Ultrasound-Assisted Cold Alkaline Extraction: Increasing Hemicellulose Extraction and Energy Production from Populus Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization and Storage of Raw Materials
2.2. Cold Alkaline Extraction (CAE) with and without Ultrasound
2.3. Modeling and Optimization by Multiple Regression-Experimental Design
3. Results and Discussion
3.1. Chemical Characterization of the Raw Material
Composition | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
ᾳ Cellulose (glucan) (%) | 40.3 ± 0.85 | 41.1 ± 2.1 | 38.9 ± 3.4 | 38.0 ± 2.4 | 44.0 ± 3.3 | 42.8 ± 2.0 | 33.8 ± 1.6 | 55.4 ± 2.6 |
Klason Lignin (%) | 25.1 ± 0.16 | 24.1 ± 1.8 | 19.8 ± 1.9 | 19.0 ± 2.5 | 27.8 ± 1.1 | 21.2 ± 0.9 | 19.9 ± 0.5 | 16 ± 0.3 |
Xylan (%) | 19.3 ± 0.09 | 17.0 ± 0.5 | 19.9 ± 1.3 | 15.7 ± 0.1 | 15.7 ± 0.2 | 17.1 ± 0.3 | 23.9 ± 0.1 | 34.6 ± 0.4 |
Araban (%) | 0 | ----- | 0.6 ± 0.3 | 1.5 ± 0.3 | 1.1 ± 0.1 | 0.7 ± 0.1 | 0.37 ± 0.2 | 5.6 ± 0.3 |
Acetyl groups (%) | 0.7 ± 0.02 | ----- | 4.4 ± 0.6 | 3.3 ± 0.5 | 4.4 ± 0.2 | 3.5 ± 0.1 | 4.32 ± 0.1 | ----- |
HHV, KJul/kg od.b. | 19,982 ± 30 | ----- | 19,592 ± 28 | 18,981 ± 95 | 20,300 ± 53 | 19,326 ± 84 | 17,259 ± 25 | ----- |
3.2. Cold Alkaline Extraction of Hemicelluloses with and without Ultrasound Assistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, 2018, 82–209. [Google Scholar]
- REN21. Renewables 2020 Global Status Report; Renewable and Sustainable Energy Reviews; REN21 Secretariat: Paris, France, 2020; ISBN 978-3-948393-00-7. Available online: https://www.ren21.net/gsr-2020/ (accessed on 11 December 2023).
- Domínguez, E.; Nóvoa, T.; del Río, P.G.; Garrote, G.; Romaní, A. Sequential two-stage autohydrolysis biorefinery for the production of bioethanol from fast-growing Paulownia biomass. Energy Convers. Manag. 2020, 226, 113517. [Google Scholar] [CrossRef]
- Ginni, G.; Kavitha, S.; Kannah, Y.; Bhatia, S.K.; Kumar, A.; Rajkumar, M.; Kumar, G.; Pugazhendhi, A.; Chi, N.T.L. Valorization of agricultural residues: Different biorefinery routes. J. Environ. Chem. Eng. 2021, 9, 105435. [Google Scholar] [CrossRef]
- World Energy Outlook 2017 [Internet]. OECD, 2017. Available online: https://www.oecd-ilibrary.org/energy/world-energy-outlook-2017_weo-2017-en (accessed on 11 May 2021).
- Seserman, D.-M.; Pohle, I.; Veste, M.; Freese, D. Simulating climate change impacts on hybrid-poplar and black locust short rotation coppices. Forests 2018, 9, 419. [Google Scholar] [CrossRef]
- Montero, G.; Serrada, R. La Situación de los Bosques y el Sector Forestal en España; ISFE: Pontevedra, Spain, 2013. [Google Scholar]
- del Mar Contreras, M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 2021, 14, 102. [Google Scholar] [CrossRef]
- Cristóbal, J.; Matos, C.T.; Aurambout, J.P.; Manfredi, S.; Kavalov, B. Environmental sustainability assessment of bioeconomy value chains. Biomass Bioenergy 2016, 89, 159–171. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Conrad, M.; Sun, S.N.; Sanchez, A.; Rocha, G.J.M.; Romaní, A.; Castro, E.; Torres, A.; Rodríguez-Jasso, R.M.; Andrade, L.P.; et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 2020, 299, 122685. [Google Scholar] [CrossRef]
- Sixto, H.; Cañellas, I.; van Arendonk, J.; Ciria, P.; Camps, F.; Sánchez, M.; Sánchez-González, M. Growth potential of different species and genotypes for biomass production in short rotation in Mediterranean environments. For. Ecol. Manag. 2015, 354, 291–299. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 978-92-5-109551-5. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 11 December 2023).
