Quantifying Ecosystem Services to Maximize Co-Benefits under Market-Based Conservation Solutions in the Edisto River Basin, South Carolina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Objectives
2.3. Carbon Model
2.4. Water Yield Model
- = Annual water yield for pixel x
- = Annual actual evapotranspiration for pixel x
- = Annual precipitation on pixel x
2.5. Sediment Delivery Ratio Model
- = Sediment export (ton ha−1 yr−1) from pixel i
- uslei = universal soil loss equation for pixel i
- SDRi = Sediment delivery ratio for pixel i
2.6. Validation
2.7. Forest Landscape Integrity Index
2.8. Spatial Optimization for Ecosystem Services
2.9. Additionality Framework for the ERB
3. Results
ES Quantification
4. Discussion
4.1. Land Use and Conservation
4.2. Increasing Impact through More Rigorous Additionality
4.3. Spatial Model for Additionality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zickfeld, K.; MacIsaac, A.J.; Canadell, J.G.; Fuss, S.; Jackson, R.B.; Jones, C.D.; Lohila, A.; Matthews, H.D.; Peters, G.P.; Rogelj, J.; et al. Net-Zero Approaches Must Consider Earth System Impacts to Achieve Climate Goals. Nat. Clim. Chang. 2023, 13, 1298–1305. [Google Scholar] [CrossRef]
- Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Knutti, R.; Alcamo, J.; Riahi, K.; Hare, W. Zero Emission Targets as Long-Term Global Goals for Climate Protection. Environ. Res. Lett. 2015, 10, 105007. [Google Scholar] [CrossRef]
- Galatowitsch, S.M. Carbon Offsets as Ecological Restorations. Restor. Ecol. 2009, 17, 563–570. [Google Scholar] [CrossRef]
- Soto, J.R.; Adams, D.C.; Escobedo, F.J. Landowner Attitudes and Willingness to Accept Compensation from Forest Carbon Offsets: Application of Best-Worst Choice Modeling in Florida USA. Policy Econ. 2016, 63, 35–42. [Google Scholar] [CrossRef]
- Streck, C. How Voluntary Carbon Markets Can Drive Climate Ambition. J. Energy Nat. Resour. Law. 2021, 39, 367–374. [Google Scholar] [CrossRef]
- Tahvonen, O.; Rautiainen, A. Economics of Forest Carbon Storage and the Additionality Principle. Resour. Energy Econ. 2017, 50, 124–134. [Google Scholar] [CrossRef]
- Ruseva, T.; Marland, E.; Szymanski, C.; Hoyle, J.; Marland, G.; Kowalczyk, T. Additionality and Permanence Standards in California’s Forest Offset Protocol: A Review of Project and Program Level Implications. J. Environ. Manag. 2017, 198, 277–288. [Google Scholar] [CrossRef]
- Donofrio, S.; Maguire, P.; Daley, C.; Calderon, C.; Lin, K. The Art of Integrity: State of the Voluntary Carbon Markets 2022 Q3; Ecosystem Marketplace: Washington, DC, USA, 2022. [Google Scholar]
- COP26: Voluntary Carbon Market Value Tops $1 Bil in 2021. Available online: https://www.spglobal.com/commodityinsights/en/market-insights/podcasts/energy-evolution/040723-ceraweek-powerflex-electric-vehicle-gridpoint-energy-management-transition (accessed on 11 April 2023).
