Estimation of Water Consumption of Haloxylon ammodendron Sand-Fixing Forest in Minqin Oasis-Desert Ecotone of China Based on Leaf Index, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Areas and Sample Selection
2.3. Determination of the Stem Sap Flow and Water Consumption
2.4. Determination of Ab Growth
2.5. Coupling Simulation of Water Consumption in H. ammodendron Stands
3. Results
3.1. Relationship between Water Consumption and Growth
3.2. Extrapolation of Water Consumption in H. ammodendron Stands
3.3. Validation of Water Consumption in H. ammodendron Stands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, D.; Song, A.; Li, D.; Ding, X.; Wang, Z. Assessing the relative role of climate change and human activities in desertification of north china from 1981 to 2010. Front. Earth Sci. 2019, 13, 43–54. [Google Scholar] [CrossRef]
- Pardikes, N.A.; Revilla, T.A.; Lue, C.H.; Thierry, M.; Souto-Vilarós, D.; Hrcek, J. Effects of phenological mismatch under warming are modified by community context. Glob. Change Biol. 2022, 28, 4013–4026. [Google Scholar] [CrossRef]
- Rahimi, J.; Khajeh, M.; Alipour, A.; Bazrafshan, O. Quantitative assessment of climate change impacts on the spatial characteristics of drought hazard in arid and semi-arid regions of Iran. Int. J. Water 2021, 14, 124–140. [Google Scholar] [CrossRef]
- Jia, Z.Q.; Lu, Q.; Guo, B.G.; Zhao, M.; Liang, Y.Q. Progress in the study of Psammophyte Haloxylon. For. Res. 2004, 17, 125–132. [Google Scholar]
- Zhao, P.; Xu, X.Y.; Qu, J.J.; Zhang, J.H.; Ma, Q.L.; Zhang, H.W.; Xu, G.X.; Ma, J.M.; Wu, Y.M. Relationships between artificial Haloxylon ammodendron communities and soil-water factors in Minqin oasis-desert ecotone. Ecol. Sin. 2017, 37, 1496–1505. [Google Scholar]
- Zhang, X.Y.; Chu, J.M.; Meng, P.; Yao, Z.W.; Wang, H.S.; Li, D.L.; Jiang, S.X. The effect of environmental factors on stem sap flow characteristics of Haloxylon ammodendron (C.A.Mey.) bunge in Minqin oasis-desert. Acta Ecol. Sin. 2017, 37, 1525–1536. [Google Scholar]
- Qiang, Y.; Zhang, J.; Xu, X.; Liu, H.; Duan, X. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the minqin oasis-desert transition zone, China. J. Arid. Land 2023, 15, 842–857. [Google Scholar] [CrossRef]
- Yuan, G.F.; Luo, Y.; Shao, M.A.; Zhang, P.; Zhu, X.C. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin. Sci. China Earth Sci. 2015, 45, 695–706. [Google Scholar] [CrossRef]
- Liu, H.; She, C.Y.; Bai, Z.Q.; Li, Q.; Liu, D.; Han, Y.L. Sap flow and transpiring water-consumption of Pinus sibirica in different diameter classes. Acta Bot. Boreali-Occident. Sin. 2016, 36, 390–397. [Google Scholar]
- Jin, Y.X.; Wang, X.P.; Zhang, Y.F.; Pan, Y.X.; Hu, R.; Xu, H.J.; Shi, W. Transpiration of Reaumuria soongorica and Salsola passerine at different scales. J. Desert Res. 2018, 38, 286–293. [Google Scholar]
- Xu, H.; Li, Y.; Xu, G.; Zou, T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 2007, 30, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Lv, G.; Qie, Y.; Wang, H.; Yang, F.; Jiang, L. Response of morphological characters and photosynthetic characteristics of Haloxylon ammodendron to water and salt stress. Sustainability 2021, 13, 388. [Google Scholar] [CrossRef]