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Vanguelova, E.; Pitman, R. Impacts of short rotation forestry on soil sustainability. Short rotation forestry: Review of growth and environmental impacts. For. Res. Monogr. 2011, 2, 37–77. [Google Scholar]
- Madejón, P.; Alaejos, J.; García-Álbala, J.; Fernández, M.; Madejón, E. Three-year study of fast-growing trees in degraded soils amended with composts: Effects on soil fertility and productivity. J. Environ. Manag. 2016, 169, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Madadi, M.; Song, G.; Karimi, K.; Zhu, D.; Elsayed, M.; Sun, F.; Abomohra, A. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability. Bioresour. Technol. 2022, 359, 127503. [Google Scholar] [CrossRef] [PubMed]
- Penín, L.; Peleteiro, S.; Rivas, S.; Santos, V.; Parajó, J.C. Production of 5-hydroxymethylfurfural from pine wood via biorefinery technologies based on fractionation and reaction in ionic liquids. Bioresources 2019, 14, 4733–4747. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- de Carvalho, D.M.; Sevastyanova, O.; de Queiroz, J.H.; Colodette, J.L. Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw. Energy Convers. Manag. 2016, 124, 315–324. [Google Scholar] [CrossRef]
- García, J.C.; Díaz, M.J.; Garcia, M.T.; Feria, M.J.; Gómez, D.M.; López, F. Search for optimum conditions of wheat straw hemicelluloses cold alkaline extraction process. Biochem. Eng. J. 2013, 71, 127–133. [Google Scholar] [CrossRef]
- Hutterer, C.; Schild, G.; Potthast, A. A precise study on effects that trigger alkaline hemicellulose extraction efficiency. Bioresour. Technol. 2016, 214, 460–467. [Google Scholar] [CrossRef]
- Park, Y.C.; Kim, J.S. Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 2012, 47, 31–35. [Google Scholar] [CrossRef]
- Longue Júnior, D.; Colodette, J.L.; Gomes, V.J. Extraction of wood hemicelluloses through NaOH leaching|Remoção de hemiceluloses da madeira por tratamento de lixiviação alcalina com NaOH. Cerne 2010, 16, 423–429. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC-Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Yuan, Z.; Long, J.; Wang, T.; Shu, R.; Zhang, Q.; Ma, L. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Convers. Manag. 2015, 101, 481–488. [Google Scholar] [CrossRef]
- Saikia, M.; Das, T.; Hower, J.C.; Silva, L.F.O.; Fan, X.; Saikia, B.K. Oxidative chemical beneficiation of low-quality coals under low-energy ultrasonic and microwave irradiation: An environmental-friendly approach. J. Environ. Chem. Eng. 2021, 9, 104830. [Google Scholar] [CrossRef]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Alriols, M.G.; Llano-Ponte, R.; Labidi, J. Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour. Technol. 2011, 102, 6326–6330. [Google Scholar] [CrossRef] [PubMed]