- Phelps, J.; Webb, E.L.; Adams, W.M. Biodiversity Co-Benefits of Policies to Reduce Forest-Carbon Emissions. Nat. Publ. Group. 2012, 2, 497–503. [Google Scholar] [CrossRef]
- West, T.A.P.; Börner, J.; Sills, E.O.; Kontoleon, A. Overstated Carbon Emission Reductions from Voluntary REDD + Projects in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2020, 117, 24188–24194. [Google Scholar] [CrossRef]
- Badgley, G.; Freeman, J.; Hamman, J.J.; Haya, B.; Trugman, A.T.; Anderegg, W.R.L.; Cullenward, D. Systematic Over-Crediting in California’s Forest Carbon Offsets Program. bioRxiv 2021, 28, 1433–1445. [Google Scholar] [CrossRef]
- Remucal, J.M.; Mcgee, J.D.; Fehrenbacher, M.M.; Best, C.; Mitchell, R.J. Application of the Climate Action Reserve’s Forest Project Protocol to a Longleaf Pine Forest under Restoration Management. J. For. 2013, 111, 59–66. [Google Scholar] [CrossRef]
- Puhlick, J.J.; Brantley, S.T.; O’Halloran, T.L.; Clay, L.; Klepzig, K.D. Perspectives: Carbon Markets Might Incentivize Poorer Ecological Outcomes in Longleaf Pine Ecosystems. For. Ecol. Manag. 2022, 520, 120421. [Google Scholar] [CrossRef]
- Ureta, J.C.; Clay, L.; Motallebi, M.; Ureta, J. Quantifying the Landscape ’ s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services. Land 2020, 10, 21. [Google Scholar] [CrossRef]
- Schägner, J.P.; Brander, L.; Maes, J.; Hartje, V. Mapping Ecosystem Services’ Values: Current Practice and Future Prospects. Ecosyst. Serv. 2013, 4, 33–46. [Google Scholar] [CrossRef]
- Schröter, M.; Remme, R.P. Spatial Prioritisation for Conserving Ecosystem Services: Comparing Hotspots with Heuristic Optimisation. Landsc. Ecol. 2016, 31, 431–450. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Dong, H.; Zhou, K.; Zhang, X. The Impact of Urbanization on Ecosystem Services: Both Time and Space Are Important to Identify Driving Forces. J. Environ. Manag. 2023, 347, 119161. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and Ecosystem Services in Forest Ecosystems: A Research Agenda for Applied Forest Ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Dertien, J.S.; Baldwin, R.F. Does Scale or Method Matter for Conservation? Application of Directional and Omnidirectional Connectivity Models in Spatial Prioritizations. Front. Conserv. Sci. 2023, 4, 976914. [Google Scholar] [CrossRef]
- Kang, M.J.; Siry, J.P.; Colson, G.; Ferreira, S. Do Forest Property Characteristics Reveal Landowners’ Willingness to Accept Payments for Ecosystem Services Contracts in Southeast Georgia, U.S.? Ecol. Econ. 2019, 161, 144–152. [Google Scholar] [CrossRef]
- Michaelowa, A.; Shishlov, I.; Brescia, D.; Michaelowa, A. Evolution of International Carbon Markets: Lessons for the Paris Agreement Article Title: Evolution of International Carbon Markets-Lessons for the Paris Agreement. Wiley Clim. Chang. 2019, 10, e613. [Google Scholar] [CrossRef]
- Cooper, L.; MacFarlane, D. Climate-Smart Forestry: Promise and Risks for Forests, Society, and Climate. PLoS Clim. 2023, 2, e0000212. [Google Scholar] [CrossRef]
- The World Bank. State and Trends of Carbon Pricing 2024; The World Bank: Washington, DC, USA, 2024. [Google Scholar]
- American Carbon Registry. Improved Forest Management Methodology for Quantifying Removals and Emission Reductions through Increased Forest Carbon Sequestration on Non-Federal US Forestlands; American Carbon Registry: North Little Rock, AR, USA, 2018. [Google Scholar]
- Galik, C.S.; Murray, B.C.; Mitchell, S.; Cottle, P. Alternative Approaches for Addressing Non-Permanence in Carbon Projects: An Application to Afforestation and Reforestation under the Clean Development Mechanism. Mitig. Adapt. Strat. Glob. Chang. 2016, 21, 101–118. [Google Scholar] [CrossRef]
- Berzinis, R.W. Long-Term and Two-Period Analysis of Hydrologic Conditions of the South Edisto River. J. S. Carol. Water Resour. 2017, 4, 13–20. [Google Scholar]
- SCDNR. An Overview of the Eight Major River Basins of South Carolina; SCDNR: West Columbia, SC, USA, 2013. [Google Scholar]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land Changes and Their Driving Forces in the Southeastern United States. Reg. Environ. Chang. 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen Years of Change in the Global Terrestrial Human Footprint and Implications for Biodiversity Conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef]