- Li, H.; Hu, S.; Zhu, H.; Li, X. Characterization of stem sap flow Haloxylon ammodendron by using thermal dissipation technology. Acta Ecol. Sin. 2017, 37, 7187–7196. [Google Scholar]
- Ji, X.; Zhao, W.; Kang, E.; Jin, B.; Xu, S. Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of Northwestern China. Hydrol. Process. 2016, 30, 4841–4854. [Google Scholar] [CrossRef]
- Si, J.H.; Feng, Q.; Zhang, X.Y.; Chang, Z.Q.; Su, Y.H.; Xi, H.Y. Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season. J. Integr. Plant Biol. 2007, 49, 425–436. [Google Scholar] [CrossRef]
- Fisher, R.A.; Williams, M.; Da Costa, A.L.; Malhi, Y.; Da Costa, R.F.; Almeida, S.; Meir, P. The response of an Eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment. Glob. Change Biol. 2007, 13, 2361–2378. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, F.; Chang, S.; Shi, Q.; Li, X.; Lu, J. Scaling up for transpiration of Pinaceae schrenkiana stands based on 8 hm super (2) permanent plots in Tianshan Mountains. Acta Ecol. Sin. 2011, 31, 3330–3339. [Google Scholar]
- Cao, X.M.; Chen, X.; Wang, J.L.; Wang, Q.; Wang, S. Water consumption and transpiration of non-irrigated Haloxylon ammodendron in hinterland of Taklimakan Desert. Arid. Land Geogr. 2013, 36, 292–302. [Google Scholar]
- Bai, Y.G.; Zhang, J.H.; Wang, X.Y.; Li, B.; Fan, H.B. Studies on scale convention of individual Populus euphratica and forest water consumption in Tarim Basin. China Water Resour. 2008, 5, 24–25. [Google Scholar]
- Sun, L.; Wang, C.K.; Yang, G.T.; Zhang, Q.Z.; Zhou, X.F. Sap flow flux of Pinus koraiensis plantation measured by thermal dissipation probes. Sci. Silva. Sin 2007, 43, 8–14. [Google Scholar]
- Chabot, R.; Bouarfa, S.; Zimmer, D.; Chaumont, C.; Moreau, S. Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy. Agric. Water Manag. 2005, 75, 10–24. [Google Scholar] [CrossRef]
- Yue, G.; Zhao, H.; Zhang, T.; Zhao, X.; Zhao, W.; Niu, L.; Liu, X. Estimation of transpiration in communities dominated by shrub Caragana microphylla. J. Plant Ecol. (Chin. Version) 2009, 33, 508–515. [Google Scholar]
- Yang, J.; Feng, J.; He, Z. Estimating whole-tree water use of Picea crassifolia based on heat ratio method. Chin. J. Plant Ecol. 2018, 42, 195–201. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Villar, R. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Craine, J.M. Resource Strategies of Wild Plants; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Ogle, K.; Pockman, W.T.; Schwinning, S. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Anderson-Teixeira, K.J.; Miller, A.D.; Mohan, J.E.; Hudiburg, T.W.; Duval, B.D.; DeLucia, E.H. Altered dynamics of forest recovery under a changing climate. Glob. Change Biol. 2013, 19, 2001–2021. [Google Scholar] [CrossRef]
