The Observation of Creep Strain Distribution in Laminated Veneer Lumber Subjected to Different Loading Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of LVL
2.3. Characterization
2.3.1. Static Mechanical Properties of LVL
2.3.2. Creep Behaviors of LVL
2.3.3. Creep Strain Dissipation and the Resultant Plastic Deformation of LVL
3. Results and Discussion
3.1. Comparison between the Fitting Accuracy of Creep Numerical Models
3.2. Creep Behaviors of LVL Subjected to Various Loading Regimes
3.3. Creep Strain Dissipation of LVL
3.4. Plastic Creep Deformation of LVL
4. Conclusions
- (1)
- The results demonstrated obvious loading regime dependency of the creep behaviors of LVL, along with nonlinearity in all observed creep deformations of LVL, as the creep stress levels were elevated from 30% to 50% of the ultimate strength.
- (2)
- The flat-wise and edge-wise bent LVL displayed coupled dissipation of creep strain that concentrates on the surface and sub-surface of the LVL, suggesting that the creep strain dissipates along and transits the wood–adhesive interface as the LVL is subjected to flexure. In contrast, the creep dissipation was majorly uniform in the axial compression creep of the LVL along with the wood–adhesive interface.
- (3)
- The plastic deformation of the flat-wise bent LVL was minor, benefiting from the wood recovery. Significant plastic deformation can be observed after edge-wise bending and axial compression creep due to the direct contact between the loading plane and the wood–adhesive interface. Due to the substantial differences in the creep responses of the wood cell wall and adhesive, premature failure of the wood–adhesive interface can trigger accelerated creep deformation and resultant plastic deformation after creep. Meanwhile, cracked and wrinkled fibers could be another reason for the plastic deformation after creep at 50% of the ultimate strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Jin, C.; Wang, S.; Wang, Y.; Wei, L.; Zheng, L.; Gu, H.; Lam, S.S.; Naushad, M.; Li, C.; et al. Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. Chemosphere 2023, 323, 138245. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Tan, Y.; Wang, K.; Cai, Y.; Li, J.; Sonne, C.; Li, C. Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Res. 2022, 223, 119011. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, K.; Li, C.; Cai, Y.; Li, J.; Lam, S.S.; Sonne, C. High-performance and scalable wood-based solar-driven interfacial evaporator with corru-gated structure for continuous desalination. J. Clean. Prod. 2023, 418, 138024. [Google Scholar] [CrossRef]
- Li, C.; Ye, H.; Ge, S.; Yao, Y.; Ashok, B.; Hariram, N.; Liu, H.; Tian, H.; He, Y.; Guo, G.; et al. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. J. Mater. Res. Technol. 2022, 19, 3603–3615. [Google Scholar] [CrossRef]
- Zhang, X.; Popovski, M.; Tannert, T. High-capacity hold-down for mass-timber buildings. Constr. Build. Mater. 2018, 164, 688–703. [Google Scholar] [CrossRef]
- Cornwall, W. Tall timber. Science 2016, 353, 1354–1356. [Google Scholar] [CrossRef]
- Gong, M. Engineered Wood Products for Construction; IntechOpen: London, UK, 2022. [Google Scholar]
- Sun, X.; He, M.; Li, Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 2020, 249, 118751. [Google Scholar] [CrossRef]
- Xing, D.; Wang, X.; Wang, S. Temperature-Dependent Creep Behavior and Quasi-Static Mechanical Properties of Heat-Treated Wood. Forests 2021, 12, 968. [Google Scholar] [CrossRef]
- Hsieh, T.-Y.; Chang, F.-C. Effects of moisture content and temperature on wood creep. Holzforschung 2018, 72, 1071–1078. [Google Scholar] [CrossRef]
- Kuzman, M.K.; Klarić, S.; Barčić, A.P.; Vlosky, R.P.; Janakieska, M.M.; Grošelj, P. Architect perceptions of engineered wood products: An exploratory study of selected countries in Central and Southeast Europe. Constr. Build. Mater. 2018, 179, 360–370. [Google Scholar] [CrossRef]
- Musselman, E.S.; Dinehart, D.W.; Walker, S.M.; Mancini, M.L. The effect of holes on the creep behavior and flexural capacity of laminated veneer lumber (LVL) beams. Constr. Build. Mater. 2018, 180, 167–176. [Google Scholar] [CrossRef]
- Fu, H.; Dun, M.; Wang, H.; Wang, W.; Ou, R.; Wang, Y.; Liu, T.; Wang, Q. Creep response of wood flour-high-density polyethylene/laminated veneer lumber coextruded composites. Constr. Build. Mater. 2020, 237, 117499. [Google Scholar] [CrossRef]