- DHEC. Watershed Water Quality Assessment Edisto River Basin 2012; DHEC: Colombia, SC, USA, 2012. [Google Scholar]
- de Groot, D.; Brander, L.; Max Finlayson, C. Wetland Ecosystem Services. In The Wetland Book: I: Structure and Function, Management, and Methods; Springer: Dordrecht, The Netherlands, 2018; pp. 323–333. ISBN 9789048196593. [Google Scholar]
- Miller, K.A.; Snyder, S.A.; Kilgore, M.A. An Assessment of Forest Landowner Interest in Selling Forest Carbon Credits in the Lake States, USA. For. Policy Econ. 2012, 25, 113–122. [Google Scholar] [CrossRef]
- Busch, J.; Godoy, F.; Turner, W.R.; Harvey, C.A. Biodiversity Co-Benefits of Reducing Emissions from Deforestation under Alternative Reference Levels and Levels of Finance. Conserv. Lett. 2011, 4, 101–115. [Google Scholar] [CrossRef]
- Gosnell, H.; Charnley, S.; Stanley, P. Climate Change Mitigation as a Co-Benefit of Regenerative Ranching: Insights from Australia and the United States. Interface Focus. 2020, 10, 20200027. [Google Scholar] [CrossRef]
- Krauss, K.W.; Noe, G.B.; Duberstein, J.A.; Conner, W.H.; Stagg, C.L.; Cormier, N.; Jones, M.C.; Bernhardt, C.E.; Graeme Lockaby, B.; From, A.S.; et al. The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Glob. Biogeochem. Cycles 2018, 32, 817–839. [Google Scholar] [CrossRef]
- Pattison-Williams, J.K.; Pomeroy, J.W.; Badiou, P.; Gabor, S. Wetlands, Flood Control and Ecosystem Services in the Smith Creek Drainage Basin: A Case Study in Saskatchewan, Canada. Ecol. Econ. 2018, 147, 36–47. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A New Approach to Modeling the Sediment Retention Service (InVEST 3.0): Case Study of the Cape Fear Catchment, North Carolina, USA. Sci. Total Environ. 2015, 524–525, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Lendemer, J.C. Bacidia gullahgeechee (Bacidiaceae, Lecanoromycetes) an Unusual New Species Potentially Endemic to the Globally Unique Ashepoo-Combahee-Edisto River Basin of Southeastern North America. Bryologist 2018, 121, 536–546. [Google Scholar] [CrossRef]
- Billah, M.M.; Goodall, J.L. Annual and Interannual Variations in Terrestrial Water Storage during and Following a Period of Drought in South Carolina, USA. J. Hydrol. 2011, 409, 472–482. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.; Van Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 1983, 50, 885–900. [Google Scholar] [CrossRef]
- InVEST User Guide 3.14. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html (accessed on 9 June 2021).
- Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; Penning-ton, D.; Mendoza, G.; Aukema, J.; Foster, J.; Forrest, J.; et al. InVEST 3.6.0 User’s Guide. The Natural Capital Project; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- U.S. Geological Survey. National Land Cover Database; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2018. [Google Scholar]
- McCarney-Castle, K.; Childress, T.M.; Heaton, C.R. Sediment Source Identification and Load Prediction in a Mixed-Use Piedmont Watershed, South Carolina. J. Environ. Manag. 2017, 185, 60–69. [Google Scholar] [CrossRef]
- Clay, L.; Motallebi, M.; Song, B. An Analysis of Common Forest Management Practices for Carbon Sequestration in South Carolina. Forests 2019, 10, 949. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.L.; Birdsey, R.A. Measurement Guidelines for the Sequestration of Forest Carbon; USDA: Washington, DC, USA, 2007. [Google Scholar]
- PRISM Climate Group—Precipitation. Available online: https://prism.oregonstate.edu/recent/ (accessed on 9 June 2021).
- South Carolina Dept of Natural Resources. SCDNR—LiDAR Data Status by County. Available online: https://www.dnr.sc.gov/gis/lidar.html (accessed on 2 February 2021).
- Renard, K.G.; Freimund, J.R. Using Monthly Precipitation Data to Estimate the R-Factor in the Revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- ESRI USA Soils Erodibility Factor|ArcGIS Hub. Available online: https://hub.arcgis.com/datasets/ac1bc7c30bd4455e85f01fc51055e586/explore (accessed on 3 September 2024).