- Raihan, A.; Ibrahim, S.; Muhtasim, D.A. Dynamic impacts of economic growth, energy use, tourism, and agricultural productivity on carbon dioxide emissions in Egypt. World Dev. Sustain. 2023, 2, 100059. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Novoselov, K.S.; Liang, F.; Meng, J.; Ho, S.-H.; Zhao, T.; Zhou, H.; Ahmad, A.; Zhu, Y.; et al. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Lett. 2023, 15, 35. [Google Scholar] [CrossRef]
- Puițel, A.C.; Suditu, G.D.; Drăgoi, E.N.; Danu, M.; Ailiesei, G.-L.; Balan, C.D.; Chicet, D.-L.; Nechita, M.T. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles. Polymers 2023, 15, 1038. [Google Scholar] [CrossRef]
- Gufe, C.; Thantsha, M.S.; Malgas, S. Recovery of xylan from Acacia mearnsii using ultrasound-assisted alkaline extraction. Biofuels Bioprod. Biorefining 2023, 17, 976–987. [Google Scholar] [CrossRef]
- Tareen, A.K.; Punsuvon, V.; Parakulsuksatid, P. Conversion of steam exploded hydrolyzate of oil palm trunk to furfural by using sulfuric acid, solid acid, and base catalysts in one pot. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–12. [Google Scholar] [CrossRef]
- Gil, M.V.; Jablonka, K.M.; García, S.; Pevida, C.; Smit, B. Biomass to energy: A machine learning model for optimum gasification pathways. Digit. Discov. 2023, 2. [Google Scholar] [CrossRef]
- Tofani, G.; Cornet, I.; Tavernier, S. Multiple linear regression to predict the brightness of waste fibres mixtures before bleaching. Chem. Pap. 2022, 76, 4351–4365. [Google Scholar] [CrossRef]
- TAPPI T264 cm-07; Preparation of Wood for Chemical Analysis. TAPPI Press: Atlanta, GA, USA, 2007.
- TAPPI 211 om-02; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. TAPPI Press: Atlanta, GA, USA, 2002.
- TAPPI T204 cm-07; Solvent Extractives of Wood and Pulp. TAPPI Press: Atlanta, GA, USA, 2007.
- TAPPI T249 cm-09; Carbohydrate Composition of Extractive-Free Wood and Wood Pulp by Gas-Liquid Chromatography. TAPPI Press: Atlanta, GA, USA, 2009.
- Romaní, A.; Garrote, G.; Ballesteros, I.; Ballesteros, M. Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel 2013, 111, 66–74. [Google Scholar] [CrossRef]
- TAPPI T222 om-11; Acid-Insoluble Lignin in Wood and Pulp. TAPPI Press: Atlanta, GA, USA, 2011.
- CEN/TS Solid Biofuels-Method for the Determination of Calorific Value CEN/TS 14918:2005. 2005. Available online: https://standards.iteh.ai/catalog/standards/cen/21f53010-bfdf-41aa-8f73-3ad9e2ab444f/cen-ts-14918-2005 (accessed on 11 December 2023).
- UNE 16001 EX; Solid Biofuels, Method for the Determination of Calorific Value. Spanish Association for Standardization: Madrid, Spain, 2005. Available online: https://infostore.saiglobal.com/preview/is/en/2005/i.s.cents14918-2005.pdf?sku=675235 (accessed on 11 December 2023).
- Civitarese, V.; Faugno, S.; Picchio, R.; Assirelli, A.; Sperandio, G.; Saulino, L.; Crimaldi, M.; Sannino, M. Production of selected short-rotation wood crop species and quality of obtained biomass. Eur. J. For. Res. 2018, 137, 541–552. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P.S. Multi-tree cut-to-length harvesting of short-rotation poplar plantations. Eur. J. For. Res. 2020, 140, 345–354. [Google Scholar] [CrossRef]