- Kamau-Devers, K.; Miller, S.A. Using a micromechanical viscoelastic creep model to capture multi-phase deterioration in bio-based wood polymer composites exposed to moisture. Constr. Build. Mater. 2022, 314, 125252. [Google Scholar] [CrossRef]
- Jia, N.; Jin, W. Experiment on the Bending Creep Stress Levels Correlation of Laminated Veneer Lumber. For. Sci. Technol. 2008, 3, 38–40. [Google Scholar]
- Sandhaas, C.; Sarnaghi, A.K.; van de Kuilen, J.-W. Numerical modelling of timber and timber joints: Computational aspects. Wood Sci. Technol. 2020, 54, 31–61. [Google Scholar] [CrossRef]
- Yu, Z.; Fan, M. Short- and long-term performance of wood based panel products subjected to various stress modes. Constr. Build. Mater. 2017, 156, 652–660. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, T.; Yang, P.; Chen, M.; Chen, W.; Wang, S.; Zhou, X. Fast atmospheric plasma treatment of LLDPE film for preparing formaldehyde emission-free plywood. Eur. J. Wood Wood Prod. 2020, 78, 705–714. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, W.; Yang, P.; Li, X.; Zhang, T.; Chen, W.; Wang, S.; Zhou, X. Comparative investigation into the interfacial adhesion of plywood prepared by air spray atomization and roller coating. Eur. J. Wood Wood Prod. 2021, 79, 887–896. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, S.; Liu, X.; Cao, Q.; Cao, Y.; Wu, X. Aspergillus niger infection weakens the robustness of bamboo-adhesive interphases by damaging the adhesive and detaching the interfacial bonding. Ind. Crop. Prod. 2023, 204. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Y.; Yang, K.; Yu, P.; Chen, W.; Wang, S.; Chen, M. Clean plasma modification for recycling waste plastic bags: From improving interfacial adhesion with wood towards fabricating formaldehyde-free plywood. J. Clean. Prod. 2020, 269, 122196. [Google Scholar] [CrossRef]
- Sözen, E.; Kayahan, K.; Bardak, T.; Bardak, S. The effects of the moisture content of laminated veneer lumber on bending strength and deformation determination via two-dimensional digital image correlation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5603–5615. [Google Scholar] [CrossRef]
- Wang, J.B.; Lam, F.; Foschi, R.O. Duration-of-load and creep effects in strand-based wood composite: Experimental research. Wood Sci. Technol. 2012, 46, 361–373. [Google Scholar] [CrossRef]
- Hadid, M.; Guerira, B.; Bahri, M.; Zouani, A. Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics. Polym. Test. 2014, 34, 113–119. [Google Scholar] [CrossRef]
- Xu, J.-W.; Li, C.-C.; Liu, J.-W.; Chang, W.-C.; Chang, W.-S.; Wu, J.-H. Assessing the Long-Term Creep Behaviour of Hydrothermally Treated Japanese Cedar Wood Using the Short-Term Accelerated Stepped Isostress Method. Polymers 2023, 15, 4149. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Valipour, H. Experimental and numerical study of long-term behaviour of timber-timber composite (TTC) connections. Constr. Build. Mater. 2021, 304, 124672. [Google Scholar] [CrossRef]
- GB/T 14074-2017; Chinese National Standard for Adhesives. China National Standardization Administration Committee: Beijing, China, 2017.
- GB/T 9846-2015; Chinsese National Standard Plywood for General Use. China National Standardization Administration Committee: Beijing, China, 2015.
- Kazemi-Najafi, S.; Nikray, S.; Ebrahimi, G. A comparison study on creep behavior of wood-plastic composite, solid wood, and polypropylene. J. Compos. Mater. 2012, 46, 801–808. [Google Scholar] [CrossRef]
- Tscharnuter, D.; Muliana, A. Nonlinear response of viscoelastic polyoxymethylene (POM) at elevated temperatures. Polymer 2013, 54, 1208–1217. [Google Scholar] [CrossRef]
- Coppola, B.; Di Maio, L.; Incarnato, L.; Tulliani, J.-M. Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring. Nanomaterials 2020, 10, 814. [Google Scholar] [CrossRef]
- Faraz, M.; Besseling, N.; Korobko, A.; Picken, S. Characterization and Modeling of Creep Behavior of a Thermoset Nanocomposite. Polym. Compos. 2015, 36, 322–329. [Google Scholar] [CrossRef]
- Starkova, O.; Aniskevich, K.; Sevcenko, J.; Bulderberga, O.; Aniskevich, A. Relationship between the residual and total strain from creep-recovery tests of polypropylene/multiwall carbon nanotube composites. J. Appl. Polym. Sci. 2021, 138. [Google Scholar] [CrossRef]
- Hou, J.; Jiang, Y.; Yin, Y.; Zhang, W.; Chen, H.; Yu, Y.; Jiang, Z. Experimental study and comparative numerical modeling of creep behavior of white oak wood with various distributions of earlywood vessel belt. J. Wood Sci. 2021, 67, 57. [Google Scholar] [CrossRef]