- Alvarez, M. Forest Inventory and Analysis Database 2021; U.S. Department of Agriculture: Washington, DC, USA, 2023. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: http://websoilsurvey.sc.egov.usda.gov/ (accessed on 24 February 2021).
- USDA Forest Service—National Forest Type Dataset. Available online: https://data.fs.usda.gov/geodata/rastergateway/forest_type/index.php (accessed on 9 June 2021).
- U.S. Geological Survey. The National Hydrography Dataset (NHD) [WWW Document]. 2018. Available online: https://nhd.usgs.gov/ (accessed on 3 May 2021).
- Grantham, H.S.; Duncan, A.; Evans, T.D.; Jones, K.R.; Beyer, H.L.; Schuster, R.; Walston, J.; Ray, J.C.; Robinson, J.G.; Callow, M.; et al. Anthropogenic Modification of Forests Means Only 40% of Remaining Forests Have High Ecosystem Integrity. Nat. Commun. 2020, 11, 5978. [Google Scholar] [CrossRef]
- Beasley, B.; Marshall, W.; Miglarese, A.; James, S.; Vanden Houten, C.; The Edisto River Basin Project Report. South Carolina Department of Natural Resources. 1996; pp. 1–240. Available online: https://www.dnr.sc.gov/water/river/pdf/1996EdistoProjectReport.pdf (accessed on 9 October 2024).
- U.S. Geological Survey. Surface Water Data for USA: USGS Monthly Statistics; U.S. Geological Survey: Reston, VA, USA, 2024. [Google Scholar]
- Forest Landscape Integrity Index. Available online: https://www.forestlandscapeintegrity.com/home (accessed on 20 March 2022).
- Moldenhauer, M.C.; Bolding, S.M.C. Parcelization of South Carolina’s Private Forestland: Loggers’ Reactions to a Growing Threat. For. Prod. J. 2009, 6, 37–43. [Google Scholar]
- Loveland Technologies Regrid Data. Loveland Technol. Available online: https://regrid.com/terms/researchers-academics (accessed on 3 May 2024).
- U.S. Geological Survey. Protected Areas Database of the United States (PAD-US) 4.0 [Dataset]; U.S. Geological Survey (USGS) Gap Analysis Project (GAP): Reston, VA, USA, 2024. [Google Scholar]
- Zhang, Q.; Blomquist, J.D.; Fanelli, R.M.; Keisman, J.L.D.; Moyer, D.L.; Langland, M.J. Progress in Reducing Nutrient and Sediment Loads to Chesapeake Bay: Three Decades of Monitoring Data and Implications for Restoring Complex Ecosystems. Wiley Interdiscip. Rev. Water 2023, 10, e1671. [Google Scholar] [CrossRef]
- Welch, H. Forestry BMPs in South Carolina: Compliance and Implementation Monitoring Report; South Carolina Forestry Commission: Columbia, SC, USA, 2020. [Google Scholar]
- Alig, R.; Stewart, S.; Wear, D.; Stein, S. Conversions of Forest Land: Trends, Determinants, Projections, and Policy Considerations. In Proceedings of the Advances in Threat Assessment and Their Application to Forest and Rangeland Management, Boulder, CO, USA, 18–20 July 2006. [Google Scholar]
- Nowak, D.J.; Walton, J.T. Projected Urban Growth (2000–2050) and Its Estimated Impact on the US Forest Resource. J. For. 2005, 103, 383–389. [Google Scholar] [CrossRef]
- Johnson, K.K.; Parton, L.; Nolte, C.; Williamson, M.; Nogeire-McRae, T.; Paudel, J.; Brandt, J. Moving to the Country: Understanding the Effects of COVID-19 on Property Values and Farmland Development Risk. J. Hous. Econ. 2023, 62, 101955. [Google Scholar] [CrossRef]
- Merenlender, A.M.; Huntsinger, L.; Guthey, G.; Fairfax, S.K. Land Trusts and Conservation Easements: Who Is Conserving What for Whom? Patronatos Agrarios y Servicios de Conservación: ¿Quién Está Conservando Qué Para Quién? Conserv. Biol. 2004, 18, 65–76. [Google Scholar] [CrossRef]
- Haya, B.K.; Evans, S.; Brown, L.; Bukoski, J.; Butsic, V.; Cabiyo, B.; Jacobson, R.; Kerr, A.; Potts, M.; Sanchez, D.L. Comprehensive Review of Carbon Quantification by Improved Forest Management Offset Protocols. Front. For. Glob. Chang. 2023, 6, 958879. [Google Scholar] [CrossRef]
- Climate, Community & Biodiversity Standards—Verra. Available online: https://verra.org/programs/ccbs/ (accessed on 17 July 2024).