- Constantí, M.; Reguant, C.; Poblet, M.; Zamora, F.; Mas, A.; Guillamón, J.M. Molecular analysis of yeast population dynamics: Effect of sulphur dioxide and inoculum on must fermentation. Int. J. Food Microbiol. 1998, 41, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Ebringerová, A.; Hromádková, Z. An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Cent. Eur. J. Chem. 2010, 8, 243–257. [Google Scholar] [CrossRef]
- Alfaro, A.; López, F.; Pérez, A.; García, J.C.; Rodríguez, A. Integral valorization of tagasaste (Chamaecytisus proliferus) under hydrothermal and pulp processing. Bioresour. Technol. 2010, 101, 7635–7640. [Google Scholar] [CrossRef]
- López, F.; Alfaro, A.; García, M.; Díaz, M.J.; Calero, A.M.; Ariza, J. Pulp and paper from tagasaste (Chamaecytisus proliferus L.F. ssp. palmensis). Chem. Eng. Res. Des. 2004, 82, 1029–1036. [Google Scholar] [CrossRef]
- Feria, M.J.; García, J.C.; Pérez, A.; Gomide, J.L.; Colodette, J.L.; López, F. Process optimization in kraft pulping, bleaching, and beating of Leucaena diversifolia. Bioresources 2012, 7, 283–297. [Google Scholar] [CrossRef]
- Caparrós, S.; Ariza, J.; López, F.; Nacimiento, J.A.; Garrote, G.; Jiménez, L. Hydrothermal treatment and ethanol pulping of sunflower stalks. Bioresour. Technol. 2008, 99, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- García, J.C.; Zamudio, M.A.M.; Pérez, A.; De Alva, H.E.; López, F. Paulownia as a raw material for the production of pulp by soda-anthraquinone cooking with or without previous autohydrolysis. J. Chem. Technol. Biotechnol. 2011, 86, 608–615. [Google Scholar] [CrossRef]
- López, F.; Pérez, A.; Zamudio, M.A.M.; De Alva, H.E.; García, J.C. Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy 2012, 45, 77–86. [Google Scholar] [CrossRef]
- Loaiza, J.M.; López, F.; García, M.T.; Fernández, O.; Díaz, M.J.; García, J.C. Selecting the pre-hydrolysis conditions for eucalyptus wood in a fractional exploitation biorefining scheme. J. Wood Chem. Technol. 2016, 36, 211–223. [Google Scholar] [CrossRef]
- López, F.; García, M.; Feria, M.; García, J.; de Diego, C.; Zamudio, M.; Díaz, M. Optimization of furfural production by acid hydrolysis of eucalyptus globulus in two stages. Chem. Eng. J. 2014, 240, 195–201. [Google Scholar] [CrossRef]
- Pan, X.; Sano, Y. Fractionation of wheat straw by atmospheric acetic acid process. Bioresour. Technol. 2005, 96, 1256–1263. [Google Scholar] [CrossRef]
- Fernández, M.; Alaejos, J.; Andivia, E.; Madejón, P.; Díaz, M.J.; Tapias, R. Short rotation coppice of leguminous tree Leucaena spp. improves soil fertility while producing high biomass yields in Mediterranean environment. Ind. Crops Prod. 2020, 157, 112911. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Wang, S.; Guo, D.; Ma, C.; Zhou, Y.; Chen, J.; Laghari, M.; Fazal, S.; Xiao, B.; et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Convers. Manag. 2016, 118, 1–11. [Google Scholar] [CrossRef]