- Granier, A. Sap flow measurements in Douglas-fir tree trunks by means of a new thermal method. Ann. Des Sci. For. 1987, 44, 1–14. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Zeng, N. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Otkin, J.A.; Ji, P. Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environ. Res. Lett. 2022, 17, 054041. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 2022, 7, 124. [Google Scholar] [CrossRef]
- Li, X.E.; Song, X.; Zhao, J.; Lu, H.; Qian, C.; Zhao, X. Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow. Ecol. Evol. 2021, 11, 14042–14055. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Sun, L.; Luo, Y. Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China. Agric. Water Manag. 2016, 177, 172–180. [Google Scholar] [CrossRef]
- Lüttschwager, D.; Jochheim, H. Drought primarily reduces canopy transpiration of exposed beech trees and decreases the share of water uptake from deeper soil layers. Forests 2020, 11, 537. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, F.; Anderson, M.; Kustas, W.; Nieto, H.; Knipper, K.; Karnieli, A. Evaluation of satellite Leaf Area Index in California vineyards for improving water use estimation. Irrig. Sci. 2022, 40, 531–551. [Google Scholar] [CrossRef]
Stand Age | Number | Plant Height (cm) | Ground Diameter (cm) | Crown Breadth (cm) | Stand Density (plant.hm−2) | Soil Moisture Content of 0–100 cm (%) | Average Temperature from May to October (°C) |
---|---|---|---|---|---|---|---|
H20 | N20-1 | 286 | 12.48 | 285 × 240 | 460 ± 247.09 | 2.032 ± 1.415 | 19.42 ± 6.28 |
N20-2 | 300 | 12.97 | 227 × 266 | ||||
N20-3 | 272 | 6.46 | 197 × 164 | ||||
N20-4 | 211 | 7.16 | 186 × 185 | ||||
H15 | N15-1 | 306 | 7.91 | 360 × 268 | 880 ± 162.86 | 2.896 ± 1.452 | 19.43 ± 6.40 |
N15-2 | 400 | 7.6 | 250 × 238 | ||||
N15-3 | 356 | 9.04 | 398 × 350 | ||||
N15-4 | 370 | 6.2 | 236 × 198 | ||||
H10 | N10-1 | 248 | 4.72 | 412 × 315 | 853 ± 172.57 | 2.003 ± 1.185 | 19.42 ± 6.28 |
N10-2 | 253 | 4.51 | 322 × 217 | ||||
N10-3 | 294 | 5.42 | 365 × 328 | ||||
N10-4 | 275 | 6.39 | 366 × 278 | ||||
H5 | N5-1 | 257 | 5.63 | 219.5 × 201.5 | 138 ± 20.09 | 2.839 ± 1.437 | 19.42 ± 6.29 |
N5-2 | 199 | 5.78 | 212.7 × 135.4 | ||||
N5-3 | 217 | 5.28 | 211.5 × 113.7 | ||||
N5-4 | 113 | 4.43 | 182.6 × 141.8 |
Age | H5 | H10 | H15 | H20 |
---|---|---|---|---|
Ab surface area | y = 12.216(d2h) + 23.662 | y = 7.2467(d2h) − 18.343 | y = 3.1377(d2h) − 18.476 | y = 6.3084(d2h) + 26.629 |
R2 = 0.9550 | R2 = 0.9041 | R2 = 0.8986 | R2 = 0.9382 | |
y = 36.745 e0.1589(d2h) | y = 14.734 e0.1139(d2h) | y = 5.8495e0.0736(d2h) | y = 38.223 e 0.0827(d2h) | |
R2 = 0.9635 | R2 = 0.9509 | R2 = 0.9469 | R2 = 0.9406 | |
y = 32.234(d2h)0.6005 | y = 3.3979(d2h)1.1801 | y = 0.5095(d2h)1.4025 | y = 23.235(d2h)0.583 | |
R2 = 0.9291 | R2 = 0.9173 | R2 = 0.9215 | R2 = 0.9172 | |
y = 44.456Ln(d2h) + 15.837 | y = 70.214Ln(d2h) − 100.92 | y = 57.175Ln(d2h) − 115.78 | y = 43.622Ln(d2h) − 9.7331 | |
R2 = 0.8559 | R2 = 0.769 | R2 = 0.7763 | R2 = 0.8694 | |
Dry weight for Ab | y = 0.096(d2h) + 1.6707 | y = 1.7691(d2h) − 6.298 | y = 0.5499(d2h) − 1.9631 | y = 0.6214(d2h) + 1.7231 |
R2 = 0.9492 | R2 = 0.8588 | R2 = 0.9397 | R2 = 0.8896 | |
y = 1.709 e0.00451(d2h) | y = 2.514e0.1305(d2h) | y = 2.0082e0.0616(d2h) | y = 3.307 e0.0834(d2h) | |