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A Need for Relevant Indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, D.-H.; Kim, S.-I. Characteristics of Forest Carbon Credit Transactions in the Voluntary Carbon Market. Clim. Policy 2018, 18, 235–245. [Google Scholar] [CrossRef]
- White, A.E.; Lutz, D.A.; Howarth, R.B.; Soto, J.R. Small-Scale Forestry and Carbon Offset Markets: An Empirical Study of Vermont Current Use Forest Landowner Willingness to Accept Carbon Credit Programs. PLoS ONE 2018, 13, e0201967. [Google Scholar] [CrossRef]
Data | Year | Data Type | Applicable Model | Sources |
---|---|---|---|---|
Digital Elevation Model | 2015 | Raster (.tif) | SDR | [50] |
Iso-erosivity map (R factor) | 2021 | Raster (.tif) | SDR | [51] |
Soil erodibility map (K factor) | 2015 | Raster (.tif) | SDR | [52] |
Land use/land cover | 2021 | Raster (.tif) | SDR, WY, C | [45,53] |
Precipitation | 1990–2020 average | Raster (.tif) | WY | [49] |
Evapotranspiration | From precipitation data | Raster (.tif) | WY | [54] |
Depth to root restricting layer | 2019 data | Raster (.tif) | WY | [55] |
Plant available water fraction | 2019 data | Raster (.tif) | WY | [55] |
Forest type carbon stocks | 2021 data | Non-spatial data (.csv) | C | [53] |
Forest type (part of land use land cover raster) | 2008 | Raster (.tif) | SDR, WY, C | [56] |
Watershed boundary | 2013 | Vector (.shp) | SDR, WY | [57] |
Biophysical table | NA | Non-spatial data (.csv) | SDR, WY, C | [53,54,55] |
Forest Integrity Index | 2020 | Raster (.tif) | Scale: 1–10 | [58] |
Minimum | Maximum | Mean | St. Dev | Variables Used in TA Model | |
---|---|---|---|---|---|
Sediment Export (tons/pixel) | 0 | 305.79 | 0.025 | 0.50 | >0.0068 |
Water Yield (mm/pixel) | 181.86 | 1308.16 | 570.19 | 270.99 | >412.95 |
Forest Integrity Index (scale) | 0 | 10 | 1.566 | 1.861 | <6 |
Parcel Total Area | Modeled TA Total Area | |
---|---|---|
All Parcels | 719,018 acres | 23,709 acres |
Parcels greater than 20 acres | 70,509 acres | 3763 acres |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clay, L.; Motallebi, M.; O’Halloran, T.L. Quantifying Ecosystem Services to Maximize Co-Benefits under Market-Based Conservation Solutions in the Edisto River Basin, South Carolina. Forests 2024, 15, 1796. https://doi.org/10.3390/f15101796
Clay L, Motallebi M, O’Halloran TL. Quantifying Ecosystem Services to Maximize Co-Benefits under Market-Based Conservation Solutions in the Edisto River Basin, South Carolina. Forests. 2024; 15(10):1796. https://doi.org/10.3390/f15101796
Chicago/Turabian StyleClay, Lucas, Marzieh Motallebi, and Thomas L. O’Halloran. 2024. "Quantifying Ecosystem Services to Maximize Co-Benefits under Market-Based Conservation Solutions in the Edisto River Basin, South Carolina" Forests 15, no. 10: 1796. https://doi.org/10.3390/f15101796
APA StyleClay, L., Motallebi, M., & O’Halloran, T. L. (2024). Quantifying Ecosystem Services to Maximize Co-Benefits under Market-Based Conservation Solutions in the Edisto River Basin, South Carolina. Forests, 15(10), 1796. https://doi.org/10.3390/f15101796