- Fernández, M.; Alaejos, J.; Andivia, E.; Vázquez-Piqué, J.; Ruiz, F.; López, F.; Tapias, R. Eucalyptus x urograndis biomass production for energy purposes exposed to a Mediterranean climate under different irrigation and fertilisation regimes. Biomass Bioenergy 2018, 111, 22–30. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Q.; Wang, X.; Xiao, B.; Liu, S. Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis. Energy Convers. Manag. 2015, 105, 251–259. [Google Scholar] [CrossRef]
- Methrath Liyakathali, N.A.; Muley, P.D.; Aita, G.; Boldor, D. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. Bioresour. Technol. 2016, 200, 262–271. [Google Scholar] [CrossRef] [PubMed]
Variables | With Ultrasound | Without Ultrasound | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
XA | Xt | XT | Yield (%) | Glucan (%) | Xylan (%) | Klason Lignin (%) | Yield (%) | Glucan (%) | Xylan (%) | Klason Lignin (%) |
0 | 0 | 0 | 68.8 | 86.4 | 40.4 | 67.0 | 73.2 | 89.8 | 45.4 | 88.5 |
0 | 0 | 0 | 68.8 | 86.4 | 40.4 | 67.0 | 73.2 | 89.8 | 45.4 | 88.5 |
1 | 1 | 1 | 63.3 | 80.4 | 45.0 | 58.4 | 68.5 | 93.2 | 56.8 | 80.1 |
1 | 1 | −1 | 67.9 | 84.3 | 43.5 | 62.4 | 77.8 | 95.7 | 49.3 | 83.4 |
1 | −1 | 1 | 69.0 | 84.8 | 49.5 | 73.9 | 73.3 | 96.5 | 54.7 | 97.5 |
1 | −1 | −1 | 75.0 | 95.8 | 50.2 | 67.4 | 80.8 | 98.2 | 47.4 | 90.6 |
−1 | 1 | 1 | 64.7 | 96.2 | 47.2 | 51.5 | 69.3 | 98.1 | 43.3 | 71.6 |
−1 | 1 | −1 | 70.9 | 96.2 | 51.6 | 66.7 | 77.6 | 98.2 | 51.3 | 90.9 |
−1 | −1 | 1 | 69.5 | 85.7 | 49.9 | 69.2 | 71.6 | 89.8 | 53.0 | 89.5 |
−1 | −1 | −1 | 74.6 | 87.6 | 55.7 | 77.7 | 78.5 | 92.1 | 60.2 | 98.9 |
1 | 0 | 0 | 67.3 | 91.0 | 44.4 | 60.9 | 72.7 | 98.7 | 47.4 | 79.7 |
−1 | 0 | 0 | 69.4 | 95.6 | 50.3 | 61.3 | 73.1 | 97.4 | 47.6 | 79.6 |
0 | 1 | 0 | 66.5 | 81.7 | 39.2 | 68.7 | 73.7 | 88.1 | 46.4 | 93.3 |
0 | −1 | 0 | 71.0 | 84.6 | 44.2 | 74.4 | 75.4 | 85.1 | 52.0 | 98.1 |
0 | 0 | 1 | 68.6 | 82.1 | 40.9 | 68.4 | 71.1 | 86.3 | 49.5 | 90.6 |
0 | 0 | −1 | 73.5 | 84.1 | 42.6 | 72.9 | 78.7 | 87.8 | 50.1 | 96.0 |
Equation with Ultrasounds | Equation Number | Adjusted R2/Snedecor’s F-Value |
---|---|---|
YI = 68.5 − 0.67XA − 2.57Xt − 2.66XT − 1.83Xt2+ 2.58XT2 | (3) | 0.95/56 |
GL = 87.0 − 2.50XA − 1.87XT + 5.98XA2 − 4.03XT2 − 4.39XAXt − 1.6XAXT + 1.19XtXT | (4) | 0.98/59 |
X = 40.2 − 2.28XA − 2.24Xt − 1.12XT + 7.23XA2 + 1.62XT2 − 0.56XAXt + 1.37XAXT + 0.44XtXT | (5) | 0.98/138 |
KL = 66.6 − 5.96Xt − 2.57XT − 5.33XA2 + 4.58XT2 + 1.04XAXt + 3.28XAXT − 2.34XtXT | (6) | 0.98/114 |
Equation without Ultrasounds | Equation Number | Adjusted R2/Snedecor’s F-Value |
YI = 73.0 + 0.3 XA − 1.38X t − 3.97XT + 1.68XT2 − 0.57XAXt − 0.42XtXT | (7) | 0.98/202 |
GL = 89.7 + 0.67XA + 1.16Xt − 0.80XT + 8.37XA2 − 2.86XT2 − 2.53XAXt | (8) | 0.99/189 |
X= 45.2 − 2.02Xt + 2.39XA2 + 4.39XT2 + 2.84XAXt + 3.76XAXT | (9) | 0.99/211 |