R2 = 0.9601 | R2 = 0.9243 | R2 = 0.9680 | R2 = 0.9220 | |
y = 1.6643(d2h)0.1649 | y = 0.4639(d2h)1.3482 | y = 0.3606(d2h)1.043 | y = 1.788(d2h)0.642 | |
R2 = 0.8552 | R2 = 0.8874 | R2 = 0.9416 | R2 = 0.8558 | |
y = −0.3489Ln(d2h) + 1.6174 | y = 16.847Ln(d2h) − 26.078 | y = 8.8827Ln(d2h) − 16.146 | y = 4.6152Ln(d2h) − 2.5109 | |
R2 = 0.8273 | R2 = 0.7110 | R2 = 0.7744 | R2 = 0.7744 |
Age | Surface Area | Dry Weight |
---|---|---|
H5 | y = 0.0109x + 18.767 R2 = 0.8324 | y = 0.5578x − 33.139 R2 = 0.8302 |
H10 | y = −0.0106x − 15.514 R2 = 0.8314 | y = 0.0493x + 4.5864 R2 = 0.8817 |
H15 | y = 0.0298x + 108.44 R2 = 0.8405 | y = 0.1485x + 94.616 R2 = 0.8618 |
H20 | y = 0.0214x + 10.373 R2 = 0.8740 | y = 0.0590x + 15.03 R2 = 0.8595 |
Age | H5 | H10 | H15 | H20 |
---|---|---|---|---|
Standard branch d2h value (cm3) | 3.45 ± 1.68 | 4.99 ± 1.79 | 9.09 ± 1.70 | 8.04 ± 1.67 |
Standard number of branches (branches) | 112 ± 24 | 230 ± 71 | 326 ± 57 | 89 ± 18 |
Converted surface area of Ab of a single plant (cm2) | 6491.47 ± 1852.36 | 5737.28 ± 1045.73 | 2899.15 ± 2072.73 | 3248.97 ± 1886.42 |
Converted single-plant Ab dry weight/g | 249.05 ± 175.88 | 1077.62 ± 241.38 | 1155.74 ± 875.21 | 1952.04 ± 710.80 |
Age | Density (Plants/m2) | Ab Surface Area as Scalar Quantity | Ab Dry Weight as Scalar Quantity | ||
---|---|---|---|---|---|
Fit Function | Water Consumption in Sample Plots (kg) | Fit Function | Water Consumption in Sample Plots (kg) | ||
H5 | 0.138 ± 0.02 | y = 0.5200x + 5497.6 R2 = 0.9197 | 9464.87 | y = 0.0752x + 119.33 R2 = 0.9262 | 8698.02 |
H10 | 0.088 ± 0.01 | y = 0.5167x + 4412.3 R2 = 0.9541 | 4860.40 | y = 0.1354x + 819.87 R2 = 0.9312 | 4039.30 |
H15 | 0.085 ± 0.02 | y = 0.1400x + 151.45 R2 = 0.9552 | 12,400.95 | y = 0.0559x + 1.543 R2 = 0.9766 | 12,646.37 |
H20 | 0.046 ± 0.02 | y = 0.1412x + 1369.7 R2 = 0.9357 | 5310.83 | y = 0.0742x + 68.907 R2 = 0.9459 | 3098.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, Y.; Zhang, M.; Zhang, Y.; Zhang, J.; Zhao, P.; Fu, G. Estimation of Water Consumption of Haloxylon ammodendron Sand-Fixing Forest in Minqin Oasis-Desert Ecotone of China Based on Leaf Index, China. Forests 2024, 15, 52. https://doi.org/10.3390/f15010052
Qiang Y, Zhang M, Zhang Y, Zhang J, Zhao P, Fu G. Estimation of Water Consumption of Haloxylon ammodendron Sand-Fixing Forest in Minqin Oasis-Desert Ecotone of China Based on Leaf Index, China. Forests. 2024; 15(1):52. https://doi.org/10.3390/f15010052
Chicago/Turabian StyleQiang, Yuquan, Mingjun Zhang, Yu Zhang, Jinchun Zhang, Peng Zhao, and Guiquan Fu. 2024. "Estimation of Water Consumption of Haloxylon ammodendron Sand-Fixing Forest in Minqin Oasis-Desert Ecotone of China Based on Leaf Index, China" Forests 15, no. 1: 52. https://doi.org/10.3390/f15010052
APA StyleQiang, Y., Zhang, M., Zhang, Y., Zhang, J., Zhao, P., & Fu, G. (2024). Estimation of Water Consumption of Haloxylon ammodendron Sand-Fixing Forest in Minqin Oasis-Desert Ecotone of China Based on Leaf Index, China. Forests, 15(1), 52. https://doi.org/10.3390/f15010052