to the building block-backbone model. Int. J. Mol. Sci. 2020, 21, 7011. [Google Scholar] [CrossRef]
- Zhang, Q.W. The Effect of Mutant ADP Glucose Pyrophosphorylase Gene on the Starch Content of Transgenic Maize Kernels. Master’s Thesis, Shandong University, Jinan, China, 2013. [Google Scholar]
- Zhang, Y.Q.; Yang, H.S.; Zhang, R.F.; Li, C.F.; Zhang, J.H.; Yang, Y.L. Effects of drip irrigation modes on activities of starch synthesis-related enzymes and accumulation of starch of kernels located in different ear positions of maize in the irrigation area of the Xiliaohe Plain. Chin. J. Eco-Agric. 2023, 31, 1392–1402. [Google Scholar]
Name | Treatment | Tissue |
---|---|---|
CKL | no irrigation, no fertilization | leaf |
CKR | root | |
HL | irrigation (−20 KPa), no fertilization | leaf |
HR | root | |
NL | irrigation (−20 KPa), 1000 g/plant nitrogen fertilizer (nitrogen content of 46% urea) | leaf |
NR | root | |
FL | irrigation (−20 KPa), 1000 g/plant compound fertilizer (N:P:K = 15:15:15) | leaf |
FR | root |
Gene ID | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
POPTR_018G095200v3 | TGAATACTGTGCTTGTGCCC | GCCGTTGCTGAGGATCTTAG |
POPTR_001G320000v3 | CCCATCTCCACCACCACA | GAGCCCATTTCGCCTTTT |
POPTR_001G074600v3 | TCCGTTTTTGCATCTCTAGG | GATAACACCATTGTCAGCCAC |
POPTR_006G204300v3 | TGACTGTGGCTGCTGCTGT | CGACCTTGTTAATGGGACG |
POPTR_005G163000v3 | GCTTCCATTTCCCATCTCAT | AGTCTTGCTGTGGCTACGG |
POPTR_006G097500v3 | CGGAAAGCAAAGAAACGAC | GCAAAGGGACTGAAACGAG |
POPTR_019G131300v3 | CCTGATGCCACTGATTCCT | GTGCTGTTGTCTCCTGCTCT |
POPTR_002G098800v3 | AATGGCTACTTTCAGGGTCC | GGCATAACCAGGATAGGCA |
POPTR_014G111800v3 | TTACGAGGAAGCGAGAAGTTG | CCTTGAAGCATAACCCCCA |
Actin | GAAGTCCTCTTCCAGCCTTCTC | CTTGATCTTCATGCTGCTTGGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Li, X.; Jiang, L.; Wang, H.; Pang, Z.; Peng, Y.; Zhang, X.; Zhao, X. Molecular Mechanisms of Poplar Adaptation to Water–Fertilizer Coupling: Insights from Transcriptomic and Metabolomic Analyses. Forests 2024, 15, 1967. https://doi.org/10.3390/f15111967
Shen J, Li X, Jiang L, Wang H, Pang Z, Peng Y, Zhang X, Zhao X. Molecular Mechanisms of Poplar Adaptation to Water–Fertilizer Coupling: Insights from Transcriptomic and Metabolomic Analyses. Forests. 2024; 15(11):1967. https://doi.org/10.3390/f15111967
Chicago/Turabian StyleShen, Jiajia, Xiao Li, Luping Jiang, Hongxing Wang, Zhongyi Pang, Yanhui Peng, Xinxin Zhang, and Xiyang Zhao. 2024. "Molecular Mechanisms of Poplar Adaptation to Water–Fertilizer Coupling: Insights from Transcriptomic and Metabolomic Analyses" Forests 15, no. 11: 1967. https://doi.org/10.3390/f15111967
APA StyleShen, J., Li, X., Jiang, L., Wang, H., Pang, Z., Peng, Y., Zhang, X., & Zhao, X. (2024). Molecular Mechanisms of Poplar Adaptation to Water–Fertilizer Coupling: Insights from Transcriptomic and Metabolomic Analyses. Forests, 15(11), 1967. https://doi.org/10.3390/f15111967