KL = 88.04 − 6.08Xt − 3.05XT − 8.14XA2 + 2.61Xt2 + 5.24XT2 + 4.05XAXT − 2.75XtXT | (10) | 0.99/251 |
Normalized Values | Cold Alkaline Extraction (CAE) with Ultrasound | |||||||
---|---|---|---|---|---|---|---|---|
XA | Xt | XT | H (%) | S (%) | C (%) | O (%) | Moisture (%) | LHV at Constant Volume (J/g o.d.b.) |
0 | 0 | 0 | 6.105 | 0.00018 | 45.60 | 47.19 | 9.9 | 18,843 |
1 | 1 | 1 | 5.867 | 0.00000 | 41.01 | 52.03 | 8.2 | 19,233 |
1 | 1 | −1 | 5.872 | 0.00000 | 42.36 | 50.68 | 7.8 | 19,033 |
1 | −1 | 1 | 5.918 | 0.00024 | 44.70 | 48.23 | 10.0 | 18,115 |
1 | −1 | −1 | 5.922 | 0.00011 | 45.18 | 47.81 | 8.1 | 18,570 |
−1 | 1 | 1 | 5.841 | 0.00000 | 42.00 | 51.07 | 11.2 | 18,504 |
−1 | 1 | −1 | 5.858 | 0.00016 | 43.88 | 49.17 | 8.2 | 18,530 |
−1 | −1 | 1 | 5.861 | 0.00020 | 43.85 | 49.20 | 10.0 | 18,516 |
−1 | −1 | −1 | 5.908 | 0.00032 | 44.15 | 48.86 | 8.9 | 18,675 |
1 | 0 | 0 | 6.023 | 0.00014 | 44.00 | 49.01 | 11.2 | 18,965 |
−1 | 0 | 0 | 5.981 | 0.00030 | 44.25 | 48.71 | 8.8 | 18,872 |
0 | 1 | 0 | 5.972 | 0.00004 | 44.69 | 48.25 | 8.2 | 18,734 |
0 | −1 | 0 | 5.962 | 0.000140 | 45.547 | 47.4 | 8.1 | 18,477 |
0 | 0 | 1 | 5.870 | 0.000165 | 44.359 | 48.78 | 9.8 | 18,482 |
0 | 0 | −1 | 5.890 | 0.000205 | 45.076 | 47.78 | 9.7 | 18,686 |
Equation with Ultrasounds | Equation Number | Adjusted R2/Snedecor’s F-Value |
---|---|---|
H = 6.100 + 0.015XA − 0.016Xt − 0.093XA2 + 0.092Xt2 − 0.220XT2 | (11) | 0.96/70 |
S = 0.000180 − 0.000049XA − 0.000086Xt − 0.000019XT + 0.000036XA2 − 0.000089Xt2 + 0.000050XAXT − 0.000023XtXT | (12) | 0.95/40 |
C = 45.62 − 1.02Xt − 0.470XT − 1.514XA2 − 0.711XT2 − 0.549XAXt − 0.363XtXT | (13) | 0.97/77 |
O = 47.22 + 1.04Xt + 0.50XT + 1.60XA2 + 0.81XT2 + 0.56XAXt | (14) | 0.97/79 |
LHV = 18,881 + 82XA + 186Xt − 64XT − 251XT2 + 217XAXt + 90XtXT | (15) | 0.95/27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Calvo, S.; Loaiza, J.M.; García, J.C.; García, M.T.; López, F. Ultrasound-Assisted Cold Alkaline Extraction: Increasing Hemicellulose Extraction and Energy Production from Populus Wood. Forests 2024, 15, 109. https://doi.org/10.3390/f15010109
Lozano-Calvo S, Loaiza JM, García JC, García MT, López F. Ultrasound-Assisted Cold Alkaline Extraction: Increasing Hemicellulose Extraction and Energy Production from Populus Wood. Forests. 2024; 15(1):109. https://doi.org/10.3390/f15010109
Chicago/Turabian StyleLozano-Calvo, S., J. M. Loaiza, J. C. García, M. T. García, and F. López. 2024. "Ultrasound-Assisted Cold Alkaline Extraction: Increasing Hemicellulose Extraction and Energy Production from Populus Wood" Forests 15, no. 1: 109. https://doi.org/10.3390/f15010109
APA StyleLozano-Calvo, S., Loaiza, J. M., García, J. C., García, M. T., & López, F. (2024). Ultrasound-Assisted Cold Alkaline Extraction: Increasing Hemicellulose Extraction and Energy Production from Populus Wood. Forests, 15(1), 109. https://doi.org/10.3390/f15010109