- Huang, S.; Yan, L.; Kasal, B. Flexural behaviour of wood beams strengthened by flax-glass hybrid FRP subjected to hygro-thermal and weathering exposures. Constr. Build. Mater. 2023, 365, 130076. [Google Scholar] [CrossRef]
- Cisse, O.; Placet, V.; Guicheret-Retel, V.; Trivaudey, F.; Boubakar, M.L. Creep behaviour of single hemp fibres. Part I: Viscoelastic properties and their scattering under constant climate. J. Mater. Sci. 2015, 50, 1996–2006. [Google Scholar] [CrossRef]
- Fragiacomo, M.; Lukaszewska, E. Influence of the Construction Method on the Long-Term Behavior of Timber-Concrete Composite Beams. J. Struct. Eng. 2015, 141, 04015013. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.; He, M.; Lam, F. Experimental investigation on the rheological behavior of timber in longitudinal and transverse compression. Constr. Build. Mater. 2021, 304, 124633. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zhang, X.; Wu, H.; Wang, Y.; Zhou, N.; Zhao, Z.; Wang, C.; Zhang, X.; Wang, X.; et al. Synthesis and Characterization of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Waste Plant Protein. Polymers 2023, 15, 2975. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, E.; Fu, F.; Lin, L. The differences of viscoelastic properties between the secondary wall S2 layer and compound middle lamella of thermally treated wood. Wood Sci. Technol. 2022, 56, 1509–1525. [Google Scholar] [CrossRef]
- Adler, D.C.; Buehler, M.J. Mesoscale mechanics of wood cell walls under axial strain. Soft Matter 2013, 9, 7138–7144. [Google Scholar] [CrossRef]
- Li, W.; Mei, C.; Bulcke, J.V.D.; Van Acker, J. The effect of water sorption/desorption on fatigue deflection of OSB. Constr. Build. Mater. 2019, 223, 1196–1203. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, W.; Tang, Y.; Yang, F.; Gong, C.; Wang, C.; Li, X.; Li, C. Preparation and Characterization of Soybean Protein Adhesives Modified with an Environmental-Friendly Tannin-Based Resin. Polymers 2023, 15, 2289. [Google Scholar] [CrossRef]
- Wolkenhauer, A.; Avramidis, G.; Hauswald, E.; Militz, H.; Viöl, W. Sanding vs. plasma treatment of aged wood: A comparison with respect to surface energy. Int. J. Adhes. Adhes. 2009, 29, 18–22. [Google Scholar] [CrossRef]
- Pan, Y.H.; Zhong, Z. Analysis of creep and modulus loss of the wood cell wall. Acta Mech. 2016, 227, 3191–3203. [Google Scholar] [CrossRef]
- Hoseinzadeh, F.; Zabihzadeh, S.M.; Dastoorian, F. Creep behavior of heat treated beech wood and the relation to its chemical structure. Constr. Build. Mater. 2019, 226, 220–226. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Li, C.; Liu, Y. Effect of Acetylation on the Physical and Mechanical Performances of Mechanical Densified Spruce Wood. Forests 2022, 13, 1620. [Google Scholar] [CrossRef]
Loading Regimes | Creep Stress Levels | Creep Constants | ||
---|---|---|---|---|
Em (MPa) | Ek (MPa) | m | ||
Flat-wise bending | 30% of the ultimate strength | 6.85 | 669.92 | 0.54 |
40% of the ultimate strength | 6.35 | 82.17 | 0.46 | |
50% of the ultimate strength | 6.97 | 114.34 | 0.47 | |
Edge-wise bending | 30% of the ultimate strength | 10.46 | 41.85 | 0.44 |
40% of the ultimate strength | 11.21 | 37.73 | 0.46 | |
50% of the ultimate strength | 10.27 | 37.21 | 0.45 | |
Axial compression | 30% of the ultimate strength | 28.44 | 682.5 | 0.44 |
40% of the ultimate strength | 25.28 | 910.0 | 0.24 | |
50% of the ultimate strength | 28.80 | 758.3 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Cao, Y.; Cao, X.; Yang, P.; Liu, X.; Tang, R.; Yan, Y.; Wu, Q. The Observation of Creep Strain Distribution in Laminated Veneer Lumber Subjected to Different Loading Regimes. Forests 2024, 15, 179. https://doi.org/10.3390/f15010179
Xu S, Cao Y, Cao X, Yang P, Liu X, Tang R, Yan Y, Wu Q. The Observation of Creep Strain Distribution in Laminated Veneer Lumber Subjected to Different Loading Regimes. Forests. 2024; 15(1):179. https://doi.org/10.3390/f15010179
Chicago/Turabian StyleXu, Shuwei, Yizhong Cao, Xiaobing Cao, Pei Yang, Xiaohan Liu, Ruixing Tang, Yutao Yan, and Qiang Wu. 2024. "The Observation of Creep Strain Distribution in Laminated Veneer Lumber Subjected to Different Loading Regimes" Forests 15, no. 1: 179. https://doi.org/10.3390/f15010179
APA StyleXu, S., Cao, Y., Cao, X., Yang, P., Liu, X., Tang, R., Yan, Y., & Wu, Q. (2024). The Observation of Creep Strain Distribution in Laminated Veneer Lumber Subjected to Different Loading Regimes. Forests, 15(1), 179. https://doi.org/10.3390/f